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Chern-Simons theory for magnetization plateaus of the frustratedJ1-J2 Heisenberg model
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The magnetization curve of the two-dimensional spin-1/2J1-J2 Heisenberg model is investigated by using
the Chern-Simons theory under mean-field approximations. We find that the magnetization curve increases
monotonically forJ2 /J1,0.267949, where the system under zero external field is in the antiferromagnetic
Néel phase. For larger ratios ofJ2 /J1, various plateaus will appear in the magnetization curve. In particular, in
the disordered phase, our results support the existence of theM /M sat51/2 plateau, and predict a plateau at
M /M sat51/3. Verification of these interesting results would indicate a strong connection between the frustrated
antiferromagnetic system and the quantum Hall system.
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I. INTRODUCTION

Due to quantum and frustration effects, rich physics c
appear in frustrated quantum spin systems at zero exte
field.1 Exciting behavior was also observed recently in s
eral cases with an external magnetic field. For instanc
recently discovered two-dimensional~2D! S51/2 spin-gap
material SrCu2(BO3)2, which can be described by th
Shastry-Sutherland model,2 exhibits several plateaus a
M /M sat51/3, 1/4, and 1/8 in its magnetization curve, whe
M (M sat51/2) is the~saturating! magnetization per site.3 The
origin of these plateaus and the nature of the correspon
spin states are under intense debate.4–7 Recently, by mapping
onto spinless fermions carrying one quantum of statist
flux and under mean-field approximations, Misguichet al.
showed that the original spin model can be related to a g
eralized Hofstadter problem, where the spin excitation g
that produce the observed magnetization plateaus arise
some of the Landau level gaps in the integer quantum H
effect for the fermions on a lattice.8 For realistic values of the
exchange constants, they obtained an excellent quantita
fit to the observed magnetization curve, which demonstra
the success of their approach.

Another prototype of a realistic frustrated two
dimensional system, which was recently realized experim
tally in Li2VOSiO4 and Li2VOGeO4 compounds,9 is the so-
calledJ1-J2 Heisenberg model with the Hamiltonian

H5(
^ i , j &

Ji j SW i•SW j2B(
i

Si
z , ~1!

where the exchange couplingJi j is equal toJ1 when i and j
are nearest neighbors on the square lattice;Ji j is equal toJ2
when i and j are connected by a diagonal bond. The exter
magnetic fieldB is applied along thez axis. Both couplings
are antiferromagnetic, i.e.,J1,2.0, and the spinsSi51/2.
This model has been the object of intense investiga
through years.10–22At B50, for smallJ2 /J1 where the frus-
tration is weak, the system exhibits a Ne´el ordering de-
scribed by a wave vector (p,p). When J2 /J1 is large
0163-1829/2002/66~18!/184416~6!/$20.00 66 1844
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enough, the ground state is dominated by interactions al
the diagonal bonds and has a collinear order described
(p,0) or (0,p). There is also a general consensus on
disappearance of the magnetic ordering at 0.38,J2 /J1
,0.6, while the identification of the ground state is still
subject of much controversy.10–16

Just like the case of the Shastry-Sutherland model,
plateaus in the magnetization curve are predicted for
J1-J2 model,17–22while the situation is even more controve
sial. Strong evidence of a plateau atM /M sat51/2 in the re-
gion 0.5&J2 /J1&0.65 was recently reported by Honeck
and co-workers.20,21 However, Fledderjohann and Mu¨tter22

did not find a plateau atM /M sat51/2 in the region of the
quantum disorder phase; instead they found some indicat
of a plateaulike structure atM /M sat52/3. Most previous
studies on the plateau were obtained by numerical calc
tions on small clusters~the typical number of lattice sites in
these works is about 636536). As discussed in Ref. 22, th
plateau structures in the magnetization curve can dep
sensitively on the system size. Therefore, these results
be plagued by finite-size effects. For example, some of
predicted plateaus may be an artifact of the special lat
geometry, and the boundary conditions used may frust
the order which tends to develop. Thus a precise determ
tion of the positions and widths of the plateaus in the fru
trated Heisenberg model is indeed a very delicate probl
and a better theoretical understanding of the magnetic o
and of the mechanisms which create the plateaus is nee

