Spin Hall effect and related issues

Dept of Physics
Taiwan Normal Univ.
Ming-Che Chang
Basic spin interactions in semiconductors
(Dyakonov, cond-mat/0401369)

- **spin-orbit interaction**
 - required for optical spin orientation
 - major cause of spin relaxation

- **exchange interaction**
 - for ferromagnetic semiconductors
 - between FM/Semiconductor junction

- **hyper-fine interaction**
 - for materials with non-zero nuclei spin (e.g. GaAs)

- **dipole-dipole interaction** (usually very weak)
Spin-orbit interaction in an atom
(Eisberg and Resnick, Quantum Physics)

An electron moving in a static E field feels an effective B field

\[\mathbf{B}_{\text{eff}} = \mathbf{E} \times \frac{\mathbf{v}}{c} \]

This B field couples with the electron spin

\[H_{SO} = -\mathbf{\mu} \cdot \mathbf{B}_{\text{eff}} \]

\[= -\left(-\frac{e}{mc} \mathbf{S} \right) \cdot \left(\mathbf{E} \times \frac{\mathbf{v}}{c} \right), \quad \mathbf{E} = -\hat{r} \frac{d\phi}{dr} \text{ for central force} \]

\[= \left(\frac{1}{m^2 c^2} \frac{dV}{rdr} \right) \mathbf{S} \cdot \mathbf{L}, \quad V = -e\phi \]

(x 1/2 for Thomas precession)

• fine structure in atomic spectra
Spin-orbit interaction in semiconductor
(Kittel, Quantum Theory of Solids)

\[H_{\text{SO}} = \frac{1}{2mc^2} \vec{S} \cdot \nabla V(\vec{x}) \times \vec{v} \]

(V(x) is the lattice potential energy)

- splitting of valence bands (GaAs, \(\Delta = 0.34 \) eV)
- change of g-factor (GaAs, \(g^* = -0.44 \))
- for materials without inversion symmetry, lift the spin degeneracy of energy bands (Dresselhaus, Rashba)
- skew scattering from impurities

For strong SO couplings, choose low-symmetry narrow-gap materials formed from heavy elements (\(g^* \approx -50 \) in InSb) (Rashba, cond-mat/0309441)
Generation of spin in semiconductor using SO coupling (Rashba PRB 2004)

<table>
<thead>
<tr>
<th>References</th>
<th>Techniques/Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirsch, PRL 1999</td>
<td>spin Hall effect (SHE), skew scattering</td>
</tr>
<tr>
<td>Voskoboynikov et al, PRB 1999 and many others</td>
<td>resonant tunneling related ideas</td>
</tr>
<tr>
<td>Kiselev and Kim, APL 2001</td>
<td>T-shaped filter</td>
</tr>
<tr>
<td>Ioniciociu and D’Amico, PRB 2003</td>
<td>Stern-Gerlach device</td>
</tr>
<tr>
<td>Ramaglia et al, Euro Phys J B 2003</td>
<td>quantum point contact</td>
</tr>
<tr>
<td>Watson et al, PRL 2003</td>
<td>adiabatic pumping (need B field)</td>
</tr>
<tr>
<td>Rokhinson et al, PRL 2004</td>
<td>electron focusing (need B field)</td>
</tr>
<tr>
<td>Bhat and Sipe, PRL 2000</td>
<td>all-optical technique</td>
</tr>
<tr>
<td>Mal’shukov et al, PRB 2003</td>
<td>AC gate</td>
</tr>
<tr>
<td>Murakami et al, Science 2003</td>
<td>SHE, in bulk p-type semiconductor</td>
</tr>
<tr>
<td>Sinova et al, PRL 2004</td>
<td>SHE, in n-type heterojunction (2DEG)</td>
</tr>
</tbody>
</table>
Related issue

Hall effect in metal/semiconductor:

\[\rho_{xy} = R_0 B \]

Anomalous Hall effect in ferromagnet:

\[\rho_{xy} = R_0 B + R_S M \]

The Hall effect and its applications, by Chien and Westgate 1979

proposed mechanisms:

• Karplus-Luttinger’s mechanism (1954), revived by Jungwirth et al (PRL, 2002)
 \text{Intrinsic, related to Berry curvature}

• Smit’s skew scattering mechanism (1955)

