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Chap 9

Statistical Physics

« Maxwell Velocity Distribution

* Equipartition Theorem
 Maxwell Speed Distribution

« Classical and Quantum Statistics
* Fermi-Dirac Statistics

« Bose-Einstein Statistics



Maxwell velocity distribution of ideal gas (1860)

 Velocity distribution function f(v):

— s L , : 3, —
f(¥) d3v = the probability of finding a particle with ~ |d"V =dv.dv dv.

velocity betweenvand v+ d v .

« Since the motion along x, y, z are independent, we
expect  f(vy, vy, v;) = h(v)h(vy )R (v,)
« Rotational invariance requires that f(v) can depend only on
the magnitude of ¥, not it's direction: f(V) = f(v).
+  The only function of v + v2 + vZ that has the form h(v,)h(v, )h(v;)

is proportional to an exponential function (Weinberg, Foundations of MP)

f(ve, vy, v;)  exp[—C(vE+vE +vZ)]  (C>0 so that f(v) won't diverge)



Normalization of f(v)

* h(v,) dv, is the probability that the x component of a

molecule’s velocity lies between v, and v, + av,.

- If we integrate h(v,) dv, over all of v,, it equals to 1
h(v.)=De "
. T 1/2
I h(v )dv_ = D(—j =1
—0 C

# D:(gjl/z

T

= () =h()h(,)h(,)

(5] ewt-ct)



The mean value of v,

—0o0

V—x— v.h(v, )dv, —DI vV, exp( —Cv. )d =0

The mean value of v,? h(vy)

2

. :DJ‘_O:Ov)f exp( Cv )dv

_(gj”%/? 11
r) 2 C? 2C

— 3
v§=v§=vzz—>v2=ﬁ 0
We know that E_2=§ ,.,C:i

VT =gkt 2KT

Y2 mv® /2
= J0)= (2 ij eXp(_ kT )

or f(V)= ( fj exp(—gmvzj ,BEL

(this is mentioned in Chap 3)

U



Equipartition theorem (&9 EHE

In equilibrium, a mean energy of 2 kT is associated with each term

of a molecular’s energy. (Learn Statistical Physics for a proof.)

In a monatomic ideal gas, each molecule has the energy

Ezlmv2 :lm(g+v_2+v_zz) :lm(%—Tj :EkT
2 2 g 2 m 2

This agrees with the result we cited earlier.

In a gas of N atoms, the total internal energy is

U= NE = %NkT
The heat capacity at constant volume is C, = f{—l]{ = %Nk

For n mole of atoms,

C, zgnNAk :%nR =12.5nJ/K

The ideal gas constant R =N,k = 8.31 J/K.




Diatomic molecule

There are 7 energy terms (3 translational, 2 rotational, and 2 vibrational).

Note: Vibration has 2 energy terms: kinetic energy and potential energy

Why only 2 terms in rotational energy?

A: The energy of a rigid rotator is

The mass of an atom is confined to a nucleus
— [, is much smaller than /, and /,, and only

rotations about x and y are allowed.

-4
i




Ex 9 2: Consider the gases HF and Ne, both ata (room) temperature
of 300 K. Compare the average translational kinetic energy
and total kinetic energy of the two types of molecules.

Solution 3 5
Ne: K = EkT per atom HF: K = EkT per atom

3 5
Kr = ERT per mole Kr = ERT per mole

20°C kT =~ 25 meV ~ % eV| k=1381X%102 JK

EIot ~05meV (£ =1); Efff~0.8eV(n=1)

1 5 A == R R e
- 7
heat capacity of H, mmpmm—
=¥ N
Vibration | _
____________ [rA— O
b
N 2 —
.. L | 3
2
I i ‘
Translation
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Maxwell speed distribution

« Recall that f(v) d3v = the probability of finding

a particle with velocity between v and v + d v.

