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1 Anholonomy in geometry

Before introducing the Berry phase, we review the elegant mathematical framework behind it.
It helps explaining why the Berry phase is often also called the geometric phase.

1.1 Parallel transport and anholonomy angle

Consider a two-dimensional curved surface embedded in a three dimensional Euclidean space.
At each pointx = (x1, x2) on the surface, there is a vector spaceTx formed by the tangent
vectors at that point. For an ant living on the surface, is it possible to judge if two vectors at
different locations (1 and 2) of the surface are nearly parallel or far from it?
One possible way to calibrate the difference between two vectors at different locations is as
follows: Starting from point1, the ant can carry the vector around in such a way that it makes
a fixed relative angle with the tangent vector along a path between 1 and 2 (see Fig. 1a). Such
a vector is said to beparallel transported. One can then compare the vector already at point 2
with the parallel transported vector for difference.
Notice that, if we follow this rule, then “being parallel” isa path-dependent concept. That is,
one cannot have a global definition of “being parallel” on thecurved surface. The other way to
say the same thing is that, if you parallel transport a vectoralong a closed loop on the surface,
then the final vectorvf is generically different from the initial vectorvi (see Fig. 1b).
The angle between these two vectors is called the anholonomyangle (or defect angle). Such
an angle is an indication of how curved the surface is. One canuse it to define the intrinsic
curvature of the surface. For example, for a sphere with radiusR, the defect angleα for a
vector transported around a spherical triangle is equal to the solid angleΩ subtended by this
triangle,

α = Ω =
A

R2
, (1)

whereA is the area enclosed by the triangle.
One can define the curvature at pointx as the ratio betweenα andA for an infinitesimally
closed loop aroundx. According to this definition, the sphere has a constant curvature1/R2

everywhere on the surface.
You can apply the same definition to find out the intrinsic curvature of a cylinder. The result
would be zero. That is, the cylinder has no intrinsic curvature. That is why we can cut it open
and lay it down on top of a desk easily without stretching.

1.2 Moving frame and curvature

In practice, apart from a few simple curved surfaces, it is not easy to determine the curvature
without using algebraic tools. At this point, it helps introducing the method of the moving
frame. We follow a very nice article by M. Berry (see Berry’s introductory article in Ref. [1])
and apply this method to calculate the curvature.
Instead of moving a vector, one now moves an orthonormal frame (a triad) along a pathC
between two points. At the starting point, the triad is(r̂, ê1, ê2), wherer̂ is the unit vector along
the normal direction and(ê1, ê2) is an orthonormal basis of the tangent vector spaceTx.
As a rule of parallel transport, we require that, when movingalongC, the triad should not twist
aroundr̂. That is, ifω is the angular velocity of the triad, then

ω · r̂ = 0. (2)
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Fig. 1: (a) Parallel transport of a vector from 1 to 2. It offers a way to comparev1 andv2 on a
curved surface. (b) A vector is parallel transported arounda closed path. When the surface is
curved, the final vector would point to a different directionfrom the initial vector. The angle of
differenceα is called the anholonomy angle.

Using the identity˙̂e1 = ω × ê1 it follows from this requirement that̂̇e1 · ê2 = 0:

ω · r̂ = ω · ê1 × ê2

= ω × ê1 · ê2 = ˙̂e1 · ê2 = 0. (3)

Likewise also the relation̂̇e2 · ê1 = 0 is shown easily.
To make further analogy with the complex quantum phase in thenext section, let us introduce
the following complex vector,

ψ =
1√
2

(ê1 + iê2) . (4)

Then the parallel transport condition can be rephrased as,

Im
(

ψ∗ · ψ̇
)

= 0, or iψ∗ · ψ̇ = 0. (5)

Notice that the real part ofψ∗ · ψ̇ is always zero sincêe1 · ê1 andê2 · ê2 are time independent.
Instead of the moving triad, we could also erect a fixed triad,(r̂, û, v̂), at each point of the
surface and introduce

n =
1√
2

(û+ iv̂) . (6)

Assuming these two triads differ by an angleα(x) (around thêr-axis), thenψ(x) = n(x)e−iα(x).
It follows that

ψ∗ · dψ = n∗ · dn− idα. (7)

Because of the parallel transport condition in Eq. (5), one hasdα = −in∗ ·dn. Finally, the twist
angle accumulated by the moving triad after completing a closed loopC is,

α(C) = −i
∮

C

n∗ · dn
dx
dx, (8)

where we have changed the variable of integration to the coordinate on the surface. Therefore,
the defect angle can be calculated conveniently using the fixed-triad basis.
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With the help of the Stokes theorem, one can transform the line integral to a surface integral,

α(C) =

∫

S

1

i

(

dn∗

dx1

· dn
dx2

− dn∗

dx2

· dn
dx1

)

dx1dx2, (9)

whereS is the area enclosed byC. In the case of the sphere, one can choose(x1, x2) to be
the spherical coordinates(θ, φ), and choosêu andv̂ to be the unit vectorŝθ andφ̂ in spherical
coordinates. That is,̂u = (cos θ cosφ, cos θ sin φ,− sin θ) andv̂ = (− sin φ, cosφ, 0). It is not
difficult to show that the integrand in Eq. (9) issin θdθdφ. Therefore,α(C) is indeed the solid
angle of the areaS.
The integral in Eq. (9) over the whole sphere (the total curvature) is equal to its solid angle,
4π. In fact, any closed surface that has the same topology as a sphere would have the same
total curvature2π × 2. The value of 2 (Euler characteristic) can thus be regarded as a number
characterizing the topology of sphere-like surfaces. In general, for a closed surface withg holes,
the Euler characteristic is2 − 2g. For example, the total curvature of a donut (g = 1) is 0. This
is the beautiful Gauss-Bonnet theorem in differential geometry.

2 Anholonomy in quantum mechanics

Similar to the parallel transported vector on a curved surface, the phase of a quantum state (not
including the dynamical phase) may not return to its original value after a cyclic evolution in
parameter space. This fact was first exposed clearly by Michael Berry [3] in his 1984 paper. In
this section, we introduce the basic concept of the Berry phase, in later sections we will move
on to examples of the Berry phase in condensed matter.

