

Diamagnetism and paramagnetism

- Langevin diamagnetism
- paramagnetism
 - Hund's rules
 - Lande g-factor
 - Brillouin function
- crystal field splitting
 - quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism

free electron gas

Basics

$$E(H)$$
 $(E \rightarrow F = E - TS \text{ if } T \neq 0)$

• magnetization density
$$M(H) = -\frac{1}{V} \frac{\partial E}{\partial H}$$

$$M(H) = -\frac{1}{V} \frac{\partial E}{\partial H}$$

$$\chi \equiv \frac{\partial M}{\partial H} = -\frac{1}{V} \frac{\partial^2 E}{\partial H^2}$$

Atomic susceptibility

$$H = \sum_{i} \left(\frac{p_i^2}{2m} + V_i \right) + \mu_B \left(\vec{L} + g \vec{S} \right) \cdot \vec{H} + \frac{e^2}{2mc} \sum_{i} A_i^2, \quad \mu_B = \frac{e\hbar}{2mc}$$
$$= H_0 + \Delta H$$

Order of magnitude

•
$$\mu_B \left(\vec{L} + g \vec{S} \right) \cdot \vec{H} \approx \mu_B H \approx \hbar \omega_c$$

 $\approx 10^{-4} eV$ when $H = 1 \text{ T}$

•
$$\vec{A}_i = \frac{H}{2}(-y_i, x_i, 0)$$

$$\frac{e^2}{2mc} \sum_i A_i^2 \approx \left(\frac{eH}{mc}\right)^2 m a_0^2, \quad a_0 \equiv \frac{\hbar^2}{me^2}$$

$$\approx \frac{\left(\hbar\omega_c\right)^2}{e^2/a_0} \approx 10^{-5} \text{ of the linear term at } H = 1 \text{ T}$$

Perturbation energy (to 2nd order)

$$\Delta E_{n} = \langle n | \Delta H | n \rangle + \sum_{n' \neq n} \frac{\left| \langle n | \Delta H | n' \rangle \right|^{2}}{E_{n} - E_{n'}}$$

$$= \mu_{B} \langle n | \vec{L} + g\vec{S} | n \rangle \cdot \vec{H} + \frac{e^{2}}{2mc^{2}} \langle n | \sum_{i} A_{i}^{2} | n \rangle + \sum_{n'} \frac{\left| \langle n | \mu_{B} (\vec{L} + g\vec{S}) \cdot \vec{H} | n' \rangle \right|^{2}}{E_{n} - E_{n'}}$$

Filled atomic shell

(applies to noble gas, NaCl-like ions...etc)

Ground state $|0\rangle$:

$$\vec{L}|0\rangle = \vec{S}|0\rangle = 0$$

$$\therefore \Delta E = \frac{e^2}{8mc^2} H^2 \langle 0 | \frac{2}{3} \sum_{i} r_i^2 | 0 \rangle \quad \text{(for spherical charge dist)}$$

For a collection of *N* ions,

$$\chi = -\frac{N}{V} \frac{\partial^2 \Delta E}{\partial H^2} = -\frac{e^2}{6mc^2} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle < 0$$

Larmor (or Langevin) diamagnetism

Ground state of an atom with <u>unfilled shell</u> (no *H* field yet!):

- Atomic quantum numbers α, l, m_l, m_s
- Energy of an electron depends on α, l (no m_l, m_s)
- Degeneracy of electron level $\mathcal{E}_{\alpha,l}$: 2(2*l*+1)
- ullet If an atom has N (non-interacting) valence electrons, then the degeneracy of the "atomic" ground state (with unfilled $m{\mathcal{E}}_{lpha,l}$ shell) is $C_N^{2(2l+1)}$
- e-e interaction will lift this degeneracy partially, and then
- the atom energy is labeled by the conserved quantities *L* and *S*, each is (2L+1)(2S+1)-fold degenerate
- SO coupling would split these states further, which are labeled by J

What's the values of S, L, and J for the atomic ground state?

Use the Hund's rules (1925),

- 1. Choose the max value of S that is consistent with the exclusion principle
- 2. Choose the max value of L that is consistent with the exclusion principle and the 1st rule

To reduce Coulomb repulsion, electron spins like to be parallel, electron orbital motion likes to be in high *ml* state. Both helps disperse the charge distribution.