*  F(v) dv = the probability of finding a particle

with speed between v and v + dv.
«  The volume of the spherical shell is 47v2 dv.
Speed distribution F(v)

F(v)dv = f(v)4rvidy

Velocity distribution

# of molecules

> F(v) =D"? exp(—%ﬂmv2)47zv2




Three different scales

1. Most probable speed (peak of the speed distribution):

dF @) _ 2 [
dv =0 = v_\/,Bm_ m

2. Mean speed (average of all speeds):

7= j " uF(a) dv

il (1 2_1_ 4 [kT
=4zD {Z(Eﬁmj} _\/E\/;

3. Root-mean-square speed

3T

m

Vrms — (V2)1/2 —

Maxwell Spead Distribution

Function f{v)

Mzan apesad

Hoal maan squared spee
)
=
-]

Mast probatla spesd

Maolacular Spead




Ex 9.3: Compute the mean molecular speed v in the light gas hy-
% drogen (Hy) and the heavy gas radon (Rn), both at room
temperature 293 K. (Use the longest-lived radon isotope,

(same thermal energy) _
which has a mass of 222 u.) Compare the results.

1u = 1.66 x 10~27 kg

Solution The mass of the hydrogen molecule is twice that
of a hydrogen atom (neglecting the small binding energy),
or 2(1.008 u) = 2.02 u. Thus the average molecular speed
of hydrogen is

\/;TT

(1.38 X 107 J/K)(293 K)

&
||

= 1750 m/s
R (2.02 u)(1.66 X 107%" kg/u)
The average molecular speed of radon is
_ 4 [RT
v = T
(1.38 X 107**J/K)(293 K)
- = 167 m/s
V2 (222 u)(1.66 X 107*" kg/u)



« Maxwell Velocity Distribution

« Equipartition Theorem
 Maxwell Speed Distribution

« Classical and Quantum Statistics
* Fermi-Dirac Statistics

 Bose-Einstein Statistics

Superfludity
=) Superconductivity ...



Distribution function (for classical systems in thermal equilibrium)

 Recall that f(17) — D3? exp(—%ﬂmvz) = D32 CXp(—,BE)

Boltzmann showed that the factor exp(-BE) is universal for all classical system.
called Boltzmann factor

« Maxwell-Boltzmann distribution:
Probability for a particle at energy-E state:  f(£) = Aexp(—pE)

=) Relative occupations between two states é — ¢~ B(E2~Ey)

1

« The distribution of particles with respect to energy: =
f(W)arvidv < f(E)g(E)dE

4vidv=g(E)dE ]

For ideal gas,
9 5 muv?

2

—> 47Tv2dv——v = — El/sz

— dE = mvdv




optional

In classical statistical mechanics, to count the number of

states, we need to calculate the volume in phase space,

(J d3V) x 4mp?dp = V x 2m(2m)3/2EY/2dE
Suppose a volume element of phase space = A3
Number of states in this shell: divide the volume by A3.

After the discovery of quantum physics, it is natural to set A=h
27’]’1 3/2 /
1/2
= g(E)= 2;;1/(}1—2) E

Density of states g(E) FEZE
The number of states within [E,E+dE] = g(E)dE
The number of particles within [E,E+dE]. n(E) dE = F(E,T) g(E) dE

Distribution Density of
function states




Ex 9.6: Assume that the Maxwell-Boltzmann distribution is valid in a
gas of atomic hydrogen. What is the relative number of atoms
in the ground state and first excited state at 293 K (room
temperature), 5000 K (the temperature at the surface of a
star), and 10° K (a temperature in the interior of a star)?

Solution n(Es) _ g(Es)
n(ky)  g(Er)

exp[B(E, — Ey)]

gly) = 2 g(k) = 8.

El _E2 = _10.2 eV.

n(ks)
n(k,)

= 4 exp[B(—10.2 eV)]
= 4 exp(—404) = 107! for T = 293 K

= 4exp(—23.7) =2 x 107" for 5000 K
= 4 exp(—0.118) =~ 3.55 for 10° K



Before studying quantum statistics, we need to know all particles
belong to one of two types: boson or fermion. They have different

distribution functions.

Particle Symmetry Generic Name Spin (s)
Electron Antisymmetric Fermion 1/2
Positron Antisymmetric Fermion 1/2
Proton Antisymmetric Fermion 172
Neutron Antisymmetric Fermion 1/2
Muon Antisymmetric Fermion 1/2
o particle Symmetric Boson 0
He atom (ground state) Symmetric Boson 0
7 meson | Symmetric Boson 0
Photon Symmetric Boson 1
Deuteron Symmetric Boson 1

» Particles with half-integer spin are fermions;
particles with integer spin are bosons.
* Fermions satisfy Fermi-Dirac statistics;

bosons satisfy Bose-Einstein statics (spin-statistics theorem).



