

Diamagnetism and paramagnetism

Basics

• System energy *E*(*H*) • magnetization density • susceptibility $M(H) = -\frac{1}{V}\frac{\partial E}{\partial H}$ 2 2 *M* 1 $\partial^2 E$ $\chi = \frac{1}{\partial H} = -\frac{1}{V} \frac{1}{\partial H}$ ∂М 1∂ $\equiv \frac{\partial H}{\partial H} = -\frac{\partial H}{\partial \sigma}$ $E(H)$ $(E \rightarrow F = E - TS \text{ if } T \neq 0)$

Atomic susceptibility

$$
H = \sum_{i} \left(\frac{p_i^2}{2m} + V_i \right) + \mu_B \left(\vec{L} + g\vec{S} \right) \cdot \vec{H} + \frac{e^2}{2mc} \sum_{i} A_i^2, \quad \mu_B = \frac{e\hbar}{2mc}
$$

= $H_0 + \Delta H$

Order of magnitude

•
$$
\mu_B (\vec{L} + g\vec{S}) \cdot \vec{H} \approx \mu_B H \approx \hbar \omega_c
$$

\n $\approx 10^{-4} eV$ when $H = 1$ T
\n• $\vec{A}_i = \frac{H}{2} (-y_i, x_i, 0)$
\n $\frac{e^2}{2mc} \sum_i A_i^2 \approx \left(\frac{eH}{mc}\right)^2 m a_0^2$, $a_0 = \frac{\hbar^2}{me^2}$
\n $\approx \frac{(\hbar \omega_c)^2}{e^2/a_0} \approx 10^{-5}$ of the linear term at $H = 1$ T

Perturbation energy (to 2nd order)

$$
\Delta E_n = \langle n | \Delta H | n \rangle + \sum_{n' \neq n} \frac{\langle n | \Delta H | n' \rangle \vert^2}{E_n - E_n}
$$

= $\mu_B \langle n | \vec{L} + g\vec{S} | n \rangle \cdot \vec{H} + \frac{e^2}{2mc^2} \langle n | \sum_i A_i^2 | n \rangle + \sum_{n'} \frac{\langle n | \mu_B (\vec{L} + g\vec{S}) \cdot \vec{H} | n' \rangle \vert^2}{E_n - E_n}$

Filled atomic shell

(applies to noble gas, NaCl-like ions…etc)

Ground state |0〉:

$$
\vec{L}|0\rangle = \vec{S}|0\rangle = 0
$$

\n
$$
\therefore \quad \Delta E = \frac{e^2}{8mc^2} H^2 \langle 0|\frac{2}{3}\sum_i r_i^2|0\rangle \quad \text{(for spherical charge dist)}
$$

For a collection of *N* ions,

$$
\chi = -\frac{N}{V} \frac{\partial^2 \Delta E}{\partial H^2} = -\frac{e^2}{6mc^2} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle < 0
$$

Larmor (or Langevin) diamagnetism

Ground state of an atom with unfilled shell (no *H* field yet!):

- Atomic quantum numbers α *, l*, *m*_{*i*}, *m*_{*s*}
- Energy of an electron depends on $\quad \alpha, l \ \ (\ \text{no } m^{}_l, m^{}_s)$
- \bullet Degeneracy of electron level $\; \mathcal{E}_{\alpha, l} \colon \, 2(2l\texttt{+}1)$
- If an atom has *N* (non-interacting) valence electrons, then the degeneracy of the "atomic" ground state (with unfilled $\mathcal{E}_{\alpha,l}$ shell) is $C_N^{2(2l+1)}$ $\mathcal{E}_{\alpha, l}$ shell) is $C_N^{2(2l+1)}$

e-e interaction will lift this degeneracy partially, and then

- the atom energy is labeled by the conserved quantities *L and S*, each is (2L+1)(2S+1)-fold degenerate
- SO coupling would split these states further, which are labeled by J

```
What's the values of S, L, and J for the 
atomic ground state?
```
Use the Hund's rules (1925),

- 1. Choose the max value of S that is consistent with the exclusion principle
- 2. Choose the max value of L that is consistent with the exclusion principle and the 1st rule

To reduce Coulomb repulsion, electron spins like to be parallel, electron orbital motion likes to be in high *ml* state. Both helps disperse the charge distribution.