2.1 Introducing the Berry phase

Let us start from a time-independentsystem described by a HamiltonianH(r,p). We denote the
eigenstates by|m〉 and the eigenvalues byǫm. For simplicity, the energy levels are assumed to be
non-degenerate. An initial state|ψ0〉 =

∑

am|m〉 evolves to a state|ψt〉 =
∑

ame
−i/~ǫmt|m〉

at timet. The probability of finding a particle in a particular level remains unchanged, even
though each level acquires a different dynamical phasee−i/~ǫmt. In particular, if one starts with
an eigenstate of the Hamiltonian,|ψ0〉 = |n〉, with am = δm,n, then the probability amplitude
does not “leak” to other states.
Let us now consider a slightly more complicated system with two sets of dynamical variables
H(r,p;R,P). The characteristic time scale of the upper-case set is assumed to be much longer
than that of the lower-case set. For example, the system can be a diatomic moleculeH+

2 . The
electron and nuclei positions are represented byr andR respectively. Because of its larger
mass, the nuclei move more slowly (roughly by a thousand times) compared to the electron. In
the spirit of the Born-Oppenheimer approximation, one can first treatR as a time-dependent
parameter, instead of a dynamical variable, and study the system at each “snapshot” of the
evolution. The kinetic part of the slow variable is ignored for now.
Since the characteristic frequency of the nuclei is much smaller than the electron frequency, an
electron initially in an electronic state|n〉 remains essentially in that state after timet,

|ψt〉 = eiγn(R)e−i/~
R t
0

dtǫn(Rt)|n;R〉. (10)
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Table 1: Anholonomies in geometry and quantum state

geometry quantum state
fixed basis n(x) |n;R〉

moving basis ψ(x) |ψ;R〉
parallel-transport condition iψ∗ · ψ̇ = 0 i〈ψ|ψ̇〉 = 0

anholonomy anholonomy angle Berry phase
classification of topology Euler characteristic Chern number

Apart from the dynamical phase, one is allowed to add an extraphaseeiγn(R) for each snapshot
state. Such a phase is usually removable by readjusting the phase of the basis|n;R〉 [2]. In
1984, almost six decades after the birth of quantum mechanics, Berry [3] pointed out that this
phase, like the vector in the previous section, may not return to its original value after a cyclic
evolution. Therefore, it is not always removable.
To determine this phase, one substitutes Eq. (10) into the time-dependentSchrödinger equation.
It is not difficult to get an equation forγn(t),

γ̇n(t) = i〈n|ṅ〉. (11)

Therefore, after a cyclic evolution, one has

γn(C) = i

∮

C

〈n| ∂n
∂R

〉 · dR =

∮

C

A · dR, (12)

whereC is a closed path in theR-space. The integrandA(R) ≡ i〈n| ∂n
∂R

〉 is often called the
Berry connection.
If the parameter space is two dimensional, then one can use Stokes’ theorem to transform the
line integral to a surface integral,

γn(C) = i

∫

S

〈 ∂n
∂R

| × | ∂n
∂R

〉 · d2R =

∫

S

F · d2R. (13)

The integrandF(R) ≡ ∇R × A(R) is usually called theBerry curvature. For parameter
spaces with higher dimensions, such a transformation can still be done using the language of
the differential form.
By now, the analogy between Eqs. (8,9) and Eqs. (12,13) should be clear. Notice that|n〉 is a
normalized basis with〈n|n〉 = 1. Therefore,〈n|ṅ〉 should be purely imaginary andi〈n|ṅ〉 is a
real number. The basis state|n〉 plays the role of the fixed triadn in the previous subsection.
Both are single-valued. On the other hand, the parallel transported state|ψ〉 and the moving
triadψ are not single-valued.
A point-by-point re-assignment of the phase of the basis state, |n;R〉′ = eig(R)|n;R〉, changes
the Berry connection,

A′ = A− ∂g

∂R
. (14)

However, the Berry curvatureF and the Berry phase are not changed. This is similar to the
gauge transformation in electromagnetism: one can choose different gauges for the potentials,
but the fields are not changed. Such an analogy will be explored further in the next subsection.
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Fig. 2: A long solenoid hinged at the origin is slowly rotating around thez-axis. At each instant,
the spin at the origin aligns with the uniform magnetic field inside the solenoid.

A short note: It is possible to rephrase the anholonomy of thequantum state using the mathemat-
ical theory of fiber bundles, which deals with geometrical spaces that can locally be decomposed
into a product space (the “fiber” space times the “base” space), but globally show nontrivial
topology. The Möbius band is the simplest example of such a geometric object: Locally it is a
product of two one-dimensional spaces but globally it is not(because of the twisting). In our
case, the fiber is the space of the quantum phaseγ(R) and the base is the space ofR. The con-
cept of the parallel transport, the connection, and the curvature all can be rephrased rigorously
in the language of fiber bundles [4]. Furthermore, there is also a topological number (similar to
the Euler characteristic) for the fiber bundle, which is called the Chern number.
The analogy between geometric anholonomy and quantum anholonomy is summarized in Ta-
ble 1.

2.2 A rotating solenoid

To illustrate the concept of the Berry phase, we study a simple system with both slow and fast
degrees of freedom. Following M. Stone [5], we consider a rotating (long) solenoid with an
electron spin at its center. The solenoid is tilted with a fixed angleθ and is slowly gyrating
around thez-axis (see Fig. 2). Therefore, the electron spin feels a uniform magnetic field that
changes direction gradually. This example is a slight generalization of the spin-in-magnetic-
field example given by Berry in his 1984 paper. The Hamiltonian of this spin-in-solenoid system
is,

H =
L2

2I
+ µBσ · B, (15)

whereL andI are the angular momentum and the moment of inertia of the solenoid, respec-
tively, and the Bohr magneton isµB = e~/2mc.
The magnetic fieldB along the direction of the solenoid is our time-dependent parameterR. In
the quasi-static limit, the rotation energy of the solenoidis neglected. When the solenoid rotates
to the angle(θ, φ), the spin eigenstates are

|+; B̂〉 =

(

cos θ
2

eiφ sin θ
2

)

, |−; B̂〉 =

(

−e−iφ sin θ
2

cos θ
2

)