Example: 2 *e*'s in the *p*-shell ($I_1 = I_2 = 1$, $s_1 = s_2 = 1/2$)

- (a) (1,1/2) (b) (0,1/2) (c) (-1,1/2)

- (a') (1,-1/2) (b') (0,-1/2) (c') (-1,-1/2)

C₂ ways to put these 2 electrons in 6 slots

Spectroscopic notation:

$$^{2S+1}X_J$$
 ($X=S,P,D...$)
 $^1S_0,^3P_{0,1,2},^1D_2$ are o.k.; $^3S,^1P,^3D$ are not.
(It's complicated. See Eisberg and Resnick

App. K for more details)

Ground state is ${}^{3}P_{012}$,

(2L+1)x(2S+1)=9-fold degenerate

Energy levels of Carbon atom							
Configuration	Term	J	Level(cm ⁻¹)				
2s ² 2p ²	3 _p	Π	0.00000				
25 2p	P	1	16.41671				
		2	43.41350				
2s ² 2p ²	¹ D	2	10192.66				
2s ² 2p ²	1 _S	0	21648.02				

physics.nist.gov/PhysRefData/Handbook/Tables/carbontable5.htm

There is also the 3rd Hund's rule related to SO coupling (details below)

TABLE K-I. Possible Quantum Numbers for an np² Configuration

Entry	m_{l_1}	m_{s_1}	m_{l_2}	m_{s_2}	m_l'	m_s'	m_j'
1	+1	+1/2	+1	-1/2	+2	0	+2
2	+1	+1/2	0	+1/2	+1	+1	+2
3	+1	+1/2	0	-1/2	+1	0.	+1
4	+1	+1/2	-1	+1/2	0	+1	+1
5	+1	+1/2	-1	-1/2	. 0	0	0
6	+1	-1/2	. 0	-1/2	+1	-1	0
7	+1	-1/2	-1	+1/2	0	0	0
8	+1	-1/2	-1	-1/2	0	-1	-1
9	0	+1/2	+1	-1/2	+1	0 -	+1
10	0	+1/2	0	-1/2	0	0	0
11	0	+1/2	-1	+1/2	-1	+1	o ·
12	0	+1/2	-1	-1/2	-1	0	~1
13	-1	+1/2	0	-1/2	-1	Õ	-1
14	-1	+1/2	1	-1/2	-2	ō	-2
15	-1	-1/2	0	-1/2	-1	-1	-2

Setting $l_1 = l_2 = 1$, we find that the possible combinations of l', s', j', expressed in spectroscopic notation, are as follows: 1S_0 , 1P_1 , 1D_2 , 3S_1 , 3P_0 , 3P_1 , 3P_2 , 3D_1 , 3D_2 , 3D_3 . The 3D_3 states are immediately ruled out because for these states there would be m'_j values of

Eisberg and Resnick App. K

+3 and -3, but we see that there are none listed in Table K-1. Since there are no 3D_3 states, there can be no 3D_2 or 3D_1 states; all these states correspond to S' and L' vectors of the same magnitude in the same multiplet and they stand or fall together. Now, entry number 1 in the table says there must be states with $s' \ge 0$ and $l' \ge 2$, since $m'_s = -s', \ldots, s'$ and $m'_l = -l', \ldots, l'$. These requirements can be satisfied only by the states 1D_2 . There are five such states corresponding to the five values $m'_j = -2, -1, 0, 1, 2$. Entry number 2 says that there must be states with $s' \ge 1$ and $l' \ge 1$. This requires the presence of the states 3P_0 , 3P_1 , 3P_2 . For 3P_0 there is one state corresponding to $m'_j = 0$. For 3P_1 there are three states corresponding to $m'_j = -1, 0, 1$. For 3P_2 there are five corresponding to $m'_j = -2, -1, 0, 1, 2$. The number of states we have identified so far is 5 + 1 + 3 + 5 = 14. Only a single state is left, and this must be a state with $m'_j = 0$ because all the other m'_j values of the table have been used. It is clear then that this must be the single quantum state 1S_0 .