• Berger's side jump mechanism (1970)
 \text{extrinsic}
Karplus-Luttinger mechanism (PRB, 1954)

\[
\begin{align*}
\hbar \frac{d\vec{k}}{dt} &= e\vec{E} \\
\frac{d\vec{x}}{dt} &= \frac{\partial E_\lambda(k)}{\hbar \partial k} - \frac{d\vec{k}}{dt} \times \Omega_\lambda(k)
\end{align*}
\]

Semiclassical EOM
(Chang and Niu, PRL 1995)

Anomalous velocity
due to Berry curvature

Berri curvature (1983)

\[
\Omega_{nz}(k) = i \left(\left\langle \frac{\partial u_n}{\partial k_x} \left| \frac{\partial u_n}{\partial k_y} \right| \right\rangle - \left\langle \frac{\partial u_n}{\partial k_y} \left| \frac{\partial u_n}{\partial k_x} \right| \right\rangle \right)
\]

Could be nonzero when (one of the following)

- time-reversal symmetry is broken (e.g. by a B field)
- lattice inversion asymmetry
- presence of SO interaction

Jungwirth et al, PRL 2002
Lee et al, Science 2004

one-band formulation
- Berry curvature as an effective
B field in k-space
- for multi-band generalization,
see Shindou and Imura, cond-mat/0411105,
Culcer et al, Nov, 2004

Semiclassical EOM
(Chang and Niu, PRL 1995)

\[
\begin{align*}
\hbar \frac{d\vec{k}}{dt} &= e\vec{E} \\
\frac{d\vec{x}}{dt} &= \frac{\partial E_\lambda(k)}{\hbar \partial k} - \frac{d\vec{k}}{dt} \times \Omega_\lambda(k)
\end{align*}
\]

Anomalous velocity
due to Berry curvature

Berri curvature (1983)

\[
\Omega_{nz}(k) = i \left(\left\langle \frac{\partial u_n}{\partial k_x} \left| \frac{\partial u_n}{\partial k_y} \right| \right\rangle - \left\langle \frac{\partial u_n}{\partial k_y} \left| \frac{\partial u_n}{\partial k_x} \right| \right\rangle \right)
\]

Could be nonzero when (one of the following)

- time-reversal symmetry is broken (e.g. by a B field)
- lattice inversion asymmetry
- presence of SO interaction

Jungwirth et al, PRL 2002
Lee et al, Science 2004
Impurity (spinless) scattering with SO interaction

Skew scattering (Takahashi and Maekawa, PRL, 2002, Landau and Lifshitz, QM)

\[H' = V(\vec{x}) + \lambda \vec{S} \cdot \nabla V(\vec{x}) \times \vec{v}, \quad \lambda = \frac{1}{2mc^2} \]

\[\langle \vec{k}' s'| H' | \vec{k}s \rangle = \left[\delta_{s's} + i\lambda \left(\frac{\hbar^2}{2m} \right) \vec{\sigma}_{s's} \cdot \vec{k}' \times \vec{k} \right] V_{\vec{k}'\vec{k}} \]

Transition rate:

\[W_{\vec{k}s \rightarrow \vec{k}'s'} = \frac{2\pi}{\hbar} |\langle \vec{k}' s'| T | \vec{k}s \rangle|^2 \delta(\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}) \]

\[T = H' + \frac{1}{\varepsilon - H_0} H' + \cdots \]

(for \(\delta \) impurities, up to 2nd order Born approx.)

\[W^{(AS)}_{\vec{k}s \rightarrow \vec{k}'s'} \approx \delta_{s's} n_i V_i^3 \left(\vec{\sigma}_{s's} \cdot \vec{k}' \times \vec{k} \right) \delta(\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}) \]

Would modify the distribution function \(f_{\vec{k}\sigma'} \) through, eg., Boltzmann eq.
↑ Anomalous Hall effect in ferromagnet
- spin-polarized incident current
- charge-polarized outgoing current

↓ Spin Hall effect in semiconductor
- unpolarized incident current
- charge-unpolarized outgoing current
- but spin-polarized outgoing current
Hall effect (E.H. Hall, 1879)

[1] Spin Hall effect
(Dyakonov and Perel, JETP 1971,
J.E. Hirsch, PRL 1999)

skew scattering (due to SO coupling)
by spinless impurities:

transition rate,
\[W_{\tilde{k}_s \rightarrow \tilde{k}'_s} \approx \lambda_{SO} \vec{\sigma}_{s's'} \cdot \tilde{k}' \times \tilde{k} \]

no magnetic field required

From spin accumulation to charge accumulation

L< spin coherence length \(\delta_s \)
\(\delta_s \approx 130 \ \mu m \) at 36 K for Al