. (16)
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Table 2: Analogy between electromagnetism and quantum anholonomy

Electromagnetism quantum anholonomy
vector potentialA(r) Berry connectionA(R)

magnetic fieldB(r) Berry curvatureF(R)

magnetic monopole point degeneracy
magnetic fluxΦ(C) Berry phaseγ(C)

These states can be obtained, for example, from the spin-up (-down) states|±〉 by a rotation
e−iσ·θ̂(θ/2), in which the rotation axiŝθ = (− sinφ, cosφ, 0) is perpendicular to botĥz andB̂.
Using the definitions of the Berry connection and the Berry curvature in Eqs. (12) and (13), one
obtains

A± = ∓1

2

1 − cos θ

B sin θ
φ̂ (17)

F± = ∓1

2

B̂

B2
. (18)

They have the same mathematical structure as the vector potential and the magnetic field of a
magnetic monopole. The location of the “monopole” is at the origin of the parameter space,
where a point degeneracy occurs. The strength of the monopole (1/2) equals the value of the
spin (this is true for larger spins also). That is why the Berry connection and the Berry curvature
are sometimes called the Berry potential and the Berry field.In this picture, the Berry phase is
equal to the flux of the Berry field passing through a loopC in parameter space. It is easy to
see that,

γ±(C) = ∓1

2
Ω(C), (19)

whereΩ(C) is the solid angle subtended by loopC with respect to the origin. The similarity
between the theory of Berry phase and electromagnetism is summarized in Table 2.
The Berry phase of the fast motion is only half of the story. When the quantum state of the fast
variable acquires a Berry phase, there will be an interesting “back action” to the slow motion.
For example, for the rotating solenoid, the wave function ofthe whole system can be expanded
as

|Ψ〉 =
∑

n=±

ψn(R)|n;R〉, (20)

in which ψn(R) describes the slow quantum state. From the Schrödinger equation,H|Ψ〉 =
E|Ψ〉, one can show that,

[

~
2

2I sin2 θ

(

1

i

d

dφ
− An

)2

+ ǫn

]

ψn = Eψn, (21)

whereǫn is the eigen-energy for the fast degree of freedom, andAn ≡ i〈n;R| d
dφ
|n;R〉. The

off-diagonal coupling between|+〉 and|−〉 has been ignored. Therefore, the effective Hamil-
tonian for the slow variable acquires a Berry potentialAn(R). Such a potential could shift
the spectrum and results in a force (proportional to the Berry curvature) upon the slow motion,
much like the effect of vector potentialA(r) and magnetic field on a charged particle.
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Fig. 3: (a) A metal ring in a non-uniform magnetic field. The spin of the electron that is circling
the ring would align with the magnetic field and trace out a solid angle in its own reference
frame. (b) A ferromagnetic ring in a non-uniform magnetic field. The spins on the ring are bent
outward because of the magnetic field.

3 Berry phase and spin systems

A natural place to find the Berry phase is in spin systems. Numerous researches related to this
subject can be found in the literature [6]. Here we only mention two examples, one is related
to the persistent spin current in a mesoscopic ring, the other relates to quantum tunneling in a
magnetic cluster.

3.1 Persistent spin current

We know that an electron moving in a periodic system feels no resistance. The electric resis-
tance is a result of incoherent scatterings from impuritiesand phonons. If one fabricates a clean
one-dimensional wire, wraps it around to form a ring, and lowers the temperature to reduce the
phonon scattering, then the electron inside feels like living in a periodic lattice without electric
resistance.
For such a design to work, two ingredients are essential: First, the electron has to remain phase
coherent (at least partially) after one revolution. Therefore, a mesoscopic ring at very low tem-
perature is usually required. Second, to have a traveling wave, there has to be a phase advance
(or lag) after one revolution. This can be achieved by threading a magnetic fluxφ through the
ring, so that the electron acquires an Aharonov-Bohm (AB) phase(e/~)φ = 2π(φ/φ0) after
one cycle, whereφ0 is the flux quantumh/e. When this does happen, it is possible to observe
the resultingpersistent charge currentin the mesoscopic ring.
Soon after this fascinating phenomenon was observed [7], itwas proposed that, in addition to
the AB phase, a spinful electron can (with proper design) acquire a Berry phase after one cycle,
and this can result in a persistentspincurrent [8]. The design is as follows: Instead of a uniform
magnetic field, a textured magnetic field is used, so that during one revolution, the electron spin
follows the direction of the field and traces out a non-zero solid angleΩ (see Fig. 3a). According
to Eq. (19), this gives rise to a spin-dependent Berry phaseγσ(C) = −(σ/2)Ω, whereσ = ±.
After combining this with the (spin-independent) AB phase,spin-up and spin-down electrons
have different phase shifts, generating different amountsof persistent particle currentI+, I−.
Therefore, a spin current defined asIs = (~/2)(I+ − I−) is not zero.
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Fig. 4: Persistent spin current as a function of the solid angle. At non-zero temperature, the
sharp edges of the sawtooth become smooth.

To illustrate the physics just mentioned, consider a ring that allows only angular motion. Before
applying the magnetic flux, the electron with wave vectork picks up a phasekL from circling
the ring, whereL = 2πR andR is the radius of the ring. Because of the periodic boundary
condition, one haskL = 2πn (n ∈ Z). After adding the AB phase and the Berry phase, it
becomeskL = 2πn + 2π(φ/φ0) − σ(Ω/2). Therefore, the energy of an electron in then-th
mode is

ǫnσ =
~

2k2

2m
+ µBBσ =

~
2

2mR2

(

n+
φ

φ0

− σ
φΩ

φ0

)2

+ µBBσ, (22)

whereφΩ/φ0 ≡ Ω/4π.
The spin current can be calculated from

Is =
1

L

∑

n,σ

(

~

2
σ

)

∂ǫnσ

~∂k
Pnσ, (23)

wherePnσ = exp(−ǫnσ/kBT )/Z is the probability of the electron in the(n, σ)-state, andZ =
∑

n,σ e
−ǫnσ/kBT . For a particulark andφ, the current can also be written as

Is = −
∑

n,σ

∂ǫnσ

∂Ω
Pnσ. (24)