Example: 2 *e*'s in the *p*-shell (l_1 = l_2 =1, s₁ =s₂ =1/2)

(a) $(1,1/2)$ (b) $(0,1/2)$ (c) $(-1,1/2)$ (a') $(1,-1/2)$ (b') $(0,-1/2)$ (c') $(-1,-1/2)$

 C_2^6 ways to put these 2 electrons in 6 slots

Spectroscopic notation:

 X_j ($X = S, P, D...$) $^{1}S_{0}$,³ $P_{0,1,2}$, $^{1}D_{2}$ are o.k.; ^{3}S , ^{1}P , ^{3}D are not. (It's complicated. See Eisberg and Resnick App. K for more details) $-$ *S*=1 $l=1$ *ml* = 1 0 -1 Ground state is $\overset{3}{}P_{0,1,2}$, (2L+1)x(2S+1)=9-fold degenerate

physics.nist.gov/PhysRefData/Handbook/Tables/carbontable5.htm

There is also the 3rd Hund's rule related to SO coupling (details below)

Entry	m_{l_1}	$\it m_{s_1}$	m_{l_1}	m_{s_1}	m_l'	m_{s}^{\prime}	m_j'
1	$+1$	$+1/2$	$+1$	$-1/2$	$+2$	$\bf{0}$	$+2$
2	$+1$	$+1/2$	0	$+1/2$	$+1$	$+1$	$+2$
3	$+1$	$+1/2$	0	$-1/2$	$+1$	0	$+1$
4	$+1$	$+1/2$	-1	$+1/2$	0	$+1$	$+1$
5	$+1$	$+1/2$	-1	$-1/2$	$\mathbf{0}$	0	0
6	$+1$	$-1/2$	\bullet 0	$-1/2$	$+1$	$^{-1}$	0
7	$+1$	$-1/2$	-1	$+1/2$	$\mathbf{0}_{.}$	0	$\mathbf 0$
8	$+1$	$-1/2$	-1	$-1/2$	0	-1	-1
9	0	$+1/2$	$+1$	$-1/2$	$+1$	0	$+1$
10	0	$+1/2$	0	$-1/2$	$\mathbf{0}$	0	0
11	0	$+1/2$	-1	$+1/2$	-1	$+1$	0
12	0	$+1/2$	-1	$-1/2$	-1	0	-1
13	$^{-1}$	$+1/2$	0	$-1/2$	-1	0	-1
14	-1	$+1/2$	-- 1	$-1/2$	-2	0	-2
15	$^{-1}$	$-1/2$	0	$-1/2$	-1	-- 1	$^{-2}$

TABLE K-1. Possible Quantum Numbers for an np² Configuration

Setting $l_1 = l_2 = 1$, we find that the

Eisberg and Resnick App. K

possible combinations of l' , s' , j' , expressed in spectroscopic notation, are as follows: ${}^{1}S_{0}$, ${}^{1}P_{1}$, ${}^{1}D_{2}$, ${}^{3}S_{1}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{3}D_{1}$, ${}^{3}D_{2}$, ${}^{3}D_{3}$. The ${}^{3}D_{3}$ states are immediately ruled out because for these states there would be m'_j values of

+3 and -3, but we see that there are none listed in Table K-1. Since there are no³ D_3 states, there can be no 3D_2 or 3D_1 states; all these states correspond to S' and L' vectors of the same magnitude in the same multiplet and they stand or fall together. Now, entry number 1 in the table says there must be states with $s' \ge 0$ and $l' \ge 2$, since $m'_s = -s'$, ..., s' and $m'_l =$ $-l'$, ..., l'. These requirements can be satisfied only by the states 1D_2 . There are five such states corresponding to the five values $m'_j = -2$, -1 , 0, 1, 2. Entry number 2 says that there must be states with $s' \ge 1$ and $l' \ge 1$. This requires the presence of the states 3P_0 , 3P_1 , ${}^{3}P_{2}$. For ${}^{3}P_{0}$ there is one state corresponding to $m'_{1} = 0$. For ${}^{3}P_{1}$ there are three states corresponding to $m'_1 = -1$, 0, 1. For 3P_2 there are five corresponding to $m'_1 = -2$, -1, 0, 1, 2. The number of states we have identified so far is $5 + 1 + 3 + 5 = 14$. Only a single state is left, and this must be a state with $m'_j = 0$ because all the other m'_j values of the table have been used. It is clear then that this must be the single quantum state ${}^{1}S_{0}$.