(Johnson and Silsbee, PRL 1985)
Valence band of GaAs:

\[H = \frac{1}{2m} \left[\left(\gamma_1 + \frac{5}{2} \gamma_2 \right) \mathbf{k}^2 - 2\gamma_2 (\mathbf{k} \cdot \mathbf{S})^2 \right] \]

\[\lambda = \hat{k} \cdot \mathbf{S} \] (helicity)

is a good quantum number

Luttinger Hamiltonian (1956)
(for \(j=3/2 \) valence bands)

Semiclassical EOM
(Chang and Niu, PRL 1995)

\[\begin{cases} \hbar \frac{d\mathbf{k}}{dt} = e\mathbf{E} \\ \frac{d\mathbf{x}}{dt} = \frac{\partial E_\lambda (\mathbf{k})}{\hbar \partial k} - \frac{d\mathbf{k}}{dt} \times \mathbf{\Omega}_\lambda (\mathbf{k}) \end{cases} \]

Anomalous velocity
due to Berry curvature

[2] Intrinsic spin Hall effect in p-type semiconductor (I)
(Murakami, Nagaosa and Zhang, Science 2003)
Intrinsic spin Hall effect in p-type semiconductor (II)

(Non-Abelian) gauge potential

\[A_{\lambda\lambda'}(\vec{k}) = i\langle\vec{k},\lambda|\frac{\partial}{\partial\vec{k}}|\vec{k},\lambda'\rangle \]

Berry curvature, due to monopole field in k-space
(Neglecting off-diagonal elements)

\[\tilde{\Omega}_\lambda(\vec{k}) = -2\lambda\left(\lambda^2 - \frac{7}{4}\right)\frac{\vec{k}}{k^2} \]

Spin current

\[
\begin{align*}
\text{HH: } J^z_y &= \frac{\hbar}{3} \sum_{\lambda=\pm3/2,\vec{k}} \hat{y}s^z_{\lambda}(\vec{k}) = -\frac{k_F^H}{4\pi^2} eE_x, \\
\text{LH: } J^z_y &= \frac{\hbar}{3} \sum_{\lambda=\pm1/2,\vec{k}} \hat{y}s^z_{\lambda}(\vec{k}) = \frac{k_F^L}{12\pi^2} eE_x,
\end{align*}
\]

Spin Hall conductivity

\[J^z_y = \sigma^z_{yx} E_x \]

\[|\sigma^z_{yx}| = \frac{e}{12\pi^2} \left(3k_F^H - k_F^L\right) \quad \text{(semiclassical)} \]

\[-\frac{e}{12\pi^2} \left(k_F^H + k_F^L\right) \quad \text{(Q correction)} \]

\[= \frac{1}{6\pi^2} \left(k_F^H - k_F^L\right) \]

No magnetic field required
Applies to Si as well
Intrinsic spin Hall effect in 2 dimensional electron gas (2DEG) (I) (Sinova, Culcer, Niu, Sinitsyn, Jungwirth, and MacDonald, PRL 2004)

Semiconductor heterojunction

FIG. 3. Typical shape and cross section of a GaAs-Al$_x$Ga$_{1-x}$As heterostructure used for Hall-effect measurements.

≈ triangular quantum well
Intrinsic spin Hall effect in 2DEG (II)

Structure Inversion Asymm (SIA)

Eigen-energies

\[E_{\lambda}(k) = \frac{\hbar^2 k^2}{2m} + \lambda \alpha k, \quad \lambda = \pm 1 \]

Rashba Hamiltonian (1960)

\[H = \frac{p^2}{2m} + \frac{\alpha}{\hbar} \vec{\sigma} \times \vec{p} \cdot \hat{z} \]

\(\lambda = (\vec{\sigma} \times \vec{p}) \cdot \hat{z} \) (helicity)

is a good quantum number

- no space inversion symmetry
- invariant under time reversal

Kramer degeneracy
Dynamics of spin under electric perturbation

\[\frac{d\vec{S}}{dt} = \vec{\dot{S}} \times \vec{B}_{\text{eff}}(\vec{k}) + \gamma \vec{S} \times (\vec{S} \times \vec{B}_{\text{eff}}) \]

\[\delta k = -eEt \parallel -x \]

\[\delta B_{\text{eff}} \approx \lambda z \times \delta k \parallel -\lambda y \]

