
Chap 9 

Statistical Physics

• Maxwell Velocity Distribution

• Equipartition Theorem

• Maxwell Speed Distribution

• Classical and Quantum Statistics

• Fermi-Dirac Statistics

• Bose-Einstein Statistics

Gas of 
atoms

General 
manybody
system



• Velocity distribution function f

f 3v = the probability of finding a particle with 

velocity between and + d .

3
x y zd d d d   

• Since the motion along x, y, z are independent, we 

expect ௫ ௬ ௭ ௫ ௬ ௭

Maxwell velocity distribution of ideal gas (1860)

• Rotational invariance requires that f(𝝂) can depend only on 

the magnitude of 𝝂, not it’s direction: f( ) = f(v).

• The only function of ௫
ଶ

௬
ଶ

௭
ଶ that has the form ௫ ௬ ௭

is proportional to an exponential function (Weinberg, Foundations of MP)
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ଶ (C>0 so that f(v) won’t diverge)



• h(vx) dvx is the probability that the x component of a  

molecule’s velocity lies between vx and vx + dvx.

• If we integrate h(vx) dvx over all of vx, it equals to 1
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• The mean value of vx
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(this is mentioned in Chap 3)
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recall high 
school physics



Equipartition theorem

In equilibrium, a mean energy of ½ kT is associated with each term 

of a molecular’s energy. (Learn Statistical Physics for a proof.)

• In a monatomic ideal gas, each molecule has the energy

• In a gas of N atoms, the total internal energy is

3
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• The heat capacity at constant volume is  
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• For n mole of atoms,
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The ideal gas constant R =NAk = 8.31 J/K.
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This agrees with the result we cited earlier.



• Why only 2 terms in rotational energy?                                           

A: The energy of a rigid rotator is

2 2 2
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yx z
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• The mass of an atom is confined to a nucleus

→ Iz is much smaller than Ix and Iy, and only 

rotations about x and y are allowed.

• There are 7 energy terms (3 translational, 2 rotational, and 2 vibrational). 

Note: Vibration has 2 energy terms: kinetic energy and potential energy

Diatomic molecule



Ex 9.2:

heat capacity of H2

Ne: 𝐾 =
3

2
𝑘𝑇 per atom

𝐾் =
3

2
𝑅𝑇 per mole

HF: 𝐾 =
5

2
𝑘𝑇 per atom

𝐾் =
5

2
𝑅𝑇 per mole

𝐸ୌ୊
௥௢௧ ≃ 0.5 meV ℓ = 1 ;  Eୌ୊

୴୧ୠ ≃ 0.8 eV (n = 1)

25 meV
ଵ

ସ଴
20 ºC 



Maxwell speed distribution

• F(v) dv = the probability of finding a particle 

with speed between v and v + dv.

• The volume of the spherical shell is 4πv2 dv. 
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Velocity distribution

Speed distribution

• Recall that f 𝝂  𝑑3v = the probability of finding 

a particle with velocity between 𝝂 and 𝝂 + d 𝒗.

F(v)

v



Three different scales

1. Most probable speed (peak of the speed distribution):
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v
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2. Mean speed (average of all speeds):

3. Root-mean-square speed 
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Ex 9.3:

(same thermal energy)

1u = 1.66 × 10ିଶ଻ kg



• Maxwell Velocity Distribution

• Equipartition Theorem

• Maxwell Speed Distribution

• Classical and Quantum Statistics

• Fermi-Dirac Statistics

• Bose-Einstein Statistics

Superfludity
Superconductivity …



Boltzmann showed that the factor exp(−βE) is universal for all classical system.

Distribution function (for classical systems in thermal equilibrium)

• Recall that  3/2 2 3/21
( ) exp exp
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• The distribution of particles with respect to energy:

( ) exp( )f E A E 

2( )4 ( ) ( )f v v dv f E g E dE 

Relative occupations between two states

• Maxwell-Boltzmann distribution:   

Probability for a particle at energy-E state:

24 = ( )v dv g E dE

called Boltzmann factor 
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• Density of states g(E)

The number of states within [E,E+dE]

態密度
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• In classical statistical mechanics, to count the number of 

states, we need to calculate the volume in phase space,

Number of states in this shell: divide the volume by D3. 

• Suppose a volume element of phase space = D3

• After the discovery of quantum physics, it is natural to set D=h

optional

The number of particles within [E,E+dE]: n(E) dE = F(E,T) g(E) dE

Distribution 
function

Density of 
states



Ex 9.6:



• Particles with half-integer spin are fermions;                

particles with integer spin are bosons.