Three distribution functions for systems in thermal equilibrium

Maxwell-Boltzmann distribution (f — F;5):

Fyg = Aexp(=fE)

Bose-Einstein distribution (1924):

1

F =
" Aexp(,BE)—l

Fermi-Dirac distribution (1926):

1

F. =
" Aexp(BE)+1

Statistical Factor F

1.0

0

1
E / exp(SE)-1

. exp(—fE)

1
exp (ﬂE) +1
| | mx-":-.h—"--“.‘-'-lihzuu._.____x
() kT 28T 3T 4kT

Energy L

Both reduce to the Maxwell-Boltzmann distribution when E >> kT

The number of states within [E,E+dE] = g(E)dE
The number of particles within [E,E+dE]: n(E) dE = F(E,T) g(E) dE

Distribution Density of
function states



To understand boson and fermion better, we need to
understand the concept of identical particles: =[FEIHLT
* In a quantum world, elementary particle of the same type

are indistinguishable from each other

2 particles interact with each other:

« Classical physics: frequent observations are allowed without
disturbing the system. This is no longer true for a quantum system,

so we cannot follow the trajectory closely.

~©
4

‘ ~—9 @ /?@_'n
nT-0

(a) (b)




A simple statistics: Different ways to put 2 particles in 2 states

« Distinguishable particles » Indistinguishable particles (quantum)
(classical)
Bosons Fermions
0
0
® @
@ @ @
@ [
0
o0 t

In 1924, Bose used this statistics, applied it to
photons to derive the Planck radiation law.
He would fail if the one on the left is used.



“He appears to have missed the fact that in asserting this new counting
method, he had made a profound discovery about the atomic world, that

elementary particles are indistinguishable in a new and fundamental sense.”

(p.247 Stone, Einstein and quantum)
“I had no idea that what I had done was really novel... Somehow this was the
same question that Einstein asked when I met him: How had I arrived at this
method of de-riving Planck’s formula? Well, I recognized the contradictions in the
attempts of Planck and Einstein, and applied statistics in my own way, but I did

)

not think that it was different from Boltzmann statistics.’



Z#ETEYE  Exchange symmetry of wave function
Two-particle wave function: (7, 75)

« Exchanging two indistinguishable particles:
|lp(?2;7:)1)|2 — h/)(f)l) 1732)|2
o
m Y(r, 1) = CYP(r, 1), |Cl =1

» After exchanging twice, the system should come

back to the original state

m C=1-C=+1

Therefore

{ Y(r,, 7)) = +Y (¥, 7,) boson
or

Y(#,, 1) = —(¥,7,) fermion



Wave function for 2 particles

« 2 particles in 2 different states a and b:

Distinguishable i, = gba(l)l,lrb(Z)

1

Boson Y = W[%(l)ﬂbb@) + P (2, (1)]
1
Fermion Yr = W[gba(l)%@ — Y, (1)]

* Probability density for 2 particles in the same state (b=a)

Distinguishable /%, i, = YA(DPEP(Dr(2)

Boson Wirs = 20 OPEP D) =(Dpadn
i b= —= (D02 — D) =0
Fermion F= /5 Ve a a a

@ O
a b
C X

a

m) - Bosons like to stick together; fermions like to repel each other.




optional

Wave function of 3 bosons

1
Wy = NG Lo Db p(20r,(3) + g1 (2D 4(3)

+ Y (W 20 (3) + Y (W p(2hr4(3)
+ (D (20 ,(3) + W (2 5(3) ]

Example 11-1. Compare the probability for three bosons to be 1n a particular quantum state
with the probability for three classical particles to be in the same state.

» Inspection of the symmetric eigenfunction for a three boson system, found in Example 9-3,
shows that it contains 3! =3 x 2 x 1 = 6 terms like ¥,(1)¥5(2)¥,(3), and that the normaliza-
tion constant is 1 /\E . After setting o = f/ = y to put all the bosons in the same state, the prob-
ability density contains (3!)* equal terms, but it is multiplied by the square of the normalization
constant, (1/\/3_!)2. So the probability is larger by a factor of (3!)%/3! than it would be if there
were three identical classical particles in the state. The probability for the boson case conse-
quently 1s larger by a factor of 3!. <

Yp¥p = 31 Yyuy
m) Bose-Einstein condensation, laser ... etc
e PRI EE e A




Bosons (photon, H, #He, 8’Rb...) Fermions (electron, proton, neutron, *He ...)