To avoid the possible finite-size effects, we apply t
Chern-Simons~CS! theory for the magnetization plateaus8 to
the 2D spin-1/2J1-J2 Heisenberg model. Because of its su
cess for the Shastry-Sutherland model, this approach
give reasonable results in the present case. We find tha
magnetization curve is monotonically increasing forJ2 /J1
,0.267949, where the system at zero external field is in
antiferromagnetic Ne´el phase. In addition, various plateau
will appear in the the magnetization curve for larger ratios
J2 /J1. In particular, in the disordered phase, our results s
port the existence of theM /M sat51/2 plateau and predict a
plateau atM /M sat51/3.
©2002 The American Physical Society16-1
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This paper is organized as follows: In Sec. II we introdu
the mean-field approach of Chern-Simons theory. In Sec
we present our results on the magnetization curves. Sec
IV is a brief summary.

II. MEAN-FIELD APPROACH OF CHERN-SIMONS
THEORY

The Hamiltonian in Eq.~1! can be rewritten as

H5Hxy1Hz2B(
i

Si
z ,

Hxy5
1

2 (
^ i , j &

Ji j ~Si
1Sj

21Sj
1Si

2!, ~2!

Hz5(
^ i , j &

Ji j Si
zSj

z ,

where Hxy and Hz are the spin-flip and Ising parts of th
Hamiltonian at zero field. According to Ref. 8, the mea
field Hamiltonian can be reached in the following two-st
way. First, the Ising part is approximated by a simple me
field decoupling,

Hz.2(
^ i , j &

Ji j Si
z^Sj

z&2(
^ i , j &

Ji j ^Si
z&^Sj

z&. ~3!

Let ^Si
z&5M1dMi , whereM (dMi) is the uniform~non-

uniform! part of the local magnetization and( idMi50. In
the subspace where( iSi

z5MNs , with Ns being the number
of lattice sites,Hz can be expressed as

Hz5(
i

ViSi
z12~J11J2!M2Ns2

1

2 (
i

(
j

Ji j dMidM j ,

~4!

whereVi[( j Ji j dM j serves as a local magnetic field. Se
ond, one can exactly map the spin operators to spinless
mions with an attached flux tube carrying one flux quant
of statistical CS magnetic field,23–25 where Si

z11/2 corre-
sponds to the occupation numberni of site i. Therefore,Vi
now represents a local electric potential for fermions. U
ally, one makes a further approximation such that the fl
tube is detached from the fermion on sitei and is smeared
over a nearby plaquette~say the upper right one!. Hence the
local flux f i threaded through thei th plaquette is then tied to
the local densitŷ ni& of fermions and thus tôSi

z&:

f i

2p
5^ni&5^Si

z&1
1

2
. ~5!

The local statistical flux will give phase factors in the ho
ping amplitudes of the equivalent system of fermions. B
cause of this flux, each energy band can split into subba
with a complicated structure. Unlike the conventional sp
wave theory, in this approximation the hard-core constrain
taken into account exactly, although the statistical transm
tation from bosonic operators to fermionic ones is trea
approximately.
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For convenience, we separatef i and ^ni& into uniform
and nonuniform parts:f i[f1df i and ^ni&[n1dni with
f/2p5n5M11/2 anddf i /2p5dni5dMi . Therefore,

Hxy1Hz.
1

2 (
^ i , j &

Ji j @ f i
1exp~ iu i j ! f j1H.c.#

1(
i

Vi S f i
1 f i2

1

2D12~J11J2!M2Ns

2
1

2 (
i

(
j

Ji j dMidM j , ~6!

where f i
† ( f i) is the fermion creation~annihilation! operator

at sitei, andu i j is the phase factor defined on the link^ i , j &
with (plaquetteu i j 5f i . Hence for a uniform mean field with
dMi50 and thereforeVi50, the present spin system can b
identified as a Hofstadter problem26 for fermions hopping on
a square lattice with nearest-neighbor and next-near
neighbor hoppings.27,28 For dMi periodic, a modulated mag
netic field and a modulated electric potential with thesame
period appear.25