To get a rough understanding, we consider the simplest case,where then = 1 mode is populated
with equal numbers of spin-up and -down electrons (if the Zeeman splitting is negligible). The
higher modes are all empty at low enough temperature. In thiscase, the spin currentIs =
−(~2/4πmR2)(Ω/4π) is proportional to the solid angle of the textured magnetic field (see
Fig. 4). At higher temperature, the sawtooth curve will become smooth.
The mesoscopic ring considered above is a metal ring with moving electrons that carry the spins
with them. A different type of spin current has also been proposed in a ferromagnetic ring with
no moving charges [9]. Again the ring is subject to a texturedmagnetic field, such that when
one moves round the ring, one sees a changing spin vector thattraces out a solid angleΩ (see
Fig. 3b). As a result, the spin wave picks up a Berry phase whentraveling around the ring,
resulting in a persistent spin current. So far neither type of persistent spin current has been
observed experimentally.
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3.2 Magnetic cluster

Berry phase plays a dramatic role in the quantum tunneling ofnano-sized magnetic clusters.
The tunneling between two degenerate spin states of the cluster depends on whether the total
spin of the particle is an integer or a half-integer. In the latter case, the tunneling is completely
suppressed because different tunneling paths interfere destructively as a result of the Berry
phase [10].
Consider a single-domain ferromagnetic particle without itinerant spin. Its total spinJ can be
of order ten or larger, as long as tunneling is still possible. Assume that the particle lives in an
anisotropic environment with the Hamiltonian,

H = −k1
J2

z

J2
+ k2

(

J2
x

J2
−
J2

y

J2

)

, (k1 > k2). (25)

That is, the easy axis is along thez-axis and the easy plane is theyz-plane. The cluster is in
the ground state when the spin points to the north pole or to the south pole of the Bloch sphere.
Even though these two degenerate states are separated by a barrier, the particle can switch its
direction of spin via quantum tunneling.
To study the Berry phase effect on the tunneling probability, the best tool is the method of path
integrals. In the following, we give a brief sketch of its formulation.
The fully polarized spin state|n̂, J〉 along a direction̂n with spherical angles(θ, φ) can be
written as,

|n̂, J〉 = |n̂,+〉 ⊗ |n̂,+〉 · · · ⊗ |n̂,+〉

=
2J
∏

l=1

e−i θ
2
σl·θ̂|ẑ,+〉l, (26)

where|n̂,+〉 is the spin-1/2 “up” state along thên-axis andθ̂ is a unit vector along thêz× n̂ di-
rection. Such a so-calledspin coherent statecan be used to “resolve” the identity operator [11],

I =
2J + 1

4π

∫

dΩ|n̂〉〈n̂|, (27)

where|n̂〉 is an abbreviation of|n̂, J〉.
In order to calculate the transition probability amplitude〈n̂f | exp[−(i/~)HT ]|n̂i〉, one first di-
vides the time evolution into steps,exp(−i/~HT ) = [exp(−i/~Hdt)]N , dt = T/N , then insert
the resolution of identity in Eq. (27) between neighboring steps. The transition amplitude then
becomes a product of factors with the following form,

〈n̂(t+ dt)|e− i
~
Hdt|n̂(t)〉 ≃ 〈n̂(t+ dt)|n̂(t)〉 − i

~
〈n̂(t+ dt)|H(J)|n̂(t)〉dt

≃ 1 − 〈n̂| ˙̂n〉dt− i

~
H(Jn̂)dt. (28)

In the final step, we have replaced the quantum Hamiltonian bya classical Hamiltonian. That
is, 〈H(J)〉 = H(〈J〉). This holds exactly if the Hamiltonian is linear inJ, but is only an
approximation in general. The correction due to the non-commutativity of the spin operator is
roughly of the fraction1/J and can be ignored for large spins.
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Fig. 5: According to the Hamiltonian in Eq. (25), thez-axis and thex-axis are the easy axis and
the hard axis, respectively. There are two (degenerate) ground states at the north pole and the
south pole of the Bloch sphere. Tunneling from one ground state to the other follows the dashed
line on they − z plane. Applying a magnetic field along thex-direction moves the locations of
the ground states and shrinks the tunneling path to a smallerloop.

Finally, by summing over paths in thên-space, one has

〈n̂f |e−
i
~
HT |n̂i〉 =

∫

[Dn̂] exp

{

i

~

∫ tf

ti

[

i~〈n̂| ˙̂n〉 −H(Jn̂)
]

dt

}

. (29)

Notice that the first integral in the exponent generates a Berry phase for a path (see Eq. (12)). In
the semiclassical regime, the functional integral in Eq. (29) is dominated by the classical path
n̂c with least action, which is determined from the dynamical equation ofn̂ (see below). During
tunneling, the paths under the barrier are classically inaccessible and̂n becomes an imaginary
vector. It is customary to sacrifice the reality of timet to keepn̂ real. The good news is that the
final result does not depend on which imaginary world you choose to live in.
Defineτ = it, then the transition amplitude dominated by the classical action is,

〈n̂f |e−
i
~

HT |n̂i〉 ∝ ei
R f

i
A·dn̂ce−1/~

R f

i
H(Jn̂c)dτ , (30)

whereA = i〈n̂|∇n̂〉 is the Berry potential. The integral of the Berry potential is gauge depen-
dent if the path is open. It is well defined for a closed loop, such as the classical path on the
yz-plane in Fig. 5. The Berry phase for such a loop is2πJ since it encloses an area with solid
angle2π (Cf. Eq. (19)). This is also the phase difference between thetwo classical paths from
the north pole to the south pole. Therefore,

〈−ẑ|e− i
~
HT |ẑ〉 ∝ cos(πJ)e−1/~

R f

i
H(Jn̂c)dτ . (31)

WhenJ is a half integer, the transition process is completely suppressed because of the Berry
phase. The conclusion remains valid if one considers classical paths with higher winding num-
bers [10].
As a reference, we also write down the equation of motion forn̂c that is determined from the
classical action in Eq. (30),

J
dn̂

dt
= n̂× ∂H(Jn̂)

∂n̂
. (32)



X5.12 Ming-Che Chang

P

P

ΔP

Unit cell

+ � (a)

(b)

(c)

+�
Fig. 6: An one-dimensional solid with infinite length. Different choices of the unit cell give
different electric polarization vectors ((a), (b)). On theother hand, the change of polarization
does not depend on the choice of the unit cell (c).