Review of SO coupling

An electron moving in a static E field feels an effective B field

$$
\vec{B}_{\text{eff}} = \vec{E} \times \frac{\vec{v}}{c}
$$

This B field couples with the electron spin

$$
H_{so} = -\vec{\mu} \cdot \vec{B}_{\text{eff}}
$$

\n
$$
= -\left(\frac{q}{mc}\vec{S}\right) \cdot \left(\vec{E} \times \frac{\vec{v}}{c}\right), \quad \vec{E} = -\hat{r} \frac{d\phi}{dr} \text{ for central force}
$$

\n
$$
= \left(\frac{q}{m^2c^2} \frac{d\phi}{rdr}\right) \vec{S} \cdot \vec{L} \quad \text{(x 1/2 for Thomas precession, 1927)}
$$

\n
$$
\begin{aligned}\n\lambda > 0 \text{ for less than half-filled (electron-like)} \\
\lambda < 0 \text{ for more than half-filled (hole-like)} \\
\end{aligned}
$$

\n
$$
= \frac{\lambda}{2} (J^2 - L^2 - S^2) \quad \text{Quantum states are now labeled by } L, S, J
$$

(2L+1)x(2S+1) degeneracy is further lifted to become (2J+1)-fold degeneracy

Hund's 3rd rule:

- if less than half-filled, then J=|L-S| has the lowest energy
- $^{3}P_{0}$ is the ground state in previous example

E

v

• if more than half-filled, then J=L+S has the lowest energy

Paramagnetism of an atom with unfilled shell

1) Ground state is nondegenerate (*J*=0)

$$
\Delta E = \mu_B \left\langle 0 \left| \vec{L} + g\vec{S} \right| 0 \right\rangle \cdot \vec{H} + \frac{e^2}{2mc^2} \left\langle 0 \left| \sum_i A_i^2 \right| 0 \right\rangle + \sum_n \left| \frac{\left\langle 0 \left| \mu_B \left(\vec{L} + g\vec{S} \right) \cdot \vec{H} \right| n \right\rangle \right|^2}{E_0 - E_n}
$$
\n(A+M, Prob 31.4)

2) Ground state is degenerate (*J*

≠0) Van Vleck PM

Then the 1st order term almost always >> the 2nd order terms.

$$
\vec{M} = -\mu_B \left(\vec{L} + 2\vec{S} \right) = -\mu_B \left(\vec{J} + \vec{S} \right)
$$

Heuristic argument: *J* is fixed, *L* and *S* rotate around *J*, maintaining the triangle. So the magnetic moment is given by the component of *L*+2 *S* parallel to *J*

$$
\vec{S}_{\parallel} = \frac{\vec{J} \cdot \vec{S}}{J^2} \vec{J} = \frac{\vec{J}}{2J^2} (J^2 - L^2 + S^2)
$$

$$
= \frac{\vec{J}}{2J(J+1)} [J(J+1) - L(L+1) + S(S+1)]
$$

$$
\therefore \vec{M} = -g_J \mu_B \vec{J}
$$

Lande g-factor $g_J = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$ (1921)

(1921)

 $\Delta E(m_j) \sim H$, so $\chi = 0$?