• Fermions satisfy Fermi-Dirac statistics;                         

bosons satisfy Bose-Einstein statics (spin-statistics theorem).

Before studying quantum statistics, we need to know all particles 

belong to one of two types: boson or fermion. They have different

distribution functions.



Three distribution functions for systems in thermal equilibrium

• Fermi-Dirac distribution (1926):
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• Bose-Einstein distribution (1924):
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Both reduce to the Maxwell-Boltzmann distribution when E >> kT
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• Maxwell-Boltzmann distribution ( ெ஻): 

The number of particles within [E,E+dE]: n(E) dE = F(E,T) g(E) dE

Distribution 
function

Density of 
states

• The number of states within [E,E+dE]



To understand boson and fermion better, we need to 

understand the concept of identical particles:

• In a quantum world, elementary particle of the same type 

are indistinguishable from each other

2 particles interact with each other:

• Classical physics: frequent observations are allowed without 

disturbing the system. This is no longer true for a quantum system, 

so we cannot follow the trajectory closely.

全同粒子



• Distinguishable particles 
(classical)

• Indistinguishable particles (quantum) 

In 1924, Bose used this statistics, applied it to 
photons to derive the Planck radiation law.   
He would fail if the one on the left is used.

Bosons Fermions

A simple statistics: Different ways to put 2 particles in 2 states



“I had no idea that what I had done was really novel... Somehow this was the 

same question that Einstein asked when I met him: How had I arrived at this 

method of de-riving Planck’s formula? Well, I recognized the contradictions in the 

attempts of Planck and Einstein, and applied statistics in my own way, but I did 

not think that it was different from Boltzmann statistics.” 

“He appears to have missed the fact that in asserting this new counting 

method, he had made a profound discovery about the atomic world, that 

elementary particles are indistinguishable in a new and fundamental sense.“

(p.247 Stone, Einstein and quantum) 

Q: What would happen if he used distinguishable particle? 

A: Rayleigh-Jeans formula

In his book 'Subtle is the Lord' Pais states, 'The paper by Bose is the fourth and 

last of the revolutionary papers of the old quantum theory." (the other three 

being by, respectively, Planck, Einstein, and Bohr) 



Exchange symmetry of wave function

Two-particle wave function: ଵ ଶ

• Exchanging two indistinguishable particles: 

ଶ ଵ
ଶ

ଵ ଶ
ଶ

ଶ ଵ ଵ ଶ

• After exchanging twice, the system should come 

back to the original state

ଶ

ଶ ଵ ଵ ଶ

Therefore

ଶ ଵ ଵ ଶ

or
boson

fermion

交換對稱性



• 2 particles in 2 different states a and b:

Distinguishable

Boson

Fermion

Distinguishable

Boson

Fermion

• Probability density for 2 particles in the same state (b=a)

Wave function for 2 particles

a b

a

𝑏

• Bosons like to stick together; fermions like to repel each other.



Wave function of 3 bosons

optional

Bose-Einstein condensation, laser … etc

玻色-愛因斯坦凝聚

𝐵

஻
∗

஻ ெ
∗

ெ



Bosons (photon, H, 4He, 87Rb…)

• laser • superconductor

• superfluid • Bose-Einstein 
condensation 

Fermions (electron, proton, neutron, 3He …)

• nucleus

• solid • neutron star

• atom

Spin = 0, 1, 2... Spin = 1/2, 3/2...



• Assume that there are on average n1 particles in state 1, n2 particles in 

state 2, and R12  is the transition rate (number of transitions per sec) from 

state 1 to 2. In equilibrium, the transfer of particles between states 1,2 

satisfies (aka detailed balance)

Justification of the distribution laws (Eisberg and Resnick)

optional

First, classical particles

• Suppose P1 is the probability of finding 1 particle in some state. The 

probability of finding n particle in the same state is

Boltzmann 
distribution

௡ ଵ
௡

ଵ ଵ→ଶ ଶ ଶ→ଵ

ଵ

ଶ

ି 
ாభ
௞்

ି 
ாమ
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ଶ→ଵ

ଵ→ଶ

ି 
ாభ
௞்

ି 
ாమ
௞்

 

(𝑛ത is the avg number of n)

細節平衡



• Boson

Justification of the distribution laws 

See the example 
of 3 bosons

௡
௕௢௦௢௡

௡ ଵ
௡

Q: If there are already n bosons in a final state, what is the probability   
that one more boson makes a transition to that state?