When both bands are filled, spin Hall conductivity:

\[|\sigma_{yx}| = \frac{e}{8\pi} \]

- independent of \(\alpha \)!
- not so for non-parabolic bands
- only for clean system
- not related to Berry curvature (?)
Effect of disorder on the intrinsic spin Hall effect (I)

- Rashba system with short-range impurities
 - Dimitrova (2004)
 - Raimonde and Schwab (2004)

- Perturbative calculations for other systems
 - If $H(k) = H(-k)$, eg. Luttinger model
 then vertex correction is zero (Murakami, PRB 2004)
 - For systems with
 $$H(\vec{k}) = E_0(\vec{k}) + \sigma_x d_y(\vec{k}) - \sigma_y d_x(\vec{k})$$
 If $\partial E_0 / \partial \vec{k} \propto \vec{d}$, then perfect cancelation (eg. Rashba)
 otherwise σ_s remains finite. (quoted from Murakami's talk)

Spin Hall effect is finite in general
Effect of disorder on the spin Hall effect in Rashba system (II)

- Numerical calculations: σ_{SH} robust against weak disorder
 - Nikolic et al, cond-mat/0408693
 - Hankiewicz et al, PRB 2004
 - Sheng et al, PRL 2005
 - Nomura et al, PRB 2005
Spin Hall effect observed (I) (Kato et al, Science 2004)

- Local Kerr effect in strained n-type bulk GaAs/InGaAs, 0.03% polarization

The effect is independent of the direction of strain. Mostly likely extrinsic.
Spin Hall effect observed (II) (Wunderlich et al, to appear PRL 2005)

- spin LED in GaAs 2D hole gas, 1% polarization

might be intrinsic? (Bernevig and Zhang, cond-mat/0411457)
Beyond Rashba (clean): In a III-V quantum well

\[H = \frac{p^2}{2m^*} + \frac{\alpha}{\hbar} (\sigma_x p_y - \sigma_y p_x) + \frac{\beta}{\hbar} (\sigma_x p_x - \sigma_y p_y) \]

Rashba

Dresselhaus (1955) [001] QW

Effective magnetic field:

BIA \quad SIA \quad BIA=SIA \quad BIA\neq SIA

Ganichev and Prettl, cond-mat/0304266
Rashba-Dresselhaus system in an in-plane magnetic field

\[H = \frac{p^2}{2m^*} + \frac{\alpha}{\hbar} (\sigma_x p_y - \sigma_y p_x) + \frac{\gamma}{\hbar} (\sigma_x p_x - \sigma_y p_y) + \beta_x \sigma_x + \beta_y \sigma_y \]

Eigen-energies:

\[E_\lambda(\vec{k}) = E_0(\vec{k}) + \lambda \sqrt{\left(\gamma k_x + \alpha k_y + \beta_x \right)^2 + \left(\alpha k_x + \gamma k_y - \beta_y \right)^2}, \quad \lambda = \pm \]

Distorted Fermi surfaces (generic cases):

Point of degeneracy

\[\vec{k}_0 = \left(\frac{\gamma \beta_x + \alpha \beta_y}{\alpha^2 - \gamma^2}, -\frac{\alpha \beta_x + \gamma \beta_y}{\alpha^2 - \gamma^2}\right) \]

Parameters: \(\alpha \approx 1 \text{ eV} \cdot \text{A} \) (tunable by gate voltage)

\(\gamma \) of the same order

\(\beta = (g^* / 2) \mu_B B, \quad \mu_B \approx 0.06 \text{ meV/T} \)

\(k_F = \sqrt{2\pi n} \approx 10^2 / \text{A} \) for \(n \approx 10^{11} / \text{cm}^2 \)
Effect of in-plane magnetic field on spin Hall conductivity

Kubo formula

\[\sigma_{\mu v}^{\eta} = \frac{1}{i\hbar} \sum_{k,\lambda,\lambda'} \frac{f_{k,\lambda} - f_{k,\lambda'}}{\omega_{\lambda\lambda'}(k)} \langle \bar{k},\lambda | j_{\mu}^{\eta} \bar{k},\lambda' \rangle \langle \bar{k},\lambda' | j_{v} \bar{k},\lambda \rangle, \]

\[j_{\mu}^{\eta} = \frac{\hbar}{4} (\nu_{\mu} \sigma^{\eta} + \sigma^{\eta} \nu_{\mu}); \quad j_{v} = -e v_{\nu} \]

For \(\gamma = 0 \) (pure Rashba)

\(\sigma_{xy}^{z}(\vec{B}) \) could be changed by 100% simply by rotating the magnetic field
Spin Hall conductivity (electron density fixed) \[\sigma_{xy}^x = \sigma_{xy}^y = 0\]

Boundary of plateau \(E(k_\rho) = \mu\)

\[\beta_x^2 + 4\alpha\gamma\beta_x\beta_y + \beta_y^2 = \zeta \frac{(\alpha^2 - \gamma^2)^2}{\alpha^2 + \gamma^2}\]

M.C. Chang, PRB 2005
Acknowledgement: M.F. Yang
Existence of charge Hall effect?

