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Chern-Simons theory for magnetization plateaus of the frustrated];-J, Heisenberg model
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The magnetization curve of the two-dimensional spin<y/2, Heisenberg model is investigated by using
the Chern-Simons theory under mean-field approximations. We find that the magnetization curve increases
monotonically forJd,/J;<0.267949, where the system under zero external field is in the antiferromagnetic
Neel phase. For larger ratios d§/J,, various plateaus will appear in the magnetization curve. In particular, in
the disordered phase, our results support the existence ot~ 1/2 plateau, and predict a plateau at
M/M = 1/3. Verification of these interesting results would indicate a strong connection between the frustrated
antiferromagnetic system and the quantum Hall system.
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[. INTRODUCTION enough, the ground state is dominated by interactions along
the diagonal bonds and has a collinear order described by
Due to quantum and frustration effects, rich physics car(#,0) or (Oar). There is also a general consensus on the
appear in frustrated quantum spin systems at zero externdlsappearance of the magnetic ordering at €.38/J,
field.! Exciting behavior was also observed recently in sev-<0.6, while the identification of the ground state is still a
eral cases with an external magnetic field. For instance, aubject of much controvers§:1°
recently discovered two-dimensioné&D) S=1/2 spin-gap Just like the case of the Shastry-Sutherland model, the
material SrCy(BOs),, which can be described by the plateaus in the magnetization curve are predicted for the
Shastry-Sutherland model,exhibits several plateaus at J;-J, modell’~??while the situation is even more controver-
M/M,=1/3, 1/4, and 1/8 in its magnetization curve, wheresial. Strong evidence of a plateauMt M= 1/2 in the re-
M (M= 1/2) is the(saturating magnetization per sittThe  gion 0.5<J,/J;=0.65 was recently reported by Honecker
origin of these plateaus and the nature of the correspondinand co-workeré®?* However, Fledderjohann and Mer*?
spin states are under intense delfafeRecently, by mapping did not find a plateau al/M = 1/2 in the region of the
onto spinless fermions carrying one quantum of statisticafjuantum disorder phase; instead they found some indications
flux and under mean-field approximations, Misguiehal.  of a plateaulike structure a¥i/Mg,=2/3. Most previous
showed that the original spin model can be related to a gerstudies on the plateau were obtained by numerical calcula-
eralized Hofstadter problem, where the spin excitation gapsions on small clusterg&he typical number of lattice sites in
that produce the observed magnetization plateaus arise frothese works is about66=36). As discussed in Ref. 22, the
some of the Landau level gaps in the integer quantum Halplateau structures in the magnetization curve can depend
effect for the fermions on a lattiéeFor realistic values of the ~ sensitively on the system size. Therefore, these results may
exchange constants, they obtained an excellent quantitativee plagued by finite-size effects. For example, some of the
fit to the observed magnetization curve, which demonstratepredicted plateaus may be an artifact of the special lattice
the success of their approach. geometry, and the boundary conditions used may frustrate
Another prototype of a realistic frustrated two- the order which tends to develop. Thus a precise determina-
dimensional system, which was recently realized experimention of the positions and widths of the plateaus in the frus-
tally in Li,VOSiO, and L,VOGeQ, compounds,is the so-  trated Heisenberg model is indeed a very delicate problem,
called J;-J, Heisenberg model with the Hamiltonian and a better theoretical understanding of the magnetic order
and of the mechanisms which create the plateaus is needed.
B s = , To avoid the possible finite-size effects, we apply the
H‘%% JijSiSj— BZ ST (1) Chern-Simong$CS) theory for the magnetization platedue
the 2D spin-1/2],-J, Heisenberg model. Because of its suc-
where the exchange couplidg is equal toJ; wheni andj cess for the Shastry-Sutherland model, this approach may
are nearest neighbors on the square lattigeis equal toJ,  give reasonable results in the present case. We find that the
wheni andj are connected by a diagonal bond. The externamagnetization curve is monotonically increasing fiar/J;
magnetic fieldB is applied along the axis. Both couplings <0.267949, where the system at zero external field is in the
are antiferromagnetic, i.eJ; >0, and the spins§;=1/2.  antiferromagnetic Nel phase. In addition, various plateaus
This model has been the object of intense investigatiomwill appear in the the magnetization curve for larger ratios of
through years®-?2At B=0, for smallJ,/J; where the frus- J,/J;. In particular, in the disordered phase, our results sup-
tration is weak, the system exhibits a @leordering de- port the existence of thM/M ¢~ 1/2 plateau and predict a
scribed by a wave vectorn(,7r). When J,/J; is large plateau atM/Mg,= 1/3.
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This paper is organized as follows: In Sec. Il we introduce For convenience, we separafg and{n;) into uniform
the mean-field approach of Chern-Simons theory. In Sec. lland nonuniform partsg;= ¢+ 8¢; and(n;)=n+ &n; with
we present our results on the magnetization curves. Sectiopp/2m=n=M+1/2 andd¢;/27= én;= 5M; . Therefore,
IV is a brief summary.