Spin=0, 1, 2... Spin = 1/2, 3/2...

* laser » superconductor « atom * nucleus

proton neutron

P s
Y f‘
b ; -. 5
Bk o

« superfluid « Bose-Einstein
condensation . solid . neutron star
“ T Neutron star

Solid crust

~ 2km deep

Fluid core
Mainly ne

Figure 4: Dimples on the liquid helium surface
caused by Wignercrystals

nrumiana




optional
Justification of the distribution laws (Eisberg and Resnick)

First, Classical particles

« Suppose P, is the probability of finding 1 particle in some state. The

probability of finding n particle in the same state is
P, = (P)"
« Assume that there are on average n, particles in state 1, n, particles in
state 2, and R, is the transition rate (number of transitions per sec) from

state 1 to 2. In equilibrium, the transfer of particles between states 1,2

satisfies (aka detailed balance) A& P

nyRi5, = N,R,_,; (nisthe avg number of n)

Eq
Boltzmann ny e KT
distribution = E,
E,

Ry»1 e KT

=) T K




optional
Justification of the distribution laws

See the example
of 3 bosons

PPos°" = nl By = n! (P)"

« Boson

Q: If there are already n bosons in a final state, what is the probability
that one more boson makes a transition to that state?

Pb_io_ion — (1 + n)Plpéooson

0 if state-2 is filled

n
Comparing to the classical case, .
On the other hand, for fermion,
P = P;P,
i " , R,_,, if state-2 is empty
m) A: The probability is enhanced by 1+n R{ffzmw" =

That is, the transition rate is enhanced

by a factor of 1+n. As a result, Therefore, on average

RY95°™ = (1 + 7i,)Ry L7 RIETMO™ = (1 — A)Ry -,

=

R3%P™ = (14 71)Ry0q RIST™™ = (1 = A)Ryon



 Boson

Detailed balance:

=

ﬁlR?gszon = ﬁzRgﬁon
_E
n(1+7;) Ry, e kT =)
n(1+71) Ry e—,f—%
n E n E

1_ ek’; = — eﬁ -
1+ny 1+n,
n, = 1 Bose-Einstein

ﬂ . . .
AekT — 1 distribution

Note: The n here corresponds to Fge or Fgp.

optional

* Fermion
— pfermion _ — fermion
n1Ri -, = nyR; 4
_E
ny(1—n;) Rp,qy e kT
— = - - EZ
(1 —71) Ry e KT
n Ey n Ep
1_ ekT = 2_ ekT
1 — n1 1 — nz
fl, = 1 Fermi-Dirac
Ey distribution
AekT + 1



Systems of fermions

Fermi-Dirac /:FD _ 1
distribution exp| B(E-E;)|+1

* Egis called the Fermi energy. It is determined by the

total number of particles, N = jdEg(E)FFD(E)

- When E=EF—>FFD=§
1 for £ < E;
. Inthelimtas T—0, F,=
0 forE>E,
. P
D e T=0 b e T>0
| ' J
\
. . K
0 by 0 Ly

« At T =0, fermions occupy the lowest energy levels available.



Sommerfeld model of electrons in a metal (1927):

Free electrons in an empty box (it works well!)

———Energy levels
= Wavefunctions, k = T[/L, ZTE/L, 3T[/|_
o 2 relative scale
P = —
3 A= 3 L

'_‘ltN o= )‘L ™ A W W W o
S ...' v T v v >
~ =~ 9 __________ 3 2
A ' IS B #L 2e/L 3xL 4H/L SziL Bl

| = w 0

-~ =

=

£ -

= =

g =

7 = ks

oy S

¥]

=

[£3]

« Standing wave

T T\ 3
(kx,ky,kz)=z(nx,ny,nz) A3k = (Z)

* The allowed energies for electrons are

E

0 e
= _SmLz(nx+ny+nZ)



« Each k-point can have 2 electrons (because of spin). After filling in N
electrons, the result is 1/8 of a spherical sea of electrons called the Fermi
sphere. Its radius is called the Fermi wave vector, and the energy of the

outermost electron is called the Fermi energy.