Thouless formula (PRL 1982)

\[\sigma_{xy} = \frac{e^2}{\hbar} \sum_{\tilde{k} \text{ filled}} \Omega_{\lambda}(\tilde{k}), \]

Berry curvature

\[\Omega_{\lambda}(\tilde{k}) = i \sum_{\lambda \neq \lambda'} \frac{\langle \tilde{k}, \lambda | v_x | \tilde{k}, \lambda' \rangle \langle \tilde{k}, \lambda' | v_y | \tilde{k}, \lambda \rangle - \langle \tilde{k}, \lambda | v_y | \tilde{k}, \lambda' \rangle \langle \tilde{k}, \lambda' | v_x | \tilde{k}, \lambda \rangle}{\omega_{\lambda\lambda'}^2(\tilde{k})} = 0 \]

Berry phase

\[\Gamma_{\lambda} = \oint \frac{d\tilde{k}}{i} \langle \tilde{k}, \lambda | \frac{\partial}{\partial \tilde{k}} | \tilde{k}, \lambda \rangle = \begin{cases} -\lambda \pi & \text{for } \alpha^2 > \gamma^2 \\ 0 & \text{for } \alpha^2 = \gamma^2 \\ +\lambda \pi & \text{for } \alpha^2 < \gamma^2 \end{cases} \]

\[\Rightarrow \Omega_{\lambda}(\tilde{k}) = -\text{sgn}(\alpha^2 - \gamma^2)\lambda \pi \delta(\tilde{k} - \tilde{k}_0) \]

Hall conductivity is zero wherever the chemical potential is

\[0 + 0 = 0 \]
\[(-\pi) + \pi = 0 \]
Issues on the use of SO coupling for spin injection:
(Rashba, cond-mat/0408119)

• spin current is not well defined
 (total spin not conserved)

• no experimental procedure to measure it directly
 (accumulation? Induced electric field?)

• existence of background spin current
 (in noncentrosymmetric materials) Rashba, PRB 2003

• …
Definition of spin current

\[\frac{\partial}{\partial t} \sigma^\alpha + \nabla \cdot \mathbf{j}^\alpha = \text{Re} \psi^+ \lambda_0 \left[\tilde{s} \times (\tilde{p} \times \nabla V) \right]^\alpha \psi, \]

where \(\sigma^\alpha \equiv \psi^+ s^\alpha \psi \)

\[\mathbf{j}^\alpha \equiv \frac{1}{2} \text{Re} \psi^+ \left(s^\alpha \tilde{v} + \tilde{v} s^\alpha \right) \psi \]

Spin flux

\[\tilde{\mathbf{j}}^\alpha \equiv s^\alpha \tilde{r} + s^\alpha \tilde{r} = \frac{d}{dt} \left(s^\alpha \tilde{r} \right) \]

Advantage:

- source term (RHS) vanishes under certain conditions
- Onsager relations rescued
- would remove most of the spin Hall insulators

<table>
<thead>
<tr>
<th>(\sigma_{xy}^s)</th>
<th>(k^3 \sigma_{xy}^s)</th>
<th>Luttinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e/8\pi)</td>
<td>(-9e/8\pi)</td>
<td>(e(\gamma_1 + 2\gamma_2)/12\pi^2\gamma_2) ((k_H - k_L))</td>
</tr>
<tr>
<td>(-e/4\pi)</td>
<td>(9e/4\pi)</td>
<td>(- (e\gamma_1/12\pi^2\gamma_2)) ((k_H - k_L))</td>
</tr>
<tr>
<td>(-e/8\pi)</td>
<td>(9e/8\pi)</td>
<td>((e/6\pi^2)) ((k_H - k_L))</td>
</tr>
</tbody>
</table>

most of the results on spin Hall conductivity need to be re-calculated (?)