1
Hy+H,== 2, Jii[f expi6;)f;+H.c.
Il. MEAN-FIELD APPROACH OF CHERN-SIMONS R 2@2,7 LT exp(i 6, ]

THEORY 1
The Hamiltonian in Eq(1) can be rewritten as +Z Vi( fifi— > +2(31+J,)M?Ng
H=Hy,+H,~BY, &, 1
xytHz Eia —EEigaijaMian, (6)
1 wheref! (f,) is the fermion creatiotannihilation) operator
= — .. + - + - . .I ! - . ./ .
ny_z OE” Ji (S5 +57S), L sitei, and ¢;; is the phase factor defined on the ligikj)

With = aquendlij = ¢i - Hence for a uniform mean field with
oM;=0 and therefor&/;=0, the present spin system can be
H,= > J;SS, identified as a Hofstadter probléfrfor fermions hopping on
LD a square lattice with nearest-neighbor and next-nearest-
where H,, and H, are the spin-flip and Ising parts of the neighbor hopping8?® For 5M; periodic, a modulated mag-
Hamiltonian at zero field. According to Ref. 8, the mean-netic field and a modulated electric potential with ga&me
field Hamiltonian can be reached in the following two-stepperiod appeat
way. First, the Ising part is approximated by a simple mean-
field decoupling, ll. RESULTS AND DISCUSSION

. - A. Uniform mean-field calculation
HZZZ@Z% Ji $<Si>_%> WISUSHE ® In this subsection, we assume the uniform case. For a
, ) ) given M [or ¢=27(M+1/2)], the mean-field ground state
Let (S)=M+6M;, whereM (M) is the uniform(non- g optained by filling the lowest energy subbands with fermi-
uniform) part of the local magnetization ardd 5M;=0. In ons until their density satisfiea= /2. The one-body

the subspace whei®;S'=MN;, with N, being the number  problem fromH,, can be straightforwardly analyzed for ra-

of lattice sitesH, can be expressed as tional values ofé/27. For ¢p/2r=plq (p andq are mutu-
1 ally prime integers there areq subbands, and the ground
HZ:E V S+ 2(J3+ J,)M2Ng— = 2 E J;; MM, state is the _Slater determinant with _the lowpssubbands
i 279 completely filled. The energy of the filled subbands leads to

(4) another contribution to the total energy. Hence the total en-

whereV;=%;J;;6M; serves as a local magnetic field. Sec- ergy per siteE(M) as a function of the magnetization be-

ond, one can exactly map the spin operators to spinless fefomes

mions with an attached flux tube carrying one flux quantum 1

of statistical CS magnetic fiefd;*> where S?+ 1/2 corre- E(M)= N > 2 e(lz“)+2(Jl+J2)M2. (7)
sponds to the occupation numberof sitei. Therefore,V; sa=1...p g

now represents a local electric potential for fermions. Usuyere ¢ is the eigenenergy of theth subband, with the
ally, one makes a further approximation such that the flux K . ) i i o
tube is detached from the fermion on sitand is smeared Wave vectok bemg restrlcted to the f|r_st magnetic Bn!loum
over a nearby plaqueti@ay the upper right oneHence the ~ ZONe€- The magnetization can be obtained as a functidd of