Note: if we choose periodic BC, then it is a whole sphere.

« The number of states up to radius k- (Fermi wave vector) is

14n /3K L, (T
N =2 - Ak_<L)

m) . Total number of electrons (this determines the Fermi energy)

3 2
31?; V = k.= (37?211)”3 , E, = ;—m(37zzn)2/3

N =

 For example, for K, the electron density n=1.4x10% m-3, therefore

k,=0.746 4" E,=3.40x10""J=2.12¢eV



. : : Ep =k,T, = ﬁv;
Fermi temperature, Fermi velocity ... 2

also, hk, =mv,

9.4 Fermi Energies (7 = 300 K), Fermi Temperatures, and Fermi Velocities
for Selected Metals

Element Ep(eV) Ty (X 10°K)  up (X 105m/s) FElement E; (€V) Ty (X 10°K)  up (X 105m/s)

L 4.74 5.51 1.29 Fe 11.1 13.0 1.98
Na o0 577 1.07 Mn 10.9 12,7 1.96
K 212 246 0.86 In 9.47 110 1.83
Rb 1.85 215 0.81 Cd 7.17 8.68 1.62
Cs 159 1.84 0.75 Hg .13 8.29 1.58
Cu 7.00 8.16 1.57 Al U7 13.6 2.03
Ag 5.49 6.38 1.39 Ga 10.4 12.1 1.92
Au 5.83 6.42 1.40 In 8.63 10.0 1.74
Be 14.5 16.6 225 T1 8.15 9.46 1.69
Mg 7.08 8.23 1.58 Sn 10.2 11.8 1.90
Ca 4.69 5.44 1.28 Pb 9.47 11.0 1.83
Sr 3.93 4.57 1.18 Bi 9.90 1T.5 1.87
Ba 3.64 425 1.13 Sb 10.9 19.7 1.96
Nb 552 6.18 1.37

* ke is of the order of a'.

* £ is of the order of the atomic energy levels.



Density of states g(¢)

* g(E)dE is the number of states within the
energy surfaces of E and E+dE

* For a Fermi sphere,

2 kx
g(E)dE:g47zkdl3c
8 (/L)
. vo(2m\"
E(k)= — g(E) = =\ JE
(k) === g(£) Zﬂz(hzj

Total number of electrons

= ZZFFD(ER) -[AngFD(E ) = JdEg(E)FFD(E)

Total energy

U(T) =2 ) Fro(EE, — [ dBg(E)Fen(B)E



g(E)

.-—"'f - -
A ~ Hotel rooms
P
[
0 &
1 .
\'\ ~ QOccupation
\
¢ G g 0K
300 K
E)XxF:r(E
I(ENXEeol )Unfilled levels e
Filled levels~, \"”§ =
g |

N = jdEg(E)FFD(E)



g(E) forE<E,

e AtT=0, F. . (EYo(E)=
w(E)g(E) {0 for E> E,

 The mean electronic energy at T=0:

— 1 * 0 1 Ey
E=—], EFFD(E)g(E)dE:ﬁIO Eg(E)dE
:i -EF(3_NJEF3/2E3/2QIE :EEF
NY (2 5

Electron degenerate pressure ZE-TfHHE ]
3

« Internal energy of the system: U=NE = gNEF
oUu 2
pressure P=———=="nE_. >>nkT
- ov 5
Bulk modulus 5 _ _V5_P :EP _ n'z’(3n N
i U P oV 3 Om \ «

For example, the number density of free electrons in magnesium is n ~ 8.6 x 1028 m 3.
This leads to the following estimate for the bulk modulus: B ~ 6.4 x 10'° Nm 2. The
actual bulk modulus is B = 4.5 x 10" Nm 2.




*  Only those electrons within about kT of E¢ will be able to absorb thermal
energy and jump to higher states. Therefore the fraction of electrons

capable of participating in this thermal process is on the order of kT / E.