No! these 2 *J*+1 levels are closely packed (< *kT*), so *F*(*H*) is nonlinear

Brillouin function

$$
Z = \sum_{m_J=-J}^{J} e^{-E(m_J)/kT}, \quad \Delta E(m_J) = g_J \mu_B m_J H \left(\sim 1K \text{ at } H = 1 \text{ T} \right)
$$
\n
$$
F = E - TS = -kT \ln Z
$$
\n
$$
M = -\frac{N}{V} \frac{\partial F}{\partial H} = \frac{N}{V} g_J \mu_B J B_J \left(\frac{g_J \mu_B J H}{kT} \right)
$$
\nwhere $B_J(x) = \frac{2J + 1}{2J} \coth \left(\frac{2J + 1}{2J} x \right) - \frac{1}{2J} \coth \left(\frac{x}{2J} \right)$
\n
$$
M = \frac{N}{V} g_J \mu_B J H \quad (x >> 1)
$$
\n
$$
M = \frac{N}{V} g_J \mu_B J H \quad (x << 1) \quad B_J(x) \sim \frac{J + 1}{3J} x
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{J(J + 1)}{3kT} H
$$
\n
$$
M = \frac{N}{V} (g_J \mu_B)^2 \frac{
$$

 \bullet at room T, $\,\chi$ (para) \sim 500 χ (dia) calculated earlier

• Curie's law χ = C/T (note: not good for J=0)

$$
C = \frac{N}{V} \frac{(\mu_B p)^2}{3k}
$$
, where $p = g_J \sqrt{J(J+1)}$ (effective Bohr magneton number)

f-shell (rare earth ions) In general (but not always)
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d ...

Before ionization, La: $5p^6$ 6s² 5d¹; Ce: $5p^6$ 6s² 4f² ...

d-shell (iron group ions)

• Curie's law is still good, but *p* is mostly wrong

• Much better improvement if we let *J=S*

In a crystal, crystal field may be more important than the LS coupling

 $octubcclval$ (O_h) crystal field splitting

Different symmetries would have different splitting patterns

Quench of orbital angular momentum

- Due to crystal field, energy levels are now labeled by L (not J)
- Orbital degeneracy not lifted by crystal field may be lifted by 1) LS coupling or 2) Jahn-Teller effect or both.
- The stationary state $\,\phi\,$ of a non-degenerate level can be chosen to be real when $t \rightarrow -t$,

 $\psi \rightarrow \psi^* (= c \psi \text{ if nondegenerate})$

- $\left(\langle \psi | L^2 | \psi \right\rangle$ can still be non-zero) $L|\psi\rangle = \langle \psi | \vec{r} \times \frac{\pi}{i} \nabla |\psi\rangle$ is purely imaginary but $\langle \psi|\vec{L}|\psi\rangle$ has to be real also $\therefore \langle \psi | L | \psi \rangle = 0$ $\langle \psi | \vec{L} | \psi \rangle = \langle \psi | \vec{r} \times \frac{\hbar}{N} \nabla | \psi \rangle$ \rightarrow \bullet
- for 3d ions, crystal field > LS interaction
- for 4f ions, LS interaction > crystal field (because 4f is hidden inside 5p and 6s shells)
- for 4d and 5d ions that have stronger SO interaction, the 2 energies maybe comparable and it's more complicated.
- Langevin diamagnetism
- paramagnetism
	- Hund's rules
	- Lande g-factor
	- Brillouin function
- crystal field splitting
	- quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism

Adiabatic demagnetization (proposed by Debye, 1926)

 $f^{-1}i$

• The first way to reach below 1K

Lattice

Spin

 $Time \rightarrow$

New equilibrium

∴ We can reduce *H* to reduce *T*

Freezing is effective only if spin specific heat is dominant (usually need T<<T_n)

Temperature

Before

Time at which

magnetic field is removed

Can reach 10-6 K (dilution refrig only 10-3 K)

wikipedia

Pauli paramagnetism for free electron gas (1925)

- Orbital response to *H* neglected, consider only spin response
- One of the earliest application of the exclusion principle

Landau diamagnetism (1930)

- The orbital response neglected earlier gives slight DM
- The calculation is not trivial

$$
\chi_{Landau} = -\frac{e^2 k_F}{12\pi^2 mc^2}
$$

$$
= -\frac{1}{3} \chi_{Pauli}
$$