Review of SO coupling

An electron moving in a static E field feels an effective B field

$$ec{B}_{e\!f\!f} = ec{E} imes rac{ec{v}}{c}$$

This B field couples with the electron spin

$$\begin{split} H_{SO} &= -\vec{\mu} \cdot \vec{B}_{\text{eff}} \\ &= - \bigg(\frac{q}{mc} \vec{S} \bigg) \cdot \bigg(\vec{E} \times \frac{\vec{v}}{c} \bigg), \quad \vec{E} = -\hat{r} \frac{d\phi}{dr} \quad \text{for central force} \\ &= \bigg(\frac{q}{m^2 c^2} \frac{d\phi}{r dr} \bigg) \vec{S} \cdot \vec{L} \qquad (\text{x 1/2 for Thomas precession, 1927}) \\ &\equiv \lambda \vec{S} \cdot \vec{L} \qquad \qquad \lambda > 0 \text{ for less than half-filled (electron-like)} \\ &= \frac{\lambda}{2} \bigg(J^2 - L^2 - S^2 \bigg) \qquad \text{Quantum states are now labeled by L, S, J} \end{split}$$

(2L+1)x(2S+1) degeneracy is further lifted to become (2J+1)-fold degeneracy

Hund's 3rd rule:

- if less than half-filled, then J=|L-S| has the lowest energy
- if more than half-filled, then J=L+S has the lowest energy
- $^{3}P_{0}$ is the ground state in previous example

4-21	nell(l =	2)								
n	$l_z = 2$,	1,	0,	-1,	-2	S	$L = \Sigma l_x $		J	SYMBOI
1	ļ	,				1/2	2	3/2 }		$^{2}D_{3/2}$
2	1	↓				1	3	2 (J = L - S	J ³ F,
3	1	1	1			3/2	3	3/2	2 = L - 3	⁴ F _{3/2}
4	.	1	1	‡		2	2	0		D_{α}
5	Ţ	1	1	1	1	5/2	0	5/2		6S _{5/2}
6	Ħ	≜ ↑	1	†	1	2	2	4	· .	5D4
7	JT.	#.	1	†	†	3/2	3	9/2		⁴ F _{9/2}
8	· #	#	Ħ	Ť	†	1		4	チェルナタ	$ ^3F_A$
9	Ħ	Ħ,	Ħ	#	†	1/2	3 2	5/2	1.0,81	$^2D_{5/2}$
10	#	Ħ	Ħ	#	Ħ	0	0	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¹S _o
	-g -,	- , -,		-, -,		ļ <u>.</u>	~	<u> </u>		_1
n	$l_x = 3$,	2, 1,	0, -1	l, – 2,	-3	S	$L = \Sigma l_z $		J_{i}	1
										