This is the Bloch equation for spin precession, in which∂H/∂n̂ plays the role of an effective
magnetic field.
One comment is in order: One can apply a magnetic field along thex-axis that shifts the energy
minima along that direction and shrinks the classical loop (see Fig. 5). In an increasingly
stronger field, the size of the loopC eventually would shrink to zero. That is, the Berry phase
γC would decrease from the maximum value of2πJ to zero. During the process, one expects
to encounter the no-tunneling situation several times wheneverγC/2π hits a half-integer. Such
a dramatic Berry phase effect has been observed [12].

4 Berry phase and Bloch state

In the second half of this article, we focus on the Berry phasein periodicsolids. It has been play-
ing an ever more important role in recent years due to severaldiscoveries and “re-discoveries”,
in which the Berry phase either plays a crucial role or offersa fresh perspective.

4.1 Electric polarization

It may come as a surprise to some people that the electric polarizationP of an infinite periodic
solid (or a solid with periodic boundary conditions) is generically not well defined. The reason
is that, in a periodic solid, the electric polarization depends on your choice of the unit cell
(see Fig. 6a,b). The theory of electric polarization in conventional textbooks applies only to
solids consisting of well localized charges, such as ionic or molecular solids (Clausius-Mossotti
theory). It fails, for example, in a covalent solid with bondcharges such that no natural unit cell
can be defined.
A crucial observation made by R. Resta [13] is that, even though the value ofP may be am-
biguous, its change is well defined (see Fig. 6c). It was laterpointed out by King-Smith and
Vanderbilt [14] that∆P has a deep connection with the Berry phase of the electronic states.
The outline of their theory below is based on one-particle states. However, the same scheme
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applies to real solids with electronic interactions, as long as one replaces the one-particle states
by the Kohn-Sham orbitals in the density functional theory.
We will useλ to label the degree of ion displacement. It varies from 0 to 1 as the ions shift
adiabatically from an initial state to a final state. The difference of polarizations between these
two states is given by

∫ 1

0
dλdP/dλ, where

P(λ) =
q

V

∑

i

〈φi|r|φi〉. (33)

The summation runs over filled Bloch statesφi (with λ-dependence) andV is the volume of
the material. For an infinite crystal, the expectation valueof r is ill-defined. Therefore, we
consider a finite system at first, and letV → ∞ when the mathematical expression becomes
well-defined.
The Bloch states are solutions of the Schrödinger equation,

Hλ|φi〉 =

(

p2

2m
+ Vλ

)

|φi〉 = ǫi|φi〉, (34)

whereVλ is the crystal potential. From Eq. (34), it is not difficult toshow that, forj 6= i, one
has

(ǫi − ǫj) 〈φj|
∂φi

∂λ
〉 = 〈φj|

∂Vλ

∂λ
|φi〉. (35)

Therefore,
dP

dλ
=

q

V

∑

i

∑

j 6=i

[

〈φi|r|φj〉
〈φj|V ′

λ|φi〉
ǫi − ǫj

+H.c.

]

. (36)

There is a standard procedure to convert the matrix elementsof r to those ofp: Start with the
commutation relation,[r, Hλ] = i~p/m, and sandwich it between thei-state and thej-state
(againj 6= i), we can get an useful identity,

〈φi|r|φj〉 =
i~

m

〈φi|p|φj〉
ǫj − ǫi

. (37)

With the help of this identity, Eq. (36) becomes the following expression derived by Resta [13],

dP

dλ
=

q~

imV

∑

i

∑

j 6=i

[〈φi|p|φj〉〈φj|V ′
λ|φi〉

(ǫi − ǫj)2
−H.c.

]

. (38)

Now all of the matrix elements are well-defined and the volumeV can be made infinite. After
integrating with respect toλ, the resulting∆P is free of ambiguity, even for an infinite covalent
solid.
For Bloch states, the subscripts arei = (m,k) andj = (n,k), wherem,n are the band indices
andk is the Bloch momentum defined in the first Brillouin zone. Eq. (38) can be transformed to
a very elegant form, revealing its connection with the Berrycurvature [14]. One first defines a
k-dependent Hamiltonian,̃H = e−ik·rHeik·r. It is the Hamiltonian of the cell-periodic function
unk. That is,H̃|unk〉 = ǫnk|unk〉, whereφnk = eik·runk. It is then straightforward to show that,

〈φmk|p|φnk〉 =
m

~
〈umk|

[

∂

∂k
, H̃

]

|unk〉 =
m

~
(ǫnk − ǫmk)〈umk|

∂unk

∂k
〉. (39)
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With the help of this equation and another one very similar toEq. (35) (just replace theφi’s by
theui’s), we finally get (α = x, y, z)

dPα

dλ
= −iq

V

∑

nk

(〈

∂unk

∂kα
|∂unk

∂λ

〉

−
〈

∂unk

∂λ
|∂unk

∂kα

〉)

= − q

V

∑

nk

Ωn
kαλ(k), (40)

whereΩn
kαλ ≡ i

(

〈 ∂u
∂kα

|∂u
∂λ
〉 − c.c.

)

is the Berry curvature for then-th band in the parameter

space ofkα andλ (Cf. Eq. (13)).
Let us take a one-dimensional system as an example. Assumingthe lattice constant isa. Then
the difference of polarization is (q = −e),

∆P =
e

2π

∑

n

∫ 2π/a

0

dk

∫ 1

0

dλΩn
kλ. (41)

The area of integration is a rectangle with lengths1 and2π/a on each side. The area integral
can be converted to a line integral around the boundary of therectangle, which gives the Berry
phaseγn of such a loop. Therefore,

∆P = e
∑

n

γn

2π
. (42)

In the special case where the final state of the deformationV1 is the same as the initial stateV0,
the Berry phaseγn can only be integer multiples of2π [14]. Therefore, the polarizationP for a
crystal state is uncertain by an integer chargeQ.
One the other hand, this integer chargeQ does carry a physical meaning when it is the difference
∆P between two controlled states. For example, when the lattice potential is shifted by one
lattice constant to the right, thisQ is equivalent to the total charge being transported. Based
on such a principle, it is possible to design a quantum chargepump using a time-dependent
potential [15].