local flux ¢; threaded through thieh plaquette is then tied to PY minimizing E(M)—BM. It is clear from Eq.(7) that,
the local density(n;) of fermions and thus t6S?): without the contribution fronH,, , the magnetizatioM will

be linearly proportional td, and there is no magnetization
b; 1 plateau. Therefore, the appearance of magnetization plateaus
E=(ni)=(sf>+ > (5) is related to certain features of the Hofstadter spectrum.
The Hofstadter diagrams fod,/J;=0.2 and 0.3 are
The local statistical flux will give phase factors in the hop-shown in Fig. 1, where the lower bold line marks the Fermi
ping amplitudes of the equivalent system of fermions. Bedlevel (highest occupied stgteand the upper one marks the
cause of this flux, each energy band can split into subbandswest unoccupied levéP A jump of the Fermi energy as a
with a complicated structure. Unlike the conventional spin-function of M in Fig. 1(b) leads to a discontinuity of the
wave theory, in this approximation the hard-core constraint islope of the functiofe(M). These jumps for variou! give
taken into account exactly, although the statistical transmurise to plateaus in the magnetization curve. They are closely
tation from bosonic operators to fermionic ones is treatedelated to the occurrence of band-crossing when the value of
approximately. J,13, is varied. For example, in Fig.(4 before the upper
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FIG. 1. Hofstadter spectra for a square lattice with nearest-neighbor and next-nearest-neighbor hoppyids=+dr.2 (a) and 0.3(b).
Vertical lines mark the energy bands as a function of the statistical#l@x per square plaquette. Total Hall conductanagsabove the
Fermi level fromM/Mg,=0 (¢/27=1/2) toM/Mg,=1 (p/27m=1) are indicated. The Hall conductancedd®m=2/3 changes from 1 to
—2 when the upper two subbands touchlatJ,;=0.267949(Refs. 27 and 28

two subbands at/27=2/3 touch atl,/J;=0.267949*"?®  ally from the antiparallel configuration toward the parallel
the Fermi energy is continuous and there is no magnetizatiooonfiguration until the magnetization saturates at the satura-
plateau atM/M¢,= 1/3 (see Fig. 2 However, in Fig. 1b), tion field Bg,. The magnetization curve obtained from the
the “pockets” enclosed by the bold lines are separated apresent approach is consistent with this expectation: it is fea-
¢I27m=2/3. It can be seen that the Fermi level to the right oftureless all the way to full saturation wh&n/J, is small
the contact point is beloabove the band gap befor@ftey  (see the curves fod,/J;=0 and 0.2 in Fig. 2 Upon in-
the band crossing. As discussed earlier, the Fermi levatreasing J,/J,, plateaus emerge and the magnetization
marks the position of thpth subband. Therefore, apparently curves become more complex. In particular, because of the
a subband associated with a flux slightly larger than 2/3 i9and crossing atp/27=2/3 when J,/J;=0.267949 (see
shifted above the energy gap after the band crossing. Thigable | of Ref. 28, a plateau aM/Mg,=1/3 is found. This
shift of a fine subband due to the crossing of the broadeis an unexpected result, especially for 0.267049/J,
subbands atp/27w=2/3 was studied earliéf. It is closely = <0.38 where the ground state in the absence of an external
related to the jump of the integer-valued Hall conductancesield is in the Nel phase. In the previous finite-size
of the broader subband®3° The emergence of the magneti- studies;’"??there is no indication of the appearance of this
zation plateaus for the spin system thus has an interestinglateau. However, the system sizes and the boundary condi-
connection with the change of the integer-valued Hall contions they used forbid the appearance of MéM g~ 1/3
ductances induced by band crossing. plateau; therefore, the possibility of this plateau cannot be
To justify the present approach, it is important to checkruled out. Furthermore, whed,/J;=0.382683, another
whether the plateau states are robust against fluctuations