1	.	•	:			1/2	3	5/2		$^{2}F_{5/2}$
1 2	.,	ļ .				1	5	4		³ H ₄
1 2 3		1 1 1				3/2	5	9/2	$ \begin{cases} J = I_{\bullet} - S \end{cases} $	³ H ₄ ⁴ I _{9/2}
4	· · · · · · · · · · · · · · · · · · ·	 	· .			1 3/2 2	5 6 6	9/2 4	$ \begin{cases} J = L - S \end{cases} $	³ H ₄ ⁴ I _{9/2} ⁵ I ₄
5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	· .	ļ		1 3/2 2 5/2	5 6 6 5	9/2 4 5/2	$ \begin{cases} J = L - S \end{cases} $	³ H ₄ ⁴ I _{9/2} ⁵ I ₄ ⁶ H _{5/2}
4 5 6		† † † †	•		1 3/2 2 5/2 3	5 6 6 5	9/2 4 5/2 0		³ H ₄ ⁴ I _{9/2} ⁵ I ₄ ⁶ H _{5/2} ⁷ F ₆
4 5 6 7	1 1 1 1 1 1 1 1 1 1	† † † † † † † † † † † † † † † † † † †	↓ ↓ ↓	↓ ↓ ↓ ↓	.	1 3/2 2 5/2 3 7/2	5 6 6 5 3	9/2 4 5/2 0 7/2	$ \begin{cases} J = L - S \end{cases} $	³ H ₄ ⁴ I _{9/2} ⁵ I ₄ ⁶ H _{5/2} ⁷ F ₀ ⁸ S _{7/2}
4 5 6 7 8	1 1 1 1 1		↓ ↓ ↓ ↑	↓ ↓ ↓ ↑ ↑	↓	1 3/2 2 5/2 3 7/2 3	5 6 6 5 3 0	4 9/2 4 5/2 0 7/2 6]	³ H ₄ ⁴ I _{9/2} ⁵ I ₄ ⁶ H _{5/2} ⁷ F ₀ ⁸ S _{7/2} ⁷ F ₆
4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† † † † † † † † † † † † † † † † † † †	↓ ↓ ↑ ↑	↓ ↓ ↓ ↑ ↑	↓ †	1 3/2 2 5/2 3 7/2 3 5/2	5 6 6 5 3 0 3 5	4 9/2 4 5/2 0 7/2 6 15/2]	³ H ₄ ⁴ I _{9/2} ⁵ I ₄ ⁶ H _{5/2} ⁷ F ₀ ⁸ S _{7/2} ⁷ F ₆ ⁶ H _{15/2}
4 5 6 7 8 9	11111111111	# #	1 1 1 1 1		† † †	1 3/2 2 5/2 3 7/2 3 5/2	5 6 6 5 3 0 3 5	4 9/2 4 5/2 0 7/2 6 15/2 8		3H ₄ 4I _{9/2} 5I ₄ 6H _{5/2} 7F ₀ 8S _{7/2} 7F ₆ 6H _{15/2} 5I ₈
4 5 6 7 8 9 10	uututtit	n n n	# 1		↓ ↑ ↑	1 3/2 2 5/2 3 7/2 3 5/2 2 3/2	5 6 5 3 0 3 5 6	4 9/2 4 5/2 0 7/2 6 15/2 8 15/2		3H ₄ 4I _{9/2} 5I ₄ 6H _{5/2} 7F ₀ 8S _{7/2} 7F ₆ 6H _{15/2} 5I ₈ 4I _{15/2}
4 5 6 7 8 9 10 11 12	Ħ	11 11 11 11 11 11	# 1 #		↓ ↑ ↑ ↑	1 3/2 2 5/2 3 7/2 3 5/2 2 3/2 1	5 6 5 3 0 3 5 6 6	4 9/2 4 5/2 0 7/2 6 15/2 8 15/2 6		3H ₄ 4I _{9/2} 5I ₄ 6H _{5/2} 7F ₀ 8S _{7/2} 7F ₆ 6H _{15/2} 5I ₈ 4I _{15/2} 3H ₆
4 5 6 7 8		n n n	# 1 # !		↓ ↑ ↑ ↑ ↑	1 3/2 2 5/2 3 7/2 3 5/2 2 3/2	5 6 5 3 0 3 5 6 6	4 9/2 4 5/2 0 7/2 6 15/2 8 15/2		3H ₄ 4I _{9/2} 5I ₄ 6H _{5/2} 7F ₀ 8S _{7/2} 7F ₆ 6H _{15/2} 5I ₈ 4I _{15/2}

. -

Paramagnetism of an atom with unfilled shell

1) Ground state is nondegenerate (*J*=0)

$$\Delta E = \mu_B \left\langle 0 \left| \vec{L} + g \vec{S} \right| 0 \right\rangle \cdot \vec{H} + \frac{e^2}{2mc^2} \left\langle 0 \left| \sum_i A_i^2 \right| 0 \right\rangle + \sum_n \left| \frac{\left| \left\langle 0 \right| \mu_B \left(\vec{L} + g \vec{S} \right) \cdot \vec{H} \left| n \right\rangle \right|^2}{E_0 - E_n} \right|$$
 (A+M, Prob 31.4)

2) Ground state is degenerate ($J \neq 0$)

Van Vleck PM

Then the 1st order term almost always >> the 2nd order terms.

$$\vec{M} = -\mu_B \left(\vec{L} + 2\vec{S} \right) = -\mu_B \left(\vec{J} + \vec{S} \right)$$

Heuristic argument: J is fixed, L and S rotate around J, maintaining the triangle. So the magnetic moment is given by the component of L+2S parallel to J

$$\vec{S}_{//} = \frac{\vec{J} \cdot \vec{S}}{J^2} \vec{J} = \frac{\vec{J}}{2J^2} (J^2 - L^2 + S^2)$$
$$= \frac{\vec{J}}{2J(J+1)} [J(J+1) - L(L+1) + S(S+1)]$$

$$\therefore \vec{M} = -g_J \mu_B \vec{J}$$
Lande g-factor
$$g_J = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$$

$$\triangle E(m_j) \sim H$$
, so $\chi = 0$?