4.2 Quantum Hall effect

The quantum Hall effect (QHE) has been discovered by K. von Klitzing et al. [16] in a two-
dimensional electron gas (2DEG) at low temperature and strong magnetic field. Under such
conditions, the Hall conductivityσH develops plateaus in theσH(B) plot. For the integer QHE,
these plateaus always locate at integer multiples ofe2/h to great precision, irrespective of the
samples being used. Such a behavior is reminiscent of macroscopic quantum phenomena, such
as the flux quantization in a superconductor ring.
To explain the integer QHE, Laughlin wraps the sheet of the 2DEG to a cylinder to simulate
the superconductor ring, and studies the response of the current with respect to a (fictitious)
magnetic flux through the cylinder (see Fig. 7). He found that, as the flux increases by one
flux quantumh/e, integer chargesQ = ne are transported from one edge of the cylinder to
the other [17]. This charge transport in the transverse direction gives the Hall current, and the
integern can be identified with the integer of the Hall conductancene2/h [18].
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Fig. 7: In Laughlin’s argument, the 2DEG is on the surface of a cylinder. The real magnetic
field B now points radially outward. In addition, there is a fictitious flux threading through the
cylinder. When the fictitious flux changes by one flux quantum,integer number of electrons are
be transported from one edge of the cylinder to the other.

Soon afterwards, Thoulesset al. (TKNdN) [19] found that the Hall conductivity is closely
related to the Berry curvature (not yet discovered by Berry at that time) of the Bloch state. We
now briefly review the TKNdN theory.
Consider a 2DEG subject to a perpendicular magnetic field anda weak in-plane electric field.
In order not to break the periodicity of the scalar potential, we choose a time-dependent gauge
for the electric field. That is,E = −∂AE/∂t, AE = −Et. The Hamiltonian is,

H =
(π − eEt)2

2m
+ VL(r), (43)

whereπ = p+ eA0 has included the vector potential of the magnetic field, andVL is the lattice
potential. Similar to the formulation the in previous subsection, it is convenient to use thek-
dependent HamiltoniañH and the cell-periodic functionunk in our discussion. They are related
by H̃|unk〉 = Enk|unk〉.
We will assume that the system can be solved with known eigenvalues and eigenstates,H̃0|u(0)

nk〉 =

E
(0)
nk |u

(0)
nk〉 in the absence of an external electric field [20]. The electric field is then treated as a

perturbation. To the first-order perturbation, one has

|unk(t)〉 = |n〉 − i~
∑

n′ 6=n

|n′〉〈n′| ∂
∂t
|n〉

ǫn − ǫn′

, (44)

wherek(t) = k0 − eEt/~, and|n〉 andǫn are abbreviations of|u(0)
nk(t)〉 andE(0)

nk(t).

The velocity of a particle in then-th band is given byvn(k) = 〈unk|∂H̃/~∂k|unk〉. After
substituting the states in Eq. (44), we find

vn(k) =
∂ǫn
~∂k

− i
∑

n′ 6=n

(

〈n|∂H̃
∂k

|n′〉〈n′|∂n
∂t
〉

ǫn − ǫn′

− c.c.

)

. (45)

The first term is the group velocity in the absence of the electric perturbation. With the help of
an equation similar to Eq. (39),

〈n|∂H̃
∂k

|n′〉 = (ǫn − ǫn′) 〈∂n
∂k

|n′〉, (46)
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one finally gets a neat expression,

vn(k) =
∂ǫn
~∂k

− i

(〈

∂n

∂k
|∂n
∂t

〉

−
〈

∂n

∂t
|∂n
∂k

〉)

. (47)

By a change of variable, the second term becomesΩn × k̇ = −(e/~)Ωn × E, whereΩnα =
iǫαβγ〈 ∂n

∂kβ
| ∂n
∂kγ

〉 is the Berry curvature in momentum space.

For a 2DEG,Ωn = Ωnẑ. All states below the Fermi energy contribute to the currentdensity,

j =
1

V

∑

nk

−evn(k) =
e2

~

∑

n

∫

d2k

(2π)2
Ωn(k) × E. (48)

Notice that the first term in Eq. (47) does not contribute to the current. From Eq. (48), it is clear
that the Hall conductivity is given by,

σyx =
e2

h

∑

n

1

2π

∫

d2kΩn(k). (49)

Thoulesset al. have shown that the integral of the Berry curvature over the whole BZ di-
vided by2π must be an integercn. Such an integer (the Chern number mentioned in Sec. 2.2)
characterizes the topological property of the fiber bundle space, in which the base space is the
two-dimensional BZ, and the fiber is the phase of the Bloch state (see the discussion near the
end of Sec. 2.1). Therefore, the Hall conductivity of a filledband is always an integer multiple
of e2/h. Such a topological property is the reason why the QHE is so robust against disorders
and sample varieties. Even though the discussion here is based on single-particle Bloch states,
the conclusion remains valid for many-body states [21].
Some comments are in order. First, the formulas behind the change of electric polarization∆P

in Sec. 4.1 and those of the quantum Hall conductivity here look very similar. Both are based
on the linear response theory. In fact, the analogy can be carried further if∆P is considered as
the time integral of a polarization currentjP = ∂P/∂t. The latter, similar to the quantum Hall
current in Eq. (48), can be related to the Berry curvature directly.
Second, if a solid is invariant under space inversion, then the cell-periodic state has the symme-
try,

un−k(−r) = unk(r). (50)

On the other hand, if the system has time-reversal symmetry,then

u∗n−k(r) = unk(r). (51)

As a result, if both symmetries exist, then one can show that the Berry potentialAn = i〈n|∂n
∂k
〉

(and therefore the Berry curvature) is zero for allk. The conclusion, however, does not hold if
there is band crossing or spin-orbit interaction (not considered so far).
That is, the Berry potential (or curvature) can be non-zero if (i) the lattice does not have space
inversion symmetry. This applies to the polarization discussed in the previous subsection. (ii)
Time-reversal symmetry is broken, e.g., by a magnetic field.This applies to the quantum Hall
system in this subsection. In the next subsection, we consider a system with spin-orbit interac-
tion, in which the Berry curvature plays an important role.