around the mean-field solutions. It was showed that the 1
Gaussian fluctuations of the CS gauge field are massless only 09 |
when the Thouless-Kohmoto-Nightingale—den NifKNN) 08 |
integef! describing the quantized Hall coefficient of the fer- '
mions on the frustrated lattice becomesity.?* In this case, O:F
the Gaussian fluctuations induce instabilities for the mean- 06 1
field ground states. We have computed the TKNN integers MMy 05 |
numerically(for example, see Fig.)land found the Gaussian 04 t
fluctuations to be massive. Therefore, the plateaus are not 03 |
destroyed by quantum fluctuations. 02 |
Magnetization curves for variouk, /J; ratios are shown ’
in Fig. 2. We note that the saturation field,; can be com- 01 ¢
puted exactly by identifying the enerdgy of the fully polar- 0 5
ized state with théexac) minimum energyEjy" of the states B/J
with one spin flipped, E;=E]%". Thus Bg,/J;=4 for !
J513,<1/2; Bgal =2+ 43,13, for J,/3,>1/2. Our find- FIG. 2. Magnetization curves for th-J, Heisenberg model

ings agree with these exact results near the saturation.  calculated using a uniform CS mean field. The curves from left to
In the Neel phase, it is expected that the spins cant graduright are forJ,/J;=0,0.2,0.3,0.4,0.5, and 0.7, respectively.
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band crossing in the Hofstadter spectrum occurspém For eﬁacéhM:(p/q)—% (or ¢/2m=plq), we take M,
=3/4 (see Table | of Ref. 28 and a plateau aM/Mgy; = —Ae' ™", wherem,=(,0) andr; labels the lattice point
=1/2 ensues. It is interesting to note that the critical valueat the lower left corner of theth plaquette(the lattice con-

for thg appearance of'tHWMsatz 1/2 plateau agrees .q.uite stant is taken to be unity Thus 8¢, /27 =—Ae' ™", V;
well with the critical point of the quantum phase transition at:4J2Aeiﬂ—x~ri, ands;=,J;; M ;oM = —4J,A%N,. Thus the

zero field between the Né and the quantum disorder n.osent spin system can be identified as a Hofstadter problem

5,16 : ;
phaseé._ As mentioned before, while the appearance of &g fermions hopping on a square lattice under a modulated
plateau in the quantum disorder phase had been predicteghagnetic field and a modulated electric potential with the

the value of the plateau is still under deb&te” The con-  ¢5me period [see Eq.(6)].25% The modulated Hofstadter
troversy may come from the subtle finite-size effects in theirproblem can then be straightforwardly analyzed for every
investigations. Since the present CS theory is free from the,ional value ofpl27.

finite-size effects, we give strong support to the existence of rq yajye ofA is determined self-consistently as follows:

the M/M,=1/2 plateau. for eachM = (p/q— 3, one first chooses an initial try of,

More complex _structures_ in the magnetization curves apz. 4 then diagonalizes t@x Q one-body Hamiltonian ma-
pear whenJ,/J; is further increased. For example, when i in the first magnetic Brillouin zone|k,|<m/Q and

J,/J:=0.5, a series of plateaus #M/Mg=n/(n+2) is _ ;
fozuné, which correspondps to the bandsatcros(sing zalt somszyKW.’ whergQ—q (2q)ﬁ1(‘2)r an eve(ri)o (1d) a By t]a5)|n_9 tTh ©
magic numbers¢/27=(n+1)/(n+2). lrregular plateau normalized eigenvectors® (k) =[uj (I.()’ - g (K1,
structures are found for even higher values pfJ; (see the wherea runs from 1 toQ, one can obta|.n a new value Af
J,/3,=0.7 curve in Fig. 2 This behavior is quite similar to 2Y €MPloying the self-consistent equation,

the case of the triangular lattice, where many plateaus are 1

predicted under theniform CS mean-field approximatich. 2A = > > PR 2=us?k)|2T,

In the case of the triangular lattice, it is shown that, when the (Ns/Q) a=17.. P

nonuniform mean-field solutions are used, only the main pla- )

teau M/Mg,=1/3 in that caspsurvives and other minipla- \yhere the summation om is over the lowesP subbands
teaus disappear. One may wonder whether the same situatigpn p= p (2p) for an even(odd) g. This procedure is then
will happen in the present study of tdg-J, model. In Sec.  epeated until the self-consistency is satisfied. By employing

lll B we report on a nonuniform extension of the mean field,, o eigenvalues(lza) after self-consistency being reached, the
calculation. Unlike the triangular lattice case, our result in-

dicates that the irregular plateau structures in Fig. 2 for IargéOtal energy per site can be calculated, and it becomes
ratios of J,/J; survive under a collinear modulation of the