௡ାଵ
௕௢௦௢௡

ଵ ௡
௕௢௦௢௡

That is, the transition rate is enhanced 

by a factor of 1+n. As a result, 

Comparing to the classical case,

௡ାଵ ଵ ௡

ଵ→ଶ
௕௢௦௢௡

ଶ ଵ→ଶ

ଶ→ଵ
௕௢௦௢௡

ଵ ଶ→ଵ

A: The probability is enhanced by 1+n

optional

On the other hand, for fermion,

𝑅ଵ→ଶ if state-2 is empty

0 if state-2 is filled
ଵ→ଶ
௙௘௥௠௜௢௡

Therefore, on average

ଵ→ଶ
௙௘௥௠௜௢௡

ଶ ଵ→ଶ

ଶ→ଵ
௙௘௥௠௜௢௡

ଵ ଶ→ଵ



Bose-Einstein 
distribution
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Detailed balance:

• Boson • Fermion

Fermi-Dirac 
distribution
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ଵ ଵ→ଶ
௙௘௥௠௜௢௡

ଶ ଶ→ଵ
௙௘௥௠௜௢௡

ଵ ாభ
௞்

optional

Note: The here corresponds to FBE or FFD.



• When E = EF → FFD = 
ଵ

ଶ

• In the limit as T → 0,

• At T = 0, fermions occupy the lowest energy levels available.

F
FD

F

1 for 

0 for 

E E
F

E E


  

Fermi-Dirac 
distribution

• T = 0 • T > 0

୊ୈ

• EF is called the Fermi energy. It is determined by the 

total number of particles, 

Systems of fermions



k = π/L, 2π/L, 3π/L…

• The allowed energies for electrons are

2 2 2
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Sommerfeld model of electrons in a metal (1927): 

Free electrons in an empty box (it works well!)

 ( , , ) , ,x y z x y zk k k n n n
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
 ଷ

ଷ

• Standing wave



• Total number of electrons (this determines the Fermi energy)

• Each k-point can have 2 electrons (because of spin). After filling in N

electrons, the result is 1/8 of a spherical sea of electrons called the Fermi 

sphere. Its radius is called the Fermi wave vector, and the energy of the 

outermost electron is called the Fermi energy.

• The number of states up to radius kF (Fermi wave vector) is

   1/
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• For example, for K, the electron density n=1.4×1028 m-3, therefore

193.40 10 2.12 eVFE J  10.746Fk A
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Note: if we choose periodic BC, then it is a whole sphere.



2

2
also,  

F B F F

F F

m
E k T v

k mv

 



• kF is of the order of a-1. 

• εF is of the order of the atomic energy levels.

Fermi temperature, Fermi velocity …



• For a Fermi sphere,
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Density of states g(ε)

• g(E)dE is the number of states within the 

energy surfaces of E and E+dE

• Total number of electrons

• Total energy
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g(E)

FFD(E)

g(E)xFFD(E)

୊ୈ

~ Hotel rooms

~ Occupation



• The mean electronic energy at T=0:
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• Internal energy of the system:
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pressure

Electron degenerate pressure 電子簡併壓力

Bulk modulus
體積彈性係數



• In general
F

F

3

5

kT
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Molar specific heat        

(Thornton called it molar heat capacity) F

2V

T
c R R

T
 

• Only those electrons within about kT of EF will be able to absorb thermal 

energy and jump to higher states. Therefore the fraction of electrons 

capable of participating in this thermal process is on the order of kT / EF.

• Electron heat capacity 
Note: There is also a (much larger) 
heat capacity from lattice vibration 
(not included here)

గమ

ସ
(Kittel, Intro to SS)

Energy increase 
due to thermal 
excitations



Ex 9.8:

TF =6.38 x 104 K for silver 



eC

T
 

Ce is important only at very low T.

In general C = Ce + Cp

= T + aT 3

Electron + lattice vibration



Work function 功函數



System of bosons

• The number of states within “radius” k is

3
3

3
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• Density of states  
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3
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2 from 2 photon 
polarizations

Bose-Einstein distribution

Case 1: Blackbody radiation (A=1 for photons)
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• Photons in a box with side length L
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(This has been mentioned in Chap 3)



• Convert to distribution of energy density u(E).
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Energy density within the range [E, E + dE]:

• Using E = hc/λ and dE = (hc/λ2) dλ
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• From energy density to flux density, multiplying by c/4 is required.
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optional

This agrees with the one derived in 
Chap 3 (Here is the 3rd derivation of 
Planck’s law. 
What’s the 2nd one we learned?)