X5.17

saturation slope=RN

B

�
H

�
0RAHMS

Fig. 8: When one increases the magnetic field, the Hall resistivity of a ferromagnetic material
rises quickly. It levels off after the sample is fully magnetized.

4.3 Anomalous Hall effect

Soon after Edwin Hall discovered the effect that bears his name in 1879 (at that time he was
a graduate student at Johns Hopkins university), he made a similar measurement on iron foil
and found a much larger Hall effect. Such a Hall effect in ferromagnetic materials is called the
anomalous Hall effect (AHE).
The Hall resistivity of the AHE can be divided into two terms with very different physics (pro-
posed by Smith and Sears in 1929) [22],

ρH = ρN + ρAH = RN (T )B + RAH(T )µ0M(T,H), (52)

whereB = µ0(H + M). The first (normal) term is proportional to the magnetic fieldin the
sample. The second (anomalous) term grows roughly linearlywith the magnetizationM and
the coefficientRAH is larger thanRN by one order of magnitude or more. If the applied field
is so strong that the material is fully magnetized, then there is no more enhancement from the
anomalous term and the Hall coefficient suddenly drops by orders of magnitude (see Fig. 8).
Since the normal term is usually much smaller than the anomalous term, we will neglect it in
the following discussion.
Unlike the ordinary Hall effect, the Hallresistivityin the AHE increases rapidly with tempera-
ture. However, the Hallconductivity,

σH =
ρH

ρ2
L + ρ2

H

≃ ρH

ρ2
L

(if ρL ≫ ρH), (53)

shows less temperature dependence, whereρL is the longitudinal resistivity. The reason will
become clear later.
Since the AHE is observed in ferromagnetic materials, the magnetization (or the majority spin)
must play a role here. Also, one needs the spin-orbit (SO) interaction to convert the direction of
the magnetization to a preferred direction of the transverse electron motion.
Among many attempts to explain the AHE, there are two popularexplanations [23], both involve
the SO interaction,

HSO = − ~

4m2c2
σ · (p×∇V ). (54)

The first theory was proposed by Karplus and Luttinger (KL) in1954 [24]. It requires no
impurity (the intrinsic scenario) and theV in Eq. (54) is the lattice potential. The Hall resistivity
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ρAH is found to be proportional toρ2
L. The other explanation is proposed by Smit in 1958 [25].

It requires (non-magnetic) impurities (the extrinsic scenario) andV is the impurity potential. It
predictsρAH ∝ ρL. When both mechanisms exist, one has

ρAH = a(M)ρL + b(M)ρ2
L. (55)

The Smit term is a result of the skewness of the electron-impurity scattering due to the SO
interaction. That is, the spin-up electrons prefer scattering to one side, and the spin-down
electrons to the opposite side. Because of the majority spins of the ferromagnetic state, such
skew-scatterings produce a net transverse current. Smit’sproposal started as an opposition to
KL’s theory and gained popularity in the early years. As a result, the KL scenario seems to have
been ignored for decades.
At the turn of this century, however, several theorists picked up the KL theory and put it under
the new light of the Berry curvature [26]. Subsequently, increasing experimental evidences
indicate that, in several ferromagnetic materials, the KL mechanism does play a much more
important role than the skew-scattering. These works published in renowned journals have
attracted much attention, partly because of the beauty of the Berry curvature scenario.
KL’s theory, in essence, is very similar to the ones in the previous two subsections. One can
first regard the Hamiltonian with the SO interaction as solvable, then treat the electric field as a
perturbation. To the first order of the perturbation, one canget the electron velocity with exactly
the same form as the one in Eq. (47). The difference is that thestate|n〉 now is modified by
the SO interaction and the solid is three dimensional. That is, one simply needs to consider a
periodic solid without impurities and apply the Kubo formula, which (in these cases) can be
written in Berry curvatures,

σAH =
e2

~

1

V

∑

n,k

Ωn(k). (56)

However, not every solid with the SO interaction has the AHE.The transverse velocities (also
called the anomalous velocity) in general have opposite signs for opposite spins in the spin-
degenerate bands. Therefore, these two Hall currents will get canceled. Again the ferromagnetic
state (which spontaneously breaks the time reversal symmetry) is crucial for a net transverse
current.
From Eq. (53), one hasρH ≃ ρAH = σHρ

2
L. Also, the anomalous current generated from the

Berry curvature is independent of the relaxation timeτ . This explains why the Hall conductivity
in the KL theory is proportional toρ2

L.
In dilute magnetic semiconductors, one can show thatA(k) = ξS× k for the conduction band
of the host semiconductor, whereξ is the strength of the SO coupling (more details in Sec. 5.2).
Therefore,Ω = ∇ × A = 2ξS. In this case, the coefficientb(M) in Eq. (55) is proportional
to M . In ferromagnetic materials with a more complex band structure, the Berry curvature
shows non-monotonic behavior in magnetization. For one thing, in density-functional-theory
calculations, the Berry curvature can be dramatically enhanced when the Fermi energy is near a
small energy gap [27]. However, spin fluctuations may smear out the erratic behavior and lead
to a smooth variation (see Fig. 9) [28].
The Berry curvature is an intrinsic property of the electronic states. It appears not only at the
quantum level, but also in the semiclassical theory of electron dynamics. In the next section,
we will see that the QHE, the AHE, and the spin Hall effect can all be unified in the same
semiclassical theory.
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(a) (b)

Fig. 9: (a) Calculated anomalous Hall conductivity (the intrinsicpart) versus magnetization
for Mn5Ge3 using different relaxation times. (b) After averaging overlong-wavelength spin
fluctuations, the calculated anomalous Hall conductivity becomes roughly linear inM . The
initials S.S. refers to skew scattering. The figures are fromRef. [28].

5 Berry phase and wave-packet dynamics

When talking about electron transport in solids, people usetwo different languages: It is either
particle scattering, mean free path, cyclotron orbit ..., or localized state, mobility edge, Landau
level ... etc. In this section, we use the first language and treat the electrons as particles with
trajectories. Besides being intuitive, this approach has the following advantage: The electro-
magnetic potentials in the Schrödinger equation are oftenlinear inr and diverge with system
size. Such a divergence can be avoided if the wave function ofthe electron is localized.

