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Central force problem

First, recall that in classical mechanics

_ Angular momentum
Planetary motion

*  Velocity P =i+ rd

: 1 1 1 Ly
Enerdy g, — —m#? + =mr?@? + U(r) = —mi? + + U(r)
9 92 2 2mr?
— %m# + Ueff (T)

Energy 4

: 2
Effective potential for radial motion

- (Centrifugal barrier)

2mr

Uess (’P) = U(’I”) +

E <E<O
min

min

% (Original potential)




Orbital angular momentum operator
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L=l'>(p Lx=ypz_zpy . o b
L}’=pr_xpz - B Lyop: _“Ih<zgx-_xé;>
L, = Xxp, — ypx 0 0
- — __h MR | N
Legp = =1 (x oy y@x)
» Spherical coordinate
z P L. =ih| si i—ircotlﬁh'.:(:as i
l xop = b Sln‘pag q)a(p
E L. =ih : + cot € sin ¢
| < },Dp—t -—COSQDaB 18] S q)a(p
e
0 lz 6
. L, = —ih—
!
S - y L*=L2+ L2+ L2
M\‘\. I//x
______ i 7

¥ 1 0 9, 1 0?
L2 = 2 — sinf
=) (sin 6 00 > 00 + sin’ 6 5¢52>




>

Ny >

N

h
N
|

w .0 %
L; = 2.L=ik{sing— +cot9003q95

0 . O
Ly, = in (——cosqaa—a +cot6’sm¢£)

= 7sinf cos g + 0 cosf cosp — ¢ sing

Il

#sinf sing + A cos @ sinp + ¢ cos ¢,
7 cosf — O sinb.

—RxP=(—=ibr)f xV

. |.e 686 6 o
= (—ihr)f x |Fr— + —
ey |}6r+169 rsinf oo

o0

0
—i P,
i r

|

Quantum mechanics, by Zettili



Schrodinger eq Hy (F) = Ey(F)
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« Laplacian in spherical coordinate
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This applies to all central force problems.

« What’s the eigenfunctions of L2?

m) Spherical harmonics Y;"(6, ¢)




Review:
Spherical harmonics associated Legendre polynomials

Y;"(6,¢) = NPJ*(cos §)et™®  £=0,1.2,

m=4L+£{—-1,--,—¢
TABLE 6.2

The first few associated Legendre functions P™ (x)
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Normalized Spherical Harmonics Y(6, ¢)
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Ex 7.1 Show that the spherical harmonic function Y, (0, ¢) satisfies
the angular Equation
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Spherical harmonics are eigenstates of L2 and L,

L2Y™(8, ¢) = £(£ + 1)A%Y™(6, p)
i‘zyfm (9' ¢) — mhy{’m(ei ¢)

eigenvalues

« WhylL? =¢2(f+ 1)h??
A heuristic explanation (Thornton and Rex):
We expect the average of the angular momentum

components squared to be <Lx2> = <Ly2> =< ; >
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Cf: Bohr model: L = nh

Angular momentum
quantum numbers:
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Called ‘space quantization”, or

“azimuthal quantization”



The choice of the z axis is arbitrary unless there is an external magnetic field
B to define a preferred direction. It is customary to choose the z axis to be

along B. This is why m is called the magnetic quantum number (Thornton).

How about the values of L, and L,?

After knowing L? and L,, if we also know L,, then Ly can be determined. )

L
This would violate the uncertainty principle: S

If L is certain, then the electron is confined to a plane. The ,

electron’s momentum component along L is exactly zero. ' 5
This simultaneous knowledge of z and p, is forbidden. 4

optional Commutation relations:
[L‘T’Ly] = thL,, [Ly’ Lz] = thL,, [Lza Lzr:} — anya

L?,L,] = [L? L,] =|[L? L.] =0.

Compatible observables
(= can have simultaneous eigenstates)
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Back to the Schrodinger eq for hydrogen atom

Hy (F) = Ey(F)

H = P10 2 9 + V(@) +
B 2mr26rr6r r
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Use separation of variables

() = R(Y;"(6, ¢)

It is known that L2Y™(6,¢) = (£ + DAR?Y™(0, ¢)

m) Radial equation
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Special case: ground state of H atom

Assume the ground state has £ = 0 and this requires m =0

2 2
d"R +% dR + 2u E + € R=0 u: reduced mass
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For the ground state, try

A is a normalization constant.
a, is a constant with the dimension of length.
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two expressions in parentheses need to be zero.
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Ground state energy Bohr radius




In general + Eigenenergies E = _ﬂ n=1,2,3, ...
n 2 (principle quantum number)

Note: for H atom, the eigenenergies do not depend on {.
In general, for non-Coulomb central force system, the

energy would depend on {.

« Eigenstates W oim, (7’9‘99¢) =R, (V)ngf (‘93¢)
Foragivenn, £=0,1,2,--,n—1

* Table 7 . 1 Hydrogen Atom Radial Wave Functions
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Summary: the quantum states of Hydrogen atom
are specified by 3 quantum numbers

Principal quantum number n=1 2 3 :u:
Orbital quantum number 1=0,1,2,...,(n—1)
Magnetic quantum number my =0, 1, *2 ..., #Fl

spectroscopic [=0 1 2 3 4 5 6 ...

Different notation:
' s pd f g h i

eigenstates with the

same eigenenergy

Degeneracy of eigenstates:

Table 6.2 Atomic Electron States
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Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2 = RO P,
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Ex 7.2: Show that the hydrogen wave function ¢;; is normalized.
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Ex 7.12: Calculate the average orbital radius of a 1s electron in the
hydrogen atom.

Solution (r)
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Example

Verify that the average value of 1/r for a 1s electron in the hydrogen atom is 1/a.
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Magnetic Effects on Atomic Spectra

1845, Faraday found the connection between magnetic field and light

Would the atomic spectrum be affected? With prism spectroscopy,

Faraday failed to find any effect.

1896, with diffraction grating, Zeeman showed the spectral lines in a

magnetic field split into multiple energy levels (called Zeeman effect).

Discharge Electromagnet
tube ™|

"Normal" Zeeman effect

Magnetic
field on.

Level splitting by B field

Magnetic
field off.

-

.J

Zeeman effect.

To understand this shift of energy levels using quantum mechanics,

we need to consider the magnetic moment of a circulating electron.



Orbital magnetic moment

The circulating electron is similar to a current loop,
which has a magnetic moment

_ 2
i 3 2mr/ v
—Eery e
= = ——1L
2 2m
— __ F T
- £ 2m
e
M, =———mh=—pgm,
2m
Bohr oh
magneton i, = B = 0.927 x 10™ %% amp-m?
R I (or JIT)
MR — 0.058 meV/T

Tesla: an unit of magnetic field (proposed by Avéin at 1960).



* The potential energy is quantized due to the magnetic quantum number m

Vy=—#.B=+uzmB
* For example, when a magnetic field is applied, the 2p level of hydrogen

is split into 3 energy levels (if spin — to be introduced later — can be ignored)

transition from 2p to 1s L
- 1
£=1 " .
. 1
£=1 | AE=p. B
n=2 —_ 0
i AE Energy
e ~1
— — ok T
B=10 B = Byk
- Zeeman Magnetic
effect field off.
Magnetic 1 =0 Y Y Y
field on. '

=1
[
=
oo
[
=
ES



Ex 7.7 calculate the energy difference between the m; = 0 and m,
“%" = 41 components in the 2p state of atomic hydrogen placed
in an external field of 2.00 T.

Solution AE = ugB Am,

mp AE=(9.27 X 1072*]/T)(2.00 T)

1.85 X 1073
=1.16 X 10 %*eV



#iEEH] Selection rule in radiative transitions

(first found in observation)

Transition is allowed when Allov?.ed'
) lransmon‘
Al = +1
This is called selection rule s orbital
p orbital

Explanation: the angular momentum of a photon is +A, and total

angular momentum has to be conserved,

optional

The transition probability 3 xra . Y.
is related to electric dipole  [jf & |f d U¢f(r)(—er)¢i(r)|
moment

Under space inversion: Y™ (—r) = (—1)‘2Y£'m (r).

_ . The transition
= Lisp= if A #x1 is forbidden
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Selection rule
(with magnetic field)

Al==*1
Am, =0,%1

(no restriction on An)

Note: Other transitions are
possible but with much
smaller probabilities
(magnetic dipole transitions
10-4, electric quadrupole

transitions 10 ... etc)

n=3

Il
[\

No magnetic field

Magnetic field present

mp=2
mi =
m; =0
m.i =-]1
m; =2
_ehB) ]| | B
(hyo 2m)§\f‘“ 37 (hy0+ 2m
hVO
-~ = S
ffff,___.-— 10
Y Y mp = ]_
Y Y Y Y m; = 0
* Y Y oy =-1
T S y, AR
Amj = +1 Am; = -1
Am; = 0

eB

- g8 _eB
L (y 4n:m) Vo (y0+ 4nm)

Spectrum without
magnetic field

Spectrum with magnetic
field present



In order to denounce the space quantization from m,

Stern and Gerlach carried out an experiment (1922)

Collimator

Nonuniform B field could

deflect a magnetic dipole
B =V(-p B)=p o 3
=—V(—Uu- = U, =—
‘ ‘ 0z Detector
plate

* They used silver atom, thought it is in =1 state,

but observed just 2 lines.
« Ag[4d'95s"'] atom is actually in £=0 state.

So what happened? s ae
« Even though the azimuthal quantization is

Observed Classically predicted

observed. Our understanding of quantum
o (independent of the choice of
theory is incomplete. the z-direction)



Uhlenbeck and Goudsmit’s proposal (1925):

In order to explain experimental data, they proposed that the electron
must have the 4" quantum number (first suggested by Pauli) related to

electron spin with spin quantum number s = 5.

«  The magnetic spin quantum number mg has only two values,

= +1 -
mg =%, - -

— —+1
S =mh=1 A h
» However, electron radius r < Compton wavelength, Ti"

so the surface of the spinning electron should be

moving faster than the speed of light!
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Magnitude of spin ‘S‘ = Js(s+1)h=1[3/4n

S, =mh=+Yn

Recall that for orbital magnetic moment . e -
m=
2m

—

. . e =
But for spin magnetic moment Ly = _;S = _gES
(measured from SG experiment)

I.e., gyromagnetic ratios g=2  (2.00231930436092(36) to be precise)
AL

Q: Why not just choose s=1 (s, = £h, no 0), and g,=17

1.
2.

If s=1, then mg would be +1,0,—1 (3 levels)
Spin magnetic moment and spin angular momentum in principle can be
measured independently

Later, Dirac’s relativistic quantum mechanics would automatically give g,=2



Ex 7.10: Which of the following transitions for quantum numbers (n,

€, my, m,) are allowed for the hydrogen atom, and for those
allowed, what is the energy involved?

ta) (2,0,0, 1/2)—(35; 1,1, 172)
(b) (2,0,0,1/2)—(3,0,0,1/2)
(e) (42, =1;=1/2)—(2,1,0,1/2)

Solution ) A€ = +1, Am, = 1; allowed.
1 1
= 1.89 €V, corresponding to absorption
of a 1.89-eV photon
(b) A€ = 0, Amy = 0; not allowed, because A{ # *1.
(c) A€ = —1, Am, = 1; allowed. Notice that An = —2 and
Amg =0 Am, = +1 does not affect whether the transition is al-
hyperphysics lowed.
B - 1 1

—2.55 eV, corresponding to
emission of a 2.55-eV photon



More on Zeeman splittings

Sodium D lines

Zinc sharp triplet

Zinc singlet Sodium principal doublet (only one of three patterns shown)
No No
B field B field
/TN AT\ D,
‘With With
B field B field
L1 | L1 | LT ] L1 |
Predicted Predicted Predicted Predicted
“normal™ splitting “normal” splitting “normal” splitting “normal” splitting
. - +
Normal pattern: % ]
Experiment agrees with Anomalous patterns: Experiment does not agree with predicted “normal™ splitting.

predicted “normal™ splitting.

Without spin with spin

To explain it, we need to consider spin-orbit coupling

(next Chap)