III. RESULTS AND DISCUSSION

A. Uniform mean-field calculation

In this subsection, we assume the uniform case. Fo
given M @or f52p(M11/2)], the mean-field ground stat
is obtained by filling the lowest energy subbands with ferm
ons until their density satisfiesn5f/2p. The one-body
problem fromHxy can be straightforwardly analyzed for ra
tional values off/2p. For f/2p5p/q (p and q are mutu-
ally prime integers!, there areq subbands, and the groun
state is the Slater determinant with the lowestp subbands
completely filled. The energy of the filled subbands leads
another contribution to the total energy. Hence the total
ergy per siteE(M ) as a function of the magnetization be
comes

E~M !5
1

Ns
(

a51, . . . ,p
(

kW
ekW

(a)
12~J11J2!M2. ~7!

Here ekW
(a) is the eigenenergy of theath subband, with the

wave vectorkW being restricted to the first magnetic Brilloui
zone. The magnetization can be obtained as a function oB
by minimizing E(M )2BM. It is clear from Eq.~7! that,
without the contribution fromHxy , the magnetizationM will
be linearly proportional toB, and there is no magnetizatio
plateau. Therefore, the appearance of magnetization plat
is related to certain features of the Hofstadter spectrum.

The Hofstadter diagrams forJ2 /J150.2 and 0.3 are
shown in Fig. 1, where the lower bold line marks the Fer
level ~highest occupied state! and the upper one marks th
lowest unoccupied level.29 A jump of the Fermi energy as a
function of M in Fig. 1~b! leads to a discontinuity of the
slope of the functionE(M ). These jumps for variousM give
rise to plateaus in the magnetization curve. They are clos
related to the occurrence of band-crossing when the valu
J2 /J1 is varied. For example, in Fig. 1~a! before the upper
6-2
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FIG. 1. Hofstadter spectra for a square lattice with nearest-neighbor and next-nearest-neighbor hoppings forJ2 /J150.2 ~a! and 0.3~b!.
Vertical lines mark the energy bands as a function of the statistical fluxf/2p per square plaquette. Total Hall conductancessT above the
Fermi level fromM /M sat50 (f/2p51/2) to M /M sat51 (f/2p51) are indicated. The Hall conductance atf/2p52/3 changes from 1 to
22 when the upper two subbands touch atJ2 /J150.267949~Refs. 27 and 28!.
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two subbands atf/2p52/3 touch atJ2 /J150.267949,27,28

the Fermi energy is continuous and there is no magnetiza
plateau atM /M sat51/3 ~see Fig. 2!. However, in Fig. 1~b!,
the ‘‘pockets’’ enclosed by the bold lines are separated
f/2p52/3. It can be seen that the Fermi level to the right
the contact point is below~above! the band gap before~after!
the band crossing. As discussed earlier, the Fermi le
marks the position of thepth subband. Therefore, apparent
a subband associated with a flux slightly larger than 2/3
shifted above the energy gap after the band crossing.
shift of a fine subband due to the crossing of the broa
subbands atf/2p52/3 was studied earlier.28 It is closely
related to the jump of the integer-valued Hall conductan
of the broader subbands.28,30The emergence of the magne
zation plateaus for the spin system thus has an interes
connection with the change of the integer-valued Hall c
ductances induced by band crossing.

To justify the present approach, it is important to che
whether the plateau states are robust against fluctua
around the mean-field solutions. It was showed that
Gaussian fluctuations of the CS gauge field are massless
when the Thouless-Kohmoto-Nightingale–den Nijs~TKNN!
integer31 describing the quantized Hall coefficient of the fe
mions on the frustrated lattice becomesunity.24 In this case,
the Gaussian fluctuations induce instabilities for the me
field ground states. We have computed the TKNN integ
numerically~for example, see Fig. 1! and found the Gaussia
fluctuations to be massive. Therefore, the plateaus are
destroyed by quantum fluctuations.