No! these 2J+1 levels are closely packed (< kT), so F(H)is nonlinear

(1921)

Brillouin function

$$Z = \sum_{m_J = -J}^{J} e^{-E(m_J)/kT}, \quad \Delta E(m_J) = g_J \mu_B m_J H \left(\sim 1K \text{ at } H = 1 \text{ T} \right)$$

$$F = E - TS = -kT \ln Z$$

$$M = -\frac{N}{V} \frac{\partial F}{\partial H} = \frac{N}{V} g_J \mu_B J B_J \left(\frac{g_J \mu_B J H}{kT} \right)$$

where
$$B_J(x) = \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \coth\left(\frac{x}{2J}\right)$$

•
$$kT \ll g_J \mu_B JH \quad (x >> 1)$$

$$M = \frac{N}{V} g_J \mu_B J, \quad \chi = 0$$

•
$$kT >> g_J \mu_B JH$$
 $(x << 1)$ $B_J(x) \sim \frac{J+1}{3J}x$

$$M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J+1)}{3kT} H$$

$$\chi$$

 $C = \frac{N}{N} \frac{(\mu_B p)^2}{2I}$, where $p = g_J \sqrt{J(J+1)}$ (effective Bohr magneton number)

f-shell (rare earth ions) In general (but not always)
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d ...

ELEMENT (TRIPLY IONIZED)	BASIC ELECTRON CONFIGURATION	GROUND-STATE TERM	CALCULATED ^b p	MEASURED ^c p
La	4f°	¹ S	0.00	diamagnetic
Ce	\cdot 4 f^1	${}^{2}F_{5/2}$	2.54	2.4
Pr	$4f^2$	3H_4	3.58	3.5
Nd	$4f^3$	⁴ I _{9/2}	3.62	3.5
Pm	4f4	$^{3}I_{4}$	2.68	
- Sm	$4f^5$	⁶ H _{5/2}	0.84	1.5
- Eu	$4f^6$	$^{7}F_{\mathbf{o}}$	0.00	3.4 J
Gd	$4f^7$	⁸ S _{7/2}	7.94 Due to I	ow-lying 8.0
Tb	$4f^8$	$^{7}F_{6}$	A #A	M, p.657) 9.5
Dу	4f ⁹	⁶ H _{15/2}	10.63	10.6
Но	$4f^{10}$	${f J_8}$	10.60	10.4
Er	$^{-4}f^{11}$	$\frac{4}{3}I_{15/2}$	9.59	9.5
Tm	$^{'}4f^{12}$	3H_6	7.57	7.3
Yb	$4f^{13}$	${}^{2}F_{7/2}$	4.54	4.5
Lu	$4f^{14}$	¹ S	0.00	diamagnetic

Before ionization, La: 5p⁶ 6s² 5d¹; Ce: 5p⁶ 6s² 4f² ...

d-shell (iron group ions)

ELEMENT (AND	BASIC ELECTRON	GROUND- STATE	' CAL	CULATED ^b p	
IONIZATION)	CONFIGURATION	TERM		$(J= L\pm S)$	MEASURED ¢ p
Ti ³⁺	3d1 452.	² D _{3/2}	1.73	1.55	
V ⁴⁺	$3d^1$	$^{2}D_{3/2}$	1.73	1.55	1.8
V^{3+}	$3d^2$	3F_2	2.83	1.63	2.8
V ²⁺	$3d^3$	${}^{4}F_{3/2}$	3.87	0.77	3.8
Cr ³⁺	$3d^3$	${}^{4}F_{3/2}$	3.87	0.77	3.7
Mn ⁴⁺	$3d^3$	${}^{4}F_{3/2}$	3.87	0.77	4.0
Cr ²⁺	$3d^4$	$^{5}D_{0}^{^{3/2}}$	4.90	0	4.8
Mn ³⁺	$3d^4$	$^{5}D_{0}^{\circ}$	4.90	0	5.0
Mn ²⁺	$3d^5$	⁶ S _{5/2}	5.92	5.92	5.9
Fe ³⁺	$3d^5$	${}^{6}S_{5/2}$	5.92	5.92	5.9
Fe ²⁺	$3d^6$	${}^{5}D_{4}^{72}$	4.90	6.70	5.4
Co ²⁺	$3d^{7}$	${}^{4}F_{9/2}$	3.87	6.54	4.8
Ni ²⁺	3d ⁸	${}^{3}F_{4}$	2.83	5.59	3.2
Cu ²⁺	3d ⁹	$^{2}D_{5/2}$	1.73	3.55	1.9