2
* Ingeneral U = %NEF +a(Nk—TjkT a = % (Kittel, Intro to SS)

F
n(k)

due to thermal

Energy increase
excitations

Distribution function

Energy

_ oU , T Note: There is also a (much larger)
* Electron heat capacity C, = 8—T =2aNk”—  heat capacity from lattice vibration

F (not included here)

T
Molar specific heat ¢, =20R— <R

(Thornton called it molar heat capacity) F



Ex98: Use the Fermi theory to compute the electronic contribu-

tion to the molar heat capacity of (a) copper and (b) silver,
each at temperature 7" = 293 K. Express the results as a

function of the molar gas constant R.

Solution use @ = w*/4

71'2) T #«°RT
- Cy — 2( 4 R TF — QTF

m)p 7= 8.16 X 10* K for copper

B m%(293 K) B
Gy = R = 0.0177R
2(8.16 X 10*K)

T-=6.38 x 10* K for silver

74293 K)

= R = 0.0227R
V' 9(6.38 X 10*K) :




3.0

|

Ingeneral C= C, + C,

L]
CIT=208+25TT2 < ="

“M B —
—_ = -
= Potassium o®
= yT+ aT3 %25* sl ../
-
e vibeatine B L -
Electron + lattice vibration £ | oo

C.is important only at very low T. 2.0

0.1 0.2 0.3
T?, in K?

Table 2 Experimental and free electron values of electronic heat

C Li Be capacity constant y of metals B c N
e 1.63 0.17 ;
0.749 f 05007| (From compilations kindly furnished by N. Phillips and N. Pearlman. The
T 2.18 | 0.3a | thermal effective mass is defined by Eq. (38).
Na | Mg A Isi |p
1.38 1.3 Observed y in mJ mol~' K =, 1.35
1.094 | 0.992 Calculated free electron y in mJ mol™' K* 0912
1.26 1.3 m,,/m = (observed y)/(free electron y). 1.48

K Ca Sc Ti " Cr Mn(y)] Fe Co Ni Cu Zn Ga Ge As

208 |29 10.7 | 3.35 | 9.26 140 §920 498 473 | 7.02 | 0.695 |0.64 | 0.59 0.19
1.668 | 1.511 0.505 § 0.753 § 1.025
1.25 1.9 138 J0.85 | 0.58

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd™ |In Sn w | Sb

241 3.6 102 | 280 |7.79 |20 — 3.3 4.9 9.42 | 0.646 | 0.688 | 1.69 1.78 ] 0.11
1.911 | 1.790 ‘ 0.645 § 0.948 | 1.233 | 1.410
1.26 |} 2.0 1.00 §0.73 1.37 1.26

Cs Ba La Hf Ta w Re Os Ir Pt Au Hg(a)] TI Pb Bi

3.20 | 2.7 10. 2.16 5.9 1.3 2.3 2.4 3.1 6.8 0.729 § 1.79 147 1298 |]0.008
2.238 | 1.937 0.642 § 0952 | 1.29 | 1.509
143 1.4 1.14 1.88 1.14 1.97




Work function

YA

ANANAAANANANNANAA

One ion

Three ions in line

Many closely spaced
ions in line

Energy

Vol

Vacuum

Empty energy levels

Filled energy levels ———F

Metal

Vacuum

Table 11-2 Work Function and Fermi Level

Energy for Some Metals

Metal wg (eV) &p (eV)
Ag 4.7 5.5
Au 4.8 5.5
Ca 3.2 4.7
Cu 4.1 71
K 2.1 2.1
Li 2.3 4.7
Na 2.3 3.1




System of bosons

1
A>1
Aexp(,BE)—l’ K

Bose-Einstein distribution Fj, =

Case 1: Blackbody radiation (A=1 for photons)

* Photons in a box with side length L

(kx,ky,kz):%(nx,ny,nz) ."'

L E=cp=chk=ch\]k,zc+k32,+k§

K /
«  The number of states within “radius” k is >
2 from 2 photon 14 5
polarizations 2(§j(§ﬂ k J I3 I3 1
N, = =——k> or Ng= E3
32 (ch)3

G

L
_dN, L g
dE 7°(ch)

) - Density of states g (E)

(This has been mentioned in Chap 3)



«  Convert to distribution of energy density u(E).

Energy density within the range [E, E + dE].

Multiply by a factor E/L3
E
u(E)dE = = g(E)F,,(E)dE
] E3 This agrees with the one derived in
_ o7 dE Chap 3 (Here is the 3" derivation of
e KT 1 Planck’s law.