5.1 Wave-packet dynamics

Consider an energy band that is isolated from the other bandsby finite gaps. Also, the energy
band is not degenerate with respect to spin or quasi-spin. The energy band with internal (e.g.,
spin) degrees of freedom is the subject of the next subsection. When inter-band tunneling can
be neglected, the electron dynamics in this energy band can be described very well using a
wave-packet formalism.
The wave packet can be built by a superposition of Bloch states ψnq in bandn (one band
approximation),

|W 〉 =

∫

BZ

d3qa(q, t)|ψnq〉. (57)

It is not only localized in position space, but also in momentum space,

〈W |r|W 〉 = rc;

∫

BZ

d3qq|a(q)|2 = qc, (58)

whererc andqc are the centers of mass. The shape of the wave packet is not crucial, as long as
the electromagnetic field applied is nearly uniform throughout the wave packet.
Instead of solving the Schrödinger equation, we use the time-dependent variational principle to
study the dynamics of the wave packet. Recall that in the usual (time-independent) variational
principle, one first proposes a sensible wave function with unknown parameters, then minimizes
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its energy to determine these parameters. Here, the wave packet is parametrized by its center
of mass(rc(t),qc(t)). Therefore, instead of minimizing the energy, one needs to extremize the
actionS[C] =

∫

C
dtL, which is afunctionalof the trajectoryC in phase space.

One starts from the following effective Langrangian,

L(rc,qc; ṙc, q̇c) = i~〈W | d
dt
|W 〉 − 〈W |H|W 〉. (59)

Notice the resemblance between thisS[C] and the the action in the coherent-state path integral
(Eq. (29)). The Hamiltonian for a Bloch electron in an electromagnetic field is

H =
1

2m
(p + eA)2 + VL(r) − eφ(r) ≃ H0 − eφ+

e

2m
r × p · B, (60)

in whichH0 = p2/2m + VL andφ andA = 1
2
B × r are treated as perturbations. The fields

are allowed to change slowly in space and time, as long as it isapproximately uniform and
quasi-static (adiabatic) from the wave packet’s perspective.
To evaluate the Lagrangian approximately, one can Taylor-expand the potentials with respect to
the center of the wave packet and keep only the linear terms. Using this gradient approximation,
the wave-packet energy〈W |H|W 〉 is evaluated as [29],

E = E0(qc) − eφ(rc) +
e

2m
L(qc) · B, (61)

whereE0 is the unperturbed Bloch energy of the band under consideration, andL(kc) =
〈W |(r− rc) × p|W 〉 is the self-rotating angular momentum of the wave packet.
On the other hand, the first term in Eq. (59) can be written as

i~〈W | d
dt
|W 〉 = ~〈u|idu

dt
〉 + ~qc · ṙc, (62)

in which |u〉 is the unperturbed cell-periodic function. Therefore, theeffective Lagrangian is

L = ~k̇c · Rc + (~kc − eAc) · ṙc −E(rc,kc), (63)

where~kc = ~qc + eAc is the gauge-invariant quasi-momentum,Rc = i〈n| ∂n
∂kc

〉 is the Berry
potential, andAc = A(rc).
Treating bothrc andkc as generalized coordinates and using the Euler-Lagrange equation, it
is not very difficult to get the following (coupled) equations of motion (EOM) for the wave
packet [29],

~k̇c = −eE − eṙc × B, (64)

~ṙc =
∂E

∂kc
− ~k̇c ×Ωc, (65)

whereΩc = ∇kc
×Rc is the Berry curvature of the band under consideration.

Compared to the usual semiclassical EOM in textbooks, thereare two new quantities in Eqs. (64,65),
and both lead to important consequences. The first is the Berry curvatureΩ. It generates the
so-called anomalous velocity. In the presence of a perturbing electric field, the anomalous ve-
locity is eE × Ω, which is perpendicular to the driving electric field and gives rise to, e.g., the
AHE.
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The second is the spinning angular momentumL in Eq. (61). It is closely related to the orbital
magnetization of a solid [30]. For a spinful wave packet (Sec. 5.2), thisL modifies the elec-
tron spin and is the origin of the anomalousg-factor in solids. In fact, starting from Dirac’s
relativistic electron theory (which has no explicit spin inthe Hamiltonian), we have shown that,
the wave packet in the positive-energy branch of the Dirac spectrum has an intrinsic spinning
angular momentum [31]. That is, it explains why an electron has spin.
In the semiclassical theory of electron transport, the current density is given by

j = − e

V

∑

nk

f ṙ, (66)

wheref = f0+δf is the distribution function away from equilibrium. The distribution function
f is determined from the Boltzmann equation,

ṙ · ∂f
∂r

+ k̇ · ∂f
∂k

= −δf
τ
, (67)

whereτ is the relaxation time. For a homogeneous system in an electric field, δf ≃ τ e
~
E · ∂f0

∂k
,

and

j ≃ − e

V

∑

nk

(

δf
∂En

~∂k
+ f0

e

~
E ×Ωn

)

. (68)

The usual current (the first term) depends on carrier relaxation timeτ through the change of the
distribution functionδf . On the other hand, the second term gives the Hall current. Clearly, this
Ω is also the one in the Kubo formula of QHE and AHE. (The latter involves spin-degenerate
band and belongs more properly to the next subsection.)
We emphasize that, just like the Bloch energyE0(k), bothΩ(k) andL(k) are intrinsic to the
energy band (not induced by the applied field). They are the three main pillars of band theory.
Unlike the Bloch energy that has been around for a very long time, the other two quantities are
relatively new players, but their importance should increase over time.
If there is only a magnetic field, then combining Eq. (64) and Eq. (65) gives

~k̇c =
− e

~

∂E
∂kc

× B

1 + e
~
B · Ω . (69)

It describes a cyclotron orbit moving on a plane perpendicular to the magnetic field. The orbit
is an energy contour on the Fermi surface. Its size can changecontinuously, depending on the
electron’s initial condition.
One can apply a Bohr-Sommerfeld quantization rule to get quantized orbits, which have