
Ch 6

Quantum Mechanics

• Schrödinger equation

• Operators, expectation values

• Particle in a box

• Finite potential well potential

• Simple harmonic oscillator

• Barrier and tunneling

The uncertainty and probabilistic nature of quantum mechanics 

might be overstated in pop science. In fact, quantum mechanical 

calculations give some of the most accurate predictions human can 

made about nature. 



• The radiation problem led him to write down the time-dependent 

Schrödinger eq. 2
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• Schrödinger first tried to treat everything relativistically but failed. 

During the Christmas of 1925, he considered non-relativistic case 

and got the time-independent Schrödinger eq.
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Some history of Schrödinger wave equation

He then obtained the correct energy spectrum for the hydrogen 

atom, and studied the spectrum of SHO, the Stark effect, the 

absorption and emission of radiation by an atom, all within 6 months 

of his discovery. This indicates that the equation could be right.

(Schrödinger: life and thought, by Moore)

• Nov 1925, Schrödinger gave a seminar on de Broglie’s work. One 

audience (Debye) suggested that there should be a wave equation.
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• Suppose that this works also 
for a bounded particle with

Replace the p in E by 
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• Start from the simplest case: free particle (with plane wave) 

• What’s the differential eq. that it satisfies?

So far, this is 
just a guess



If the potential is static, then use separation of variables:
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• Time-dependent Schrödinger equation (1926)
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 Probability distribution 

is independent of time 
(called stationary state)

• Time-independent Schrödinger equation



Ex 6.2:

Ex 6.3:

(We just showed this.)

• The i in quantum mechanics

• The wave function (r,t) is in general a complex function.                        

So it cannot be directly measured.

• Also, Ψ 𝑟, 𝑡  and e୧ఈΨ 𝑟, 𝑡 , where 𝛼 is a real constant, 

represent the same state



Ex 6.4:

Normalization of wave function



Differential Operators

• Momentum operator

ᇱ

ᇱ

1-dim

3-dim

Note: Not all classical variables have corresponding operators.

For example, angle q, time t do not have corresponding operators.

• Angular momentum operator

• Hamiltonian operator

𝐻෡ =
𝑝̂ଶ

2𝑚
+ 𝑉 𝑟 = −

ℏଶ

2𝑚
 ∇ଶ + 𝑉(𝑟)

算符, or 算子

可觀測量

哈密頓算符

• In quantum mechanics, physical observables, such as position, 

momentum, energy… etc are represented by (Hermitian) operators.

• Relations between classical variables remain the same, such as

𝐸 = 𝑝ଶ/2𝑚 + 𝑉, 𝐿 = 𝑟 × 𝑝 … etc



• Eigenvalue equation
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eigenstateeigenenergy

EigenfunctionEigenvalue 

e.g.,

(Operator)(function) = number × (same function)

• Boundary condition 

In order to normalize the wave functions, they must approach zero as r

approaches infinity. This requires the eigenenergies to be discrete. Bohr’s 

assumption of stationary states is thus a natural result of mathematics.

Quantization as an 
eigenvalue problem

measurable
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• Expectation value
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optional

• Commutation relation (Heisenberg, Born etc)

Commutator of operators A,B: 

Uncertainty relations: in general (H. Robertson 1929)

e.g.,

• Two physical operators that commute with each other can both be 

measured accurately without interference. They are called 

compatible observables. 

• Compatible observables can share the same eigenstates, called 

simultaneous eigenstates

對易關係

相容觀測量

共同本徵態

對易子
交換子



• Schrödinger equation

• Operators, expectation values

• Particle in a box

• Finite potential well potential

• Simple harmonic oscillator

• Barrier and tunneling
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Some properties of wave function

Atkins, Physical Chemistry
Note: There are exceptions to rule (b) when 
V is infinite.
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A “particle” in an empty box (infinite potential well)
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Case 1: 

Quantization of energy (due to BC)

eigenstates

eigenenergy

normalization



Wave functions Energy levels



Ex 6.8:



Ex 6.10:

3-dim box



A particle in a finite potential wellCase 2: 
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These determine the 
relations between A,B,C,D



Wave functions (eigenstates) Energy levels (eigenenergies)

• Note that the wave function is nonzero outside of the box. 

• The penetration depth is the distance outside the potential well 

where the probability significantly decreases.              
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0.383 V0
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(see App H of Eisberg and Resnick for details)



Simple harmonic oscillator (SHO)

Case  3: 

For large x,
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To avoid divergence, we need 
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௡
Eigenenergies

Eigenstates 

The Solutions of Hermit diff eq are Hermit polynomials
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Normalized wave functions

• Ground state is a Gaussian function

• Note that the number of nodal points is 0,1,2,… n.

• More wiggling costs more energy



Energy levels of SHO

Ground state energy

• E0=0: the particle stays at the bottom, and not moving.

This would violate the uncertainty relation.

• This concept emerged around 1913 (Einstein and O. Stern).  Debye, 

also noted that the zero-point energy of the atoms of a crystal lattice 

would cause a reduction in the intensity of the X-ray diffraction even 

as the temperature approached absolute zero.  (wiki)

• In 1916 Nernst proposed that empty space was filled with zero-point 

electromagnetic radiation. (wiki)

଴ Zero-point energy

零點能量



Ex 6.12:



Tunneling through a barrier

Case 4: 



Reflection and Transmission of wave

• The probability of the particles being reflected R or transmitted T is

R + T = 1

(G=0)

Set A=1, wish to determine 
B, F (need to know C,D)



Let’s consider the E < V0 case. Find calculate T. 

From the B.C., we need to match 𝜓 and 
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Analogy with Wave Optics

Frustrated total internal reflection



Ex 6.16:
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Alpha decay as an example of tunneling (Gamow 1928)

• Inside the nucleus, an alpha particle feels the 

strong, short-range attractive nuclear force. 

Outside it feels a repulsive Coulomb force.

• The nuclear force potential is approximately by a 

square well.

• The potential barrier (26.4 MeV for Po-212) at the 

nuclear radius is several times greater than the 

energy of an alpha particle (8.78 MeV).

• According to quantum mechanics, however, the 

alpha particle can “tunnel” through the barrier. 

Hence this is observed as radioactive decay.   

(this is a probabilistic process)

Q: Many nuclei heavier than lead are 
natural emitters of alpha particles, but 
their emission rates vary over a factor 
of 1013, whereas their energies tend to 
range only from 4 to 8 MeV. Why?



Scanning tunneling microscope (STM)

Binning and Rohrer (1981)

Surface of Si (111)

wiki
The tunneling current decays quickly 

with the tip-surface distance.



Ex 6.17:



A better estimate gives



Case 5:

Hydrogen atom (next chapter)