What'’s the 2"d one we learned?)

optional ° Using E = hc/A and dE = (hc/A®) dA

- u(/l,T)cM:S”hc 1

25 oMAKT

From energy density to flux density, multiplying by c/4 is required.

27’ h 1

5 hc/ AKT
A5 M

((A,T)=




optional
Heat capacity of solids

» Einstein model (1907)

Assume that

1. each atom vibrates independently of each other, and

2. every atom has the same vibration frequency w,

{ir ¥ DISPLACEMENT

{7 B8 DISPLACEMENT



Einstein model

Internal energy

U:3N(ﬁ+ljha)0:3N N L3N
2 exp(hw, / kT)—1 2

Heat capacity 5
B ol /T
C, =(0U /0T), = 3Nk| — :
kT (eha)o/kT . 1)

~e " as T S 0K

Comparison with experimental data

Heat capacity of silver

&

o

e )

>

vibratjon is

Cp (cal mole~! °K~1)

optional

—— A Debye model:

Debye T3 law

Einstein model:
Exponential decay
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Case 2: Bose-Einstein condensation in gases

N/

\ /
N/
N/
=

\
\

\

/
/

High
Temperature T:
thermal velocity v

density d3
"Billiard balls"

Low
Temperature T:
De Broglie wavelength
AdB=h/mv « T-1/2
"Wave packets"

Bose-Einstein
Condensation
Adg=d
"Matter wave overlap"

Pure Bose
condensate
"Giant matter wave"

optional



Cool a gas of 8Rb atoms to about 1 mK, then used optional

a magnetic trap to cool the gas to about 20 nK.
sharper

(v ~ 1 mm/s) Cornell and Wieman, Ketterle 1995.

o 3kpT

o m
De Broglie _h _ h
wavelength B P \/3kpTm

1
BEC: Az >d= /3
Ru atoms: m=1.4 x 10° kg, The graphic shows successive snapshots in time
n~2.5x10"/cm3 in which the atoms condensate.
FERMIONS BOSONS

Fermi Surface

/ Condensate

¥ kY



www.science.org/doi/10.1126/science.275.5300.637

Macroscopic, coherent matter wave

Interference between two BEC of Na
atoms (1997)

iy

The interference fringes have a spacing
of 20 and 15 ym (2 different cases)

Vortex lattices in \

rotating Na BEC
(2001)

optional
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Laser: condensation of photons optional

Atom laser: condensation of atoms (1996, CW 1999)

... photons
_._
TN
W — TN
N . W
L +
... atoms
NS+
Atom laser
i ulsed output
evaporative above 1. Rl
cooling = (JOOHZ)
@ 9 . ,
1 thermal Bose-Einstein e
atoms condensate .

output
coupler

3
}
i

trap

The gain medium is a thermal cloud of atoms. The
extracted atoms form a beam of coherent matter wave. https://physicsworld.com/a/atom-lasers/



Boltzmann
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Case 3: Superfluid

First, a timeline of low temperature

* 1800 Charles and Gay-Lusac (from P-T
relationship) proposed that the lowest

temperature is -273 C (= 0 K)

» 1877 Calilletet and Pictet liquified
Oxygen (-183 C or 90 K). Soon after,
Nitrogen (77 K) is liquified

Temperature, T [K]

» 1898 Dewar liquified Hydrogen (20 K)

* 1908 Onnes liquified Helium (4.2 K)

* 1911 Onnes discovered superconductivity.

1 03 T T | [ A | T T LT | T . i
wn
o
2 =
10 ®
a
1 :
10 sEz
10° 3 3
- - S >
107} 3He—4He“§«
mixtures %
-2 —
107°F Electronic 2
5 Magnetic refrigeration E
107° > ]
o
1074 £
Nuclear =
10-5¢ Magnetic
Refrigeration i
1 0—6 | I 1 i 1 A 1 MU N S | : 1 1
1840 1860 1880 1900 1920 1940 1960 1980 2000
Year

Pobell, Matter and Methods at Low Temperatures



)

Density ("].1;_1;,r’|1|:’i

Superfluid, a fluid with zero viscosity b

Helium gas is liquified at 4.2 K (Onnes, 1908)

» The density of liquid helium as » The specific heat of liquid helium as
a function of temperature (1924). a function of temperature (1932).