"o/ 1
magnetization. E(M)= - > D V423, I)M2+ 23,42
s a=1 P K
9

The magnetization is again obtained as a functiorBdfy
Here we extend the above discussion to the nonunifornrminimizing E(M)—BM.

mean-field case. Since the ground state at zero magnetic field For ratios ofJ,/J; smaller than approximately 0.46, we

for J,/J,>0.6 is in the collinear phase, it is reasonable tofind no difference from the uniform mean field results in Fig.

consider a one-dimensional periodic mean-field modulation2, even though nonuniform solutions are allowed. For larger

B. One-dimensional periodic mean-field calculation

1 . : : 1 : : .
0.9 | ' ] 0.9 |

08} (@ ) 1 08+ (b 1

07 | = ] 07 | ]

0.6 | , ] 0.6 | ]

MM, 05 | | 1 MM, 0.5 1

04 | ] 0.4 | ]

0.3 | ] 0.3 | ]

0.2 | ] 0.2 | ]

0.1 | ] 01} ]

%0 1 2 3 4 5 %0 1 5

B/, B/,

FIG. 3. The magnetization curves for uniforfdotted ling vs nonuniform(solid line) CS mean fields, with the ratiak, /J;=0.5 (a)
and 0.7(b).
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ratios ofJ,/J;, the magnetization curves are visibly shifted, is no major difference between the uniform mean-field cal-
but there is no qualitative change. For comparison, magneticulation and the collinear nonuniform mean-field calculation.
zation curves with and without non-uniform modulation for We note that it is experimentally accessible to confirm our
two values ofJ,/J; are shown in Fig. 3. We find that, for results. As mentioned before, a 2D spin-1/i2J, Heisen-
variousJ,/J; ratios, both calculations always give the sameberg model with],/J;=1 was recently realized experimen-
saturation fieldB,, and the values 0B, again agree with tally in Li,VOSIO, (J;+J,=8.2 K) and Ly,VOGeQ, (J,
the exact results near the saturation. However, the non+J,=6 K) compounds.If the g factor is taken to be 2, the
uniform solution indeed gives some modification at lowercorresponding saturation fields will be approximately 18 T
magnetic fields. ForJ,/J;=0.5, a series of plateaus at for Li,VOSIO, and 13 T for L,VOGeQ,. In both cases,
M/M,=n/(n+2), found in the uniform mean-field calcu- these values of the magnetic fields can be reached experi-
lation, is now somewhat modifietsee Fig. 8a)]. Such a mentally. Thus the full magnetization curve could be mapped
modification is even more obvious fd,/J;=0.7 [see Fig. out to test our results. Verification of these magnetization
3(b)]. Nevertheless, the irregular plateau structures persigilateaus would indicate a strong connection between the
within the present CS mean-field approach. frustrated antiferromagnetic system and the quantum Hall
system.
IV. SUMMARY AND OUTLOOK

In conclusion, the magnetization curve of the 2D spin-1/2
J;-J, Heisenberg model is studied by using the Chern-
Simons theory under mean-field approximations. In the dis- M.C.C. was supported by the National Science Council of
ordered phase, our result supports the existence of th&iwan under Contract No. NSC 90-2112-M-003-022.
M/Mg=1/2 plateau, and predicts a plateau Mt/Mg,;  M.F.Y. acknowledges financial support by the National Sci-
=1/3. Moreover, various plateaus appear in the magnetizeence Council of Taiwan under Contract No. NSC 90-2112-
tion curves both in the disordered and collinear phases. Thefd-029-004.
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