Chap 14

Particle Physics

- Early Discoveries
- Classification of Particles
- The Fundamental Interactions

What is inside the nucleus?

What are the basic building blocks of matter?

What are the forces that hold matter together?

What we have learned so far:

- Before 1930, the known elementary particles were the photon, the ٠ electron, and the proton.
- 1928, Dirac's theory combines quantum mechanics with relativity. ٠ It opened the possibility of antiparticles.
- 1932, Chadwick proved the existence of the neutron. ٠

Also,

- 1932 Anderson found positron in cosmic rays
- 1937 Street and Stevenson found <mark>muon</mark> in cosmic rays. 渺子
- 渺子 1947 Powell and Occhialini found Yukawa's meson <mark>pion</mark> in cosmic rays.

Three Types of Detectors of Charged Particles

- I. Ionization chamber, Geiger counter, Scintillation counter, Cerenkov counter, etc.
- II.雲霧室Cloud chamber, Diffusion chamber, Bubble chamber.
- III. Photographic Emulsion.

Synchrotron accelerator 同步加速器 (electron 1945, proton 1952)

https://astronuclphysics.info/JadRadFyzika5.htm

Development of particle accelerator

Note: highest energy cosmic ray being detected have a few 10²⁰ eV!

CERN LHC (2008-) proton-proton or lead nuclei collisions

大強子對撞機

- Circumference: 26.6 km; 100 m below ground
- 6.8 TeV per proton beam (13.6 TeV collision energy)

How CERN's Large Hadron Collider works
Introducing the CMS Experiment at CERN
A timelapse visit of CERN, LHC and the ATLAS Experiment

After the invention of particle accelerators, several hundreds new particles are produced.

"If I could remember the names of all these particles, I would have been a botanist." -- Fermi

The table of elementary fermions (\rightarrow matter)

	FERMIONS				matter constituents spin = 1/2, 3/2, 5/2,			
	Leptons spin = 1/2				Quarks spin = 1/2			
	Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge	
1 st generation	ν_e electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3	
	e electron	0.000511	-1		d down	0.006	-1/3	
2 nd generation	ν_{μ} muon neutrino	<0.0002	0		C charm	1.3	2/3	
g	μ muon	0.106	-1		S strange	0.1	-1/3	
3 rd generation	$ u_{\tau}^{tau} $ neutrino	<0.02	0		t top	175	2/3	
	au tau	1.7771	-1		b bottom	4.3	-1/3	

All visible matter in the universe is made from the first generation; 2nd- and

3rd-generation particles are unstable and decay into first-generation particles.

Interaction between matters (in addition to gravitation and EM force) First, strong interaction (or strong force)

- The quanta of strong (color) force is called **gluons**. We can say that gluons transmit strong (color) force, just like photons transmit EM force.
- Each gluon consists of a color and an anti-color, and 3x3=9 combinations: (red anti-red, red anti-blue, red anti-green, blue anti-red, blue anti-blue, blue anti-green, green anti-red, green anti-blue, green anti-green).
- But there is one constraint: red + blue + green = colorless

Comparison

- For EM interaction, there are 2 kinds of electric charge (positive, negative), and 1 type of force quanta (photon).
- For strong interaction, there are 3 kinds of color charge (blue, green, red), and 8 types of force quanta (gluons).

 Van der Waals force as residual EM interaction

Nuclear force as
 residual strong interaction

Second, weak interaction

What's the quanta of weak interaction?

• Beta decay

• Updated view of the Beta decay

The weak interaction is transmitted by 3 types of boson: W^{\pm}, Z^{0} Salam, Weinberg (1964, 1967)

Relative Strength Mediating Particle Interaction Range 10⁻⁴³ Graviton Gravitation ∞ [hypothetical] Electromagnetic 10⁻² **Photons** ∞ 10⁻¹⁸ m W[±], Z bosons Weak 10⁻⁶ 10⁻¹⁵ m Strong 1 Gluons

Summary: There are 4 fundamental Interactions

massless, and travel at the speed of light.

Summary: Building blocks of the universe