148 2997 ,—; 301

144 "'JT\\ 2167 25 j

140 | '*\ 2106 % “’:{ 20

136 2,046 —— S1sf el a  Hel

132 : \ 1.986 ;-;‘ t:; 1ok .

198 : ‘h 192 & i n%wuar ot

[ K|
IEH” I Ei — BI.EEE '::' 0 i; L Lln L L |
Z 1.4 18 22 26 34

A

- 4 " o & r
Temperature (K) Temperature (K}

m) This implies a phase transition at 7.=2.17 K.



« As the temperature is reduced from 4.2 K, the liquid boils vigorously.
« At 2.17 K the boiling suddenly stops.

This implies that the low-T phase has a very large thermal conductivity.

Youtube: Superfluid helium




Discovery of superfluid with zero viscosity (Kapitza, 1938) #B/7EE

The phase below 2.17 K'is a

superfluid phase.

Liquid helium-4

y
N
‘\\
= N
\
_ 99 Superfluid §
5 \
¥t
= N
- 8
15 \
5
) Iy \
% Normal fluid §
o — N
= 10 §
5 \ a narrow gap
¥ T \ between two
& 5 - \ glass disks.
= Glass
0 Y B A TR | | disk
1 2 | 3 1

—_—

A

Temperature (K) 'W.P. Halperin, Nature 2018
Superfluid helium is an example of Bose-Einstein condensation

It is also a rare example of macroscopic quantum phenomena



)
» Creeping of superfluid

Helium film covers container via
absorption of He atoms from vapor
—> superfluid film

(~ 20 nm thick, creep ~ 20 cm/s)

The Unusual Properties of Liquid Helium




Estimate the critical temperature T, of superfluid transition

« Density of states

It's less by a factor of 2 compared to DOS of electron gas,

. 2m 2 1/2
g(E)=2xnV E

e

«  The number distribution n(E)

3/2 1/2
2m E
FBE(E)g(E)=27TV(h—2j EMT _1

¢ Normalization condition: For N helium atoms,

dE

o El/2
IO AeE/kT _1

= 2.315(kT)3ifA = 1

o 2m &
N = Fyg(E)dE =27V (7j

Note: AeE/kT = e(E_ﬂ)/kT: A=1e U= 0



Two-fluid model (London 1938)

Fraction of helium atoms in superfluid state:

Use A =1 < This corresponds to the

maximum value of N (before some atoms

condenses to the ground state)

3/2
N < 27:1/(2’””) «2.315

h2

P,

- 2mk| 4.637V

For liquid helium, n = 2.11 x 102 atoms/m?3

10

r/p

08|

» point
L (217 K)

1 1 1 1
0,5 1,0 15 2,0 2,5
Temperature [K]

The result gives T 2 3.06 K, which is close to the actual T..



Ex 9.9:

Solution

For a gas of nitrogen (Ny) at room temperature (293 K) and
1 atmosphere pressure, calculate the Maxwell-Boltzmann
constant A and thereby show that Bose-Einstein statistics can
be replaced by Maxwell-Boltzmann statistics in this case.

g(E) Qﬂ;V(Qm)%/Q El/?

Fap = A exp(—E/kT)

27TV

=

)%/QAJ’ E'? exp(—E/kT) dE
0

V
2”2 (Qm)“/zA% (kT)*2

v n’'N
= E(quka)B/?A m) A= v (2mmkT) ™"

Under normal conditions (atmospheric pressure and room
temperature) the number density of nitrogen gas is N/V =
2.50 X 10® m™. Plugging this into our result for A along
with the molecular mass of Ny and 7" = 293 K yields the
value A = 1.8 X 1077, Because this is much less than unity,
the use of Maxwell-Boltzmann statistics 1s justified



Summary of the density of states studied so far

» |deal gas; Electron gas (p.324)

2m 3/2
g(E)= 4;;1/(]1—2) E"
 EM wave (photon gas, p.328; also ch 3 on blackbody radiation)

%14

E2
he’

g(E)
* Helium gas (p.334), similar to the first one above
2m 2
g(E)= 27ZV£ j E"

g

The number of states within [E,E+dE] = g(E)dE



Case 4: Superconductivity (see Chap 10)