Magnetization curves for variousJ2 /J1 ratios are shown
in Fig. 2. We note that the saturation fieldBsat can be com-
puted exactly by identifying the energyEf of the fully polar-
ized state with the~exact! minimum energyE1s

min of the states
with one spin flipped,Ef5E1s

min . Thus Bsat/J154 for
J2 /J1,1/2; Bsat/J15214J2 /J1 for J2 /J1.1/2. Our find-
ings agree with these exact results near the saturation.

In the Néel phase, it is expected that the spins cant gra
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ally from the antiparallel configuration toward the paral
configuration until the magnetization saturates at the sat
tion field Bsat. The magnetization curve obtained from th
present approach is consistent with this expectation: it is
tureless all the way to full saturation whenJ2 /J1 is small
~see the curves forJ2 /J150 and 0.2 in Fig. 2!. Upon in-
creasing J2 /J1, plateaus emerge and the magnetizat
curves become more complex. In particular, because of
band crossing atf/2p52/3 when J2 /J150.267949 ~see
Table I of Ref. 28!, a plateau atM /M sat51/3 is found. This
is an unexpected result, especially for 0.267949,J2 /J1
<0.38 where the ground state in the absence of an exte
field is in the Néel phase. In the previous finite-siz
studies,17–22 there is no indication of the appearance of th
plateau. However, the system sizes and the boundary co
tions they used forbid the appearance of theM /M sat51/3
plateau; therefore, the possibility of this plateau cannot
ruled out. Furthermore, whenJ2 /J150.382683, another

FIG. 2. Magnetization curves for theJ1-J2 Heisenberg model
calculated using a uniform CS mean field. The curves from lef
right are forJ2 /J150,0.2,0.3,0.4,0.5, and 0.7, respectively.
6-3
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MING-CHE CHANG AND MIN-FONG YANG PHYSICAL REVIEW B 66, 184416 ~2002!
band crossing in the Hofstadter spectrum occurs atf/2p
53/4 ~see Table I of Ref. 28!, and a plateau atM /M sat

51/2 ensues. It is interesting to note that the critical va
for the appearance of theM /M sat51/2 plateau agrees quit
well with the critical point of the quantum phase transition
zero field between the Ne´el and the quantum disorde
phases.15,16 As mentioned before, while the appearance o
plateau in the quantum disorder phase had been predi
the value of the plateau is still under debate.20–22 The con-
troversy may come from the subtle finite-size effects in th
investigations. Since the present CS theory is free from
finite-size effects, we give strong support to the existence
the M /M sat51/2 plateau.

More complex structures in the magnetization curves
pear whenJ2 /J1 is further increased. For example, whe
J2 /J150.5, a series of plateaus atM /M sat5n/(n12) is
found, which corresponds to the band crossing at so
magic numbersf/2p5(n11)/(n12). Irregular plateau
structures are found for even higher values ofJ2 /J1 ~see the
J2 /J150.7 curve in Fig. 2!. This behavior is quite similar to
the case of the triangular lattice, where many plateaus
predicted under theuniform CS mean-field approximation.8

In the case of the triangular lattice, it is shown that, when
nonuniform mean-field solutions are used, only the main p
teau (M /M sat51/3 in that case! survives and other minipla
teaus disappear. One may wonder whether the same situ
will happen in the present study of theJ1-J2 model. In Sec.
III B we report on a nonuniform extension of the mean fie
calculation. Unlike the triangular lattice case, our result
dicates that the irregular plateau structures in Fig. 2 for la
ratios of J2 /J1 survive under a collinear modulation of th
magnetization.

B. One-dimensional periodic mean-field calculation

Here we extend the above discussion to the nonunifo
mean-field case. Since the ground state at zero magnetic
for J2 /J1.0.6 is in the collinear phase, it is reasonable
consider a one-dimensional periodic mean-field modulati
18441
e

t

a
ed,

ir
e

of

-

e

re

e
-

ion

-
e

m
eld

.

