Ch 6

Quantum Mechanics

« Schrodinger equation

» Operators, expectation values
* Particle in a box

* Finite potential well potential

« Simple harmonic oscillator

« Barrier and tunneling

The uncertainty and probabilistic nature of quantum mechanics
might be overstated in pop science. In fact, quantum mechanical
calculations give some of the most accurate predictions human can

made about nature.



Some history of Schrodinger wave equation

(Schrodinger: life and thought, by Moore)
Nov 1925, Schrodinger gave a seminar on de Broglie’s work. One

audience (Debye) suggested that there should be a wave equation.

Schrodinger first tried to treat everything relativistically but failed.

During the Christmas of 1925, he considered non-relativistic case

and got the time-independent Schrodinger eq.
h2
~—Vy+Vy =Ey
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He then obtained the correct energy spectrum for the hydrogen
atom, and studied the spectrum of SHO, the Stark effect, the
absorption and emission of radiation by an atom, all within 6 months

of his discovery. This indicates that the equation could be right.

The radiation problem led him to write down the time-dependent

Schrodinger eq.
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« Start from the simplest case: free particle (with plane wave)

R p-7 _E(@t
Wﬁ(r,t)~expll n —1 h ]

+ What's the differential eq. that it satisfies?

Space derivative —iAVW;(7, t) = p W5(7, 1)
. . . . a - - -
Time derivative ih 3 Y57, t) = E(p) Y5(r, 0)
Ipl2

It is known that E( ) = —
Replace the p in E by —lh V

a - . -
=) ihaq’ﬁ(r, t) = E(—ihV) W5(7, t)

« Suppose that this works also |19|2

for a bounded particle with E(",p) = om +V(7r)

hz 0 So far, this is
- —%V Y+VY =ih atqj just a guess




« Time-dependent Schrodinger equation (1926)
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» Time-independent Schrodinger equation

If the potential is static, then use separation of variables:

Y@, 0 =yp@f (@)

af
hl = F
hae = Ef
—> ,
——Vy+Vy =Ey
2m

=) YE t) = Pp(iet /Mt

. N\ Probability distribution
- Y'Y= W(I”)| is independent of time

(called stationary state)



Ex6.2- Show that Ae’™ ™" satisfies the time-dependent Schrodinger
wave equation.

(We just showed this.)

Ex6.3: Determine whether W(x, {) = A sin(kx — wt) is an accept-
able solution to the time-dependent Schrodinger wave

equation.
- owv
Solution — = —wA cos(kx — wl)
ot
ow
— = kA cos(kx — wt)
ox

h2k?
)

’ffLQk-Q
2m

m) —ifiw cos(kx — oy

cv)

5 V)A sin(kx — wt)

* The i in quantum mechanics
« The wave function ¥(r,t) is in general a complex function.
So it cannot be directly measured.
« Also, W(# t) and e!*W¥(# t), where « is a real constant,

represent the same state



Normalization of wave function

Ex 6.4;

Solution

Consider a wave packet formed by using the wave function
Ae™ ™, where A is a constant to be determined by normaliza-
tion. Normalize this wave function and find the probabilities
of the particle being between 0 and 1/a, and between 1/«
and 2/ a.

Wave function

A

Position

l1/a 1
P= J ae 2 dx = —5(3_2 — 1) = 0.432

0

1

2/a
P= J ae 2 dx = ——(e_4 — 3_2) ~ (.059

l/a 2



* In quantum mechanics, physical observables, such as position, AEUHE
momentum, energy... etc are represented by (Hermitian) operators. [Ef}, or H-F

* Relations between classical variables remain the same, such as

-

E=p22m+V,L=%xp ... etc

Differential Operators A: f — f' = Af

Momentum operator 1-dim p = ﬁi
I dx
A o h d
- = = ——
pyy > =pY=—-—
~ h
3-dim ﬁ = -V
l
« Hamiltonian operator
ﬁZ hZ

S BT BT 0= T +V@FE) = -5 V2 4+ V(7)

« Angular momentum operator

Note: Not all classical variables have corresponding operators.

For example, angle 6, time t do not have corresponding operators.



3. Quantisierung als Figenwertproblem;
von E., Schrodinger. \

. Quantization as an
(Erste Mitteilung.) remizat

eigenvalue problem
« Eigenvalue equation

(Operator)(function) = number x (same function)

Af(#) = Af (7)

Eigenfunction

eg. pyY =py
2

Hy = ——vzw +Vy =Ey

measurable

« Boundary condition
In order to normalize the wave functions, they must approach zero as r
approaches infinity. This requires the eigenenergies to be discrete. Bohr’s

assumption of stationary states is thus a natural result of mathematics.