Multiply by a factor E/L3



Heat capacity of solids

• Einstein model (1907)

Assume that 

1. each atom vibrates independently of each other, and 

2. every atom has the same vibration frequency ω0

optional

• Debye model (1912), not discussed here



Einstein model
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

Internal energy

Heat capacity

Comparison with experimental data

optional

vibration is 
“frozen” at low T

Heat capacity of silver
Debye model: 
Debye T3 law

Einstein model: 
Exponential decay

ି௡
ℏఠబ
௞்

ି௡
ℏఠబ
௞்



Case 2: Bose-Einstein condensation in gases

optional



De Broglie 
wavelength

optional

BEC:

The graphic shows successive snapshots in time 
in which the atoms condensate.

Tc = 70 nK

sharper

ௗ஻ ଵ/ଷ

Cool a gas of 87Rb atoms to about 1 mK, then used 

a magnetic trap to cool the gas to about 20 nK.      

(v ~ 1 mm/s) Cornell and Wieman, Ketterle 1995.

Ru atoms: m=1.4 × 10-25 kg, 
n ~ 2.5 × 1012 /cm3



Macroscopic, coherent matter wave

Interference between two BEC of Na 
atoms (1997)

optional

The interference fringes have a spacing 
of 20 and 15 μm (2 different cases)

Quantized vortices (𝐿 = ℏ)

Vortex lattices in 
rotating Na BEC 
(2001)
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Laser: condensation of photons 

Atom laser: condensation of atoms (1996, CW 1999)

optional

Atom laser

The gain medium is a thermal cloud of atoms. The 
extracted atoms form a beam of coherent matter wave. https://physicsworld.com/a/atom-lasers/

tunneling



Boltzmann Bose-Einstein

Fermi-Dirac



First, a timeline of low temperature 

• 1800 Charles and Gay-Lusac (from P-T

relationship) proposed that the lowest 

temperature is -273 C (= 0 K)

• 1877 Cailletet and Pictet liquified 

Oxygen (-183 C or 90 K). Soon after, 

Nitrogen (77 K) is liquified

• 1898 Dewar liquified Hydrogen (20 K)

• 1908 Onnes liquified Helium (4.2 K)

• 1911 Onnes discovered superconductivity.

Case 3: Superfluid

Pobell, Matter and Methods at Low Temperatures



This implies a phase transition at Tc=2.17 K.

• The specific heat of liquid helium as 

a function of temperature (1932).

• The density of liquid helium as    

a function of temperature (1924).

He II He I

Helium gas is liquified at 4.2 K (Onnes, 1908)

Superfluid, a fluid with zero viscosity 黏滯度



• As the temperature is reduced from 4.2 K, the liquid boils vigorously.

• At 2.17 K the boiling suddenly stops.

This implies that the low-T phase has a very large thermal conductivity.

Youtube: Superfluid helium

T>Tc T<Tc



The phase below 2.17 K is a 

superfluid phase.

Discovery of superfluid with zero viscosity (Kapitza, 1938) 超流體

Superfluid helium is an example of Bose-Einstein condensation

It is also a rare example of macroscopic quantum phenomena

Glass 
disk

Helium 

W.P. Halperin, Nature 2018

a narrow gap 
between two 
glass disks.



• Creeping of superfluid

Helium film covers container via 

absorption of He atoms from vapor 

 superfluid film 

(~ 20 nm thick, creep ~ 20 cm/s)

蠕動

The Unusual Properties of Liquid Helium



• Density of states
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• The number distribution n(E)
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• Normalization condition: For N helium atoms,
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Estimate the critical temperature Tc  of superfluid transition

ଷ

It’s less by a factor of 2 compared to DOS of electron gas,

ா ௞்⁄ (ாିఓ) ௞்⁄Note:



• Use A = 1  This corresponds to the 

maximum value of N (before some atoms 

condenses to the ground state)
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h
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For liquid helium, n = 2.11 x 1028 atoms/m3

The result gives T ≥ 3.06 K, which is close to the actual Tc.

• Two-fluid model (London 1938)

Fraction of helium atoms in superfluid state:

1
c

T
F

T


 

  
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Ex 9.9:



Summary of the density of states studied so far

• Ideal gas; Electron gas (p.324)

• EM wave (photon gas, p.328; also ch 3 on blackbody radiation)

• Helium gas (p.334), similar to the first one above
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The number of states within [E,E+dE]
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Case 4: Superconductivity (see Chap 10)