For eachM5(p/q)2 1
2 ~or f/2p5p/q), we takedMi

52DeipW x•rW i, wherepW x5(p,0) andrW i labels the lattice point
at the lower left corner of thei th plaquette~the lattice con-
stant is taken to be unity!. Thus df i /2p52DeipW x•rW i, Vi

54J2DeipW x•rW i, and( i( j Ji j dMidM j524J2D2Ns . Thus the
present spin system can be identified as a Hofstadter prob
for fermions hopping on a square lattice under a modula
magnetic field and a modulated electric potential with t
same period @see Eq.~6!#.25,32 The modulated Hofstadte
problem can then be straightforwardly analyzed for ev
rational value off/2p.

The value ofD is determined self-consistently as follow
for eachM5(p/q2 1

2 , one first chooses an initial try ofD,
and then diagonalizes theQ3Q one-body Hamiltonian ma-
trix in the first magnetic Brillouin zone,ukxu<p/Q and
ukyu<p, whereQ5q (2q) for an even~odd! q. By using the
normalized eigenvectorsuW (a)(kW )5@u1

(a)(kW ), . . . ,uQ
(a)(kW )#T,

wherea runs from 1 toQ, one can obtain a new value ofD
by employing the self-consistent equation,

2D5
1

~Ns /Q! (
a51, . . . ,P

(
kW

@ uu1
(a)~kW !u22uu2

(a)~kW !u2#,

~8!

where the summation ona is over the lowestP subbands
with P5p (2p) for an even~odd! q. This procedure is then
repeated until the self-consistency is satisfied. By employ
the eigenvaluesekW

(a) after self-consistency being reached, t
total energy per site can be calculated, and it becomes

E~M !5
1

Ns
(

a51, . . . ,P
(

kW
ekW

(a)
12~J11J2!M212J2D2.

~9!

The magnetization is again obtained as a function ofB by
minimizing E(M )2BM.

For ratios ofJ2 /J1 smaller than approximately 0.46, w
find no difference from the uniform mean field results in F
2, even though nonuniform solutions are allowed. For lar
FIG. 3. The magnetization curves for uniform~dotted line! vs nonuniform~solid line! CS mean fields, with the ratiosJ2 /J150.5 ~a!
and 0.7~b!.
6-4
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ratios ofJ2 /J1, the magnetization curves are visibly shifte
but there is no qualitative change. For comparison, magn
zation curves with and without non-uniform modulation f
two values ofJ2 /J1 are shown in Fig. 3. We find that, fo
variousJ2 /J1 ratios, both calculations always give the sam
saturation fieldBsat, and the values ofBsat again agree with
the exact results near the saturation. However, the n
uniform solution indeed gives some modification at low
magnetic fields. ForJ2 /J150.5, a series of plateaus a
M /M sat5n/(n12), found in the uniform mean-field calcu
lation, is now somewhat modified@see Fig. 3~a!#. Such a
modification is even more obvious forJ2 /J150.7 @see Fig.
3~b!#. Nevertheless, the irregular plateau structures pe
within the present CS mean-field approach.

IV. SUMMARY AND OUTLOOK

In conclusion, the magnetization curve of the 2D spin-1
J1-J2 Heisenberg model is studied by using the Che
Simons theory under mean-field approximations. In the d
ordered phase, our result supports the existence of
M /M sat51/2 plateau, and predicts a plateau atM /M sat
51/3. Moreover, various plateaus appear in the magnet
tion curves both in the disordered and collinear phases. T
ce

i-
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ig

,
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-
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is no major difference between the uniform mean-field c
culation and the collinear nonuniform mean-field calculatio
We note that it is experimentally accessible to confirm o
results. As mentioned before, a 2D spin-1/2J1-J2 Heisen-
berg model withJ2 /J1.1 was recently realized experimen
tally in Li2VOSiO4 (J11J2.8.2 K) and Li2VOGeO4 (J1
1J2.6 K) compounds.9 If the g factor is taken to be 2, the
corresponding saturation fields will be approximately 18
for Li2VOSiO4 and 13 T for Li2VOGeO4. In both cases,
these values of the magnetic fields can be reached ex
mentally. Thus the full magnetization curve could be mapp
out to test our results. Verification of these magnetizat
plateaus would indicate a strong connection between
frustrated antiferromagnetic system and the quantum H
system.
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