« Expectation value

optional

. — L ikx
Note: ¥(x) —mfdklli(k)e

— L —ikx
¢(k)—mfdx¢(x)e

(x) = [ dx x|y (x, I

(B) = J dxy* COpY(x)
= [ dxp" ()7 P(x)

= (p) = j dk Rk ()2

hd
(F(x,)) = | dxip*(x)F <x ——)woo

() = [ dxyp (A (x)

(L) = J dxp L)



optional

HE R A
« Commutation relation (Heisenberg, Born etc)

¥ 5+  Commutator of operators A,B: [/T, B] = AB — BA
CHAT

Uncertainty relations: in general (H. Robertson 1929)

1 n o~
AAAB > | - ([4, B])

A
e.g., Mxdp 2

« Two physical operators that commute with each other can both be
measured accurately without interference. They are called
compatible observables. MHEEHIE

« Compatible observables can share the same eigenstates, called

simultaneous eigenstates 1 [EA#RE



Schrodinger equation
Operators, expectation values
Particle in a box

Finite potential well potential
Simple harmonic oscillator

Barrier and tunneling



Some properties of wave function

d d
P1(x0) = Y2(xo) le/:: = dlﬁj

1 1

(c) (d)

Atkins, Physical Chemistry

Fig. 8.24 The wavefunction must satisfy
stringent conditions for it to be acceptable.
(a) Unacceptable because it is not
continuous; (b) unacceptable because its
slope is discontinuous; (¢) unacceptable
because it is not single-valued;

(d) unacceptable because it is infinite

over a finite region.

Note: There are exceptions to rule (b) when
V is infinite.



2m \¢
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Energy in units

Case 1: A “particle” in an empty box (infinite potential well)

=) eigenstates
nwx

———2+0}w(x> - Ey ()
{ 2m dx W, (x) = Asin(L) (n=1,2,3,...)

w(x)=Ae™ + Be™

eigenenergy

939
21‘Tﬁ

et T ' » . — T C

Energ:\ lev.e]s E” = n" 7 (?’I =1 &8 )
Wavefunctions, 2mli.
relative scale

Quantization of energy (due to BC)

3 5
-t . .
E normalization
- ”
b= |
[ (W (x) di = 1
& —6a

2 NI X
=) W, (x) =£sin(7) (= 1,2, 3,...)




Wave functions

Energy levels
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Figure 3.11 Energy levels of an
electron confined to a box

0.1 nm wide.



Ex 6.8: Determine the expectation values for x, x*, p, and p* of a
particle in an infinite square well for the first excited state.

Solution Po(x) = \/%Sin(%)

g = 9 I
) (x),—o = ZL X sinQ(%) i = 5

2 (* 2arx
(%%),—5 = LJ x? sin® —F dx = 0.3217°
0

52 (35

' 2 307
5, =2 | ol Nl Y - i TR | i — 2B
L 0 L dx dx i LQ

_ 4772712 <p2>n=2

a 2mL2 2m




3-dim box

Ex 6.10: Consider a free particle inside a box with lengths L, Ly, and
Ls along the x, y, and z axes, respectively, as shown in Figure
6.6. The particle is constrained to be inside the box. Find
the wave functions and energies. Then find the ground-
state energy and wave function and the energy of the first
excited state for a cube of sides L.

ﬁ?
Solution —2—V2¢/; = E y
L i
I /-('
= §(x ), 2) = Asin(ka)sin(ky)sin(kz)
ﬁ2 L?lx_"é_’: ______ —
Q_m(klz + ks + ki) = E¢s =g
0 L
939 2 2 2
T he [ Ny ng
‘ E= g == gy ——
2m (LE Is ng)

For the cubical box, with I.;, = Lo = L3 = L.

252 ar
E, = 32";2 Uy = Asin<?)sin(£)sin(7f)

mh> 3m’h>
E\, = 2+ T5 4 15 =
bt Qng( )




Vi(x)

Case 2: A particle in a finite potential well ”
0
Yo #=0 vegion 1 Region I | Region Il |Region III
V(x) =40 0<x<L  regionll
Vo x= L region III
0
X
0 3

) 2
Region | cj{ lg =—k’y, where k = \/(ZmE)/h2
X

2

dy a’y, where o :\/(2m(VO ~E))/%’

7 =
X

Region |, llI

 Py(x) = Ae™ region I, x < 0

m) < Ypy(x) = Be™ ™ region III, x > L

L Y = Ce™ + De™™ region I, 0 < x < L

The boundary condition (BC) requires that
= dy, /dx=dy,/dx at x=0 and
=V dY gl These determine the
Wy =Wy, AWy /dx =dy /dx atx =L relations between A,B,C,D



Wave functions (eigenstates)
(see App H of Eisberg and Resnick for details)

Wave function

| ™\
e V4 e
gExp(menLial

o
“f\_//\\ ’f
e

0 L

Energy levels (eigenenergies)

E
Vo

Es 0.808 V/,
-
o
2
S By 0.383 V,

E; 0.098

00 L

* Note that the wave function is nonzero outside of the box.

« The penetration depth is the distance outside the potential well

where the probability significantly decreases.

1 h

OX ~

“a Jom(y,- )



Case 3:

Simple harmonic oscillator (SHO)

Rl — —kx*
P .
)
d* :
(2.2 -
X g
= dx ( B)Y : %K(x_xﬂ)
g __ WK _ 2mE 2
o pE =
0 | X
2 %o
For large x M ~ q?x2y
dx?
ax” d’ _ax? _acx?
‘ l/J(X) ~e 2 Check: d_xl,Zb ~ —qe 2 + a’x%e 2

assume Y(x) = H(x)e‘asz

then H" —2axH '+ (f —a)H =0

or ﬂ_z-_+(£— )H=O, X

dx? a

Jax  This is Hermit diff eq.



To avoid divergence, we need
(E— )=2n, n=0,1,2,..
a

B=02n+1a

3| =

m=) FEigenenergies E, = (n + %) hw, W =

The Solutions of Hermit diff eq are Hermit polynomials

Table 5.2 Some Hermite Polynomials Hermite (physicists') Polynomials
50 | T I [
n Hn(Y) an En 40 |-
30
0 1 1 “hy
1 2y 3 Shy 2N
2 45> — 2 5 Shy  10F / [
3 8y’ — 12y 7 sh 5o St
4 16y* — 48y + 12 9 Shy ol
- 5 3 } 1 -10 =
5 32y 160y~ + 120y 11 Shy ol S
n=1 ——
30 =g i— |
. — —ax2/2 2:3 —
=) Eigenstates vy, =H, (x)e 0 | | e
= 3



Normalized wave functions
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Ground state is a Gaussian function
Note that the number of nodal points is 0,1,2,... n.

More wiggling costs more energy



Energy levels of SHO

E,=1n+ Dhv n=0.12 3 ...

Ground state energy

Eo == hv  Zero-point energy e

2
TR &

« E,=0: the particle stays at the bottom, and not moving.
This would violate the uncertainty relation.

* This concept emerged around 1913 (Einstein and O. Stern). Debye,
also noted that the zero-point energy of the atoms of a crystal lattice
would cause a reduction in the intensity of the X-ray diffraction even
as the temperature approached absolute zero. (wiki)

* In 1916 Nernst proposed that empty space was filled with zero-point

electromagnetic radiation. (wiki)



Ex6.12: Normalize the ground state wave function s, for the simple
harmonic oscillator and find the expectation values (x) and

(x%).

Solution lffo(x) _ a2
- o\ 174
J Yo (x)Po(x) dx=1 mp A= (;)
= (x) = J o (x)xo(x) dx
ajoo -
= . Xe ax dx _
o — 00
<x2>:j o (x)x Fo(x) dx = 2 B
20 2mw



Case 4:
Tunneling through a barrier ... W v——
Particle
Vo
X
0 L

Region 1 Region I Region III

d? £
lI{I i 2m

¢ Regionl (x <0 V=20 ; :
5 i ) dx*? h?

_ d* 2
< RegionIl (0 <x <L) V=W d:;“ T ﬁT(E = Vo)gu =0

q? 9
G ¢m+ m

\  Region III (x > L) V=0 — ﬁngm —0
e l'bl e Agfk;x _|_ Be—fqu k _ k _ @*
. _ 1 111 P
E > I/b < '7[;11 == Cgfknx + De " ihnx
— ik i k ::\/Q”KEV_ W)
Uy = Fe™ + Ge e .
\
’ Vem(V, — E
E < V() dlll = (e** + De ** o — m( 0 )



Reflection and Transmission of wave

Y. Uiy
(P Y AV AV A & TV AV eV ATAYA VAT
Vi
. SR Y AVATAVA VAW
P
ot

Incident wave Yr(incident) = Ae™>
Reflected wave ry(reflected) = B~ hix
Transmitted wave Y(transmitted) = Fe™*  (G=0)

The probability of the particles being reflected R or transmitted T is

B s (reflected ) |* ~ B*B

R = -
[ (incident)|*  A*A
- [ (transmitted) [ _ IFF Set A=1, wish to determine
iy (incident)|* A*A B, F (need to know C,D)

R+T=1



Let's consider the E < V,, case. Find calculate T.

From the B.C., we need to match y and f—t’f at x=0, L

. -1 i (x) uantum
V02 Sll’lh2 (K'L) i| erh;vior
+

- T{l

4E(V, - E) .
/\ /\ .)/Ekponemial
Note: for E > V,,, we have \
Vil "

2 .2 -1 0 . T
T=|1+ VO Sih (kIL) / /( L Sinusoidal
4E(E — I/O) Sinusoidal

1.0
T

2mVoa®/h* =9 ~ 05
55

10
ElVy



Analogy with Wave Optics

Frustrated total internal reflection

(a)

fingertip




Ex 6.16: Consider a particle of kinetic energy K approaching the step
function of Figure 6.17 from the left, where the potential bar-
rier steps from 0 to Vj at x = 0. Find the penetration distance
Ax, where the probability of the particle penetrating into the
barrier drops to 1/e. Calculate the penetration distance for a
5-eV electron approaching a step barrier of 10 eV.

Yy = Ae™¥ + Be X x <0

Solution V(x)
=De ™ x>0
Y v,
B
- c - rticle
labllz(x = 0) e .
1 h 0
) (= - Posits
2K 2,\/2m(‘/0 B E) osition
197.3 ¢V *nm — 04

91/2(0.511 X 10°eV)(10 eV — 5 eV)

Note: l/JI — %(1 4+ %) eikx + %(1 _ %) e—ikx (Sec 6.3, Eisberg and Resnick)



Alpha decay as an example of tunneling (Gamow 1928)

V(r)
Vol --

. Coulomb potential
P /(— energy

g )

=]

Eﬂ‘
Vie S
5
™™ r'=ry+ L
Radius

Q: Many nuclei heavier than lead are
natural emitters of alpha particles, but
their emission rates vary over a factor
of 103, whereas their energies tend to
range only from 4 to 8 MeV. Why?

Inside the nucleus, an alpha particle feels the
strong, short-range attractive nuclear force.

Outside it feels a repulsive Coulomb force.

The nuclear force potential is approximately by a

square well.

The potential barrier (26.4 MeV for Po-212) at the
nuclear radius is several times greater than the

energy of an alpha particle (8.78 MeV).

According to quantum mechanics, however, the
alpha particle can “tunnel” through the barrier.
Hence this is observed as radioactive decay.

(this is a probabilistic process)



Scanning tunneling microscope (STM)
Binning and Rohrer (1981)

Control voltages for piezotube

2o

()
20
eP
-
8
w —_—
o] [¢}]
RE Tunneling Distance control
2 = current amplifier and scanning unit

1010101010101010

Data processing
and display

Tunneling
voltage

&

wiki | e~ K? The tunneling current decays quickly

with the tip-surface distance.



Ex 6.17: Consider the a-particle emission from a #*U nucleus, which
emits a 4.2-MeV « particle. We represent the potentials as
shown 1n Figure 6.19. The « particle is contained inside the
nuclear radius of ny = 7 X 107!> m. Find the barrier height
and the distance the a particle must tunnel and use a
square-top potential to calculate the tunneling probability.

Z\Zye" Vir)
Solution V= = 38 MeV
471'60?:\! y
ck-
YAV ol . Ea /r ggggymb potential
42 MeV = - a:.:a
4meyr (=
Eﬂ'
Ve S—
38 MeV
r' = —e?’N = 6.3 X 10_14 m TN s o
SR Radius
\/2m( Y = E) R

L=w"— 9= 56 fm

kL = 140.



4.2 M 4.2 M
T — 16( 2 eV) (1 - 4.2 eV)BQSO
38 MeV 38 MeV

= 1.6¢ " =4 x 107"

A better estimate gives

T=15x 10~

1
K= —mv

2
K 2(4.2 MeV _
021/2:\/ ( )2=0.O47c:l.4><10‘m/s
m 3727 MeV / ¢

The diameter of the nucleus is about 1.4 X 10~ m, so it takes
the a particle (1.4 X 107" m) /(1.4 X 10’ m/s) = 102! s to
cross. The a particle must make many traverses back and
forth across the nucleus before it can escape. According to
our probability calculation it must make about 10* at-
tempts, so we estimate the « particle may tunnel through in
about 10% s. The half-life of a ***U nucleus is 4.5 X 10” y or
about 107 s. Our rough estimate does not seem all that bad.

2




Case 5;

Hydrogen atom (next chapter)