- Curie's law is still good, but p is mostly wrong
- Much better improvement if we let *J*=*S*

Crystal field splitting \mathbf{p}_x \mathbf{p}_y \mathbf{p}_z \mathbf{d}_{xz} \mathbf{d}_{yz} \mathbf{d}_{xy}

In a crystal, crystal field may be more important than the LS coupling

octahedral (O_h) crystal field splitting

Different symmetries would have different splitting patterns

Quench of orbital angular momentum

- Due to crystal field, energy levels are now labeled by L (not J)
- Orbital degeneracy not lifted by crystal field may be lifted by
 1) LS coupling or 2) Jahn-Teller effect or both.
- The stationary state ϕ of a non-degenerate level can be chosen to be real when $t \to -t$,

$$\psi \rightarrow \psi^* (= c\psi \text{ if nondegenerate})$$

- $\langle \psi | \vec{L} | \psi \rangle = \langle \psi | \vec{r} \times \frac{\hbar}{i} \nabla | \psi \rangle$ is purely imaginary but $\langle \psi | \vec{L} | \psi \rangle$ has to be real also $\therefore \langle \psi | \vec{L} | \psi \rangle = 0$ $(\langle \psi | L^2 | \psi \rangle \text{ can still be non-zero})$
- for 3d ions, crystal field > LS interaction
- for 4f ions, LS interaction > crystal field (because 4f is hidden inside 5p and 6s shells)
- for 4d and 5d ions that have stronger SO interaction, the 2 energies maybe comparable and it's more complicated.

- Langevin diamagnetism
- paramagnetism
 - Hund's rules
 - Lande g-factor
 - Brillouin function
- crystal field splitting
 - quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism

Adiabatic demagnetization (proposed by Debye, 1926)

• The first way to reach below 1K

$$Z = \sum_{m_J = -J}^{J} e^{-E/kT}$$
, assume $E \propto H$

$$F = -kT \ln Z \left(\frac{H}{kT}\right)$$

$$S = -\frac{\partial F}{\partial T} = S\left(\frac{H}{kT}\right)$$

If S=constant, then $kT \sim H$ $T_f = T_i \frac{H_f}{H_i}$

 \therefore We can reduce H to reduce T

Freezing is effective only if spin specific heat is dominant (usually need T<<T_D)

is removed

Can reach 10⁻⁶ K (dilution refrig only 10⁻³ K)

Pauli paramagnetism for free electron gas (1925)

- Orbital response to *H* neglected, consider only spin response
- One of the earliest application of the exclusion principle

$$N = N_{\uparrow} + N_{\downarrow}$$

$$M = \frac{1}{V} \left(N_{\uparrow} - N_{\downarrow} \right) \mu_{B}$$
For $T << T_{F}$,
$$n_{\uparrow} - n_{0} \cong \frac{g(\varepsilon_{F})}{2} \mu_{B} H;$$

$$n_{\downarrow} - n_{0} \cong -\frac{g(\varepsilon_{F})}{2} \mu_{B} H.$$

$$\therefore M = g(\varepsilon_{F}) \mu_{B}^{2} H$$

$$\Rightarrow \chi_{Pauli} = g(\varepsilon_{F}) \mu_{B}^{2} \sim 10^{-6}$$

Landau diamagnetism (1930)

- The orbital response neglected earlier gives slight DM
- The calculation is not trivial

$$\chi_{Landau} = -\frac{e^2 k_F}{12\pi^2 mc^2}$$
$$= -\frac{1}{3} \chi_{Pauli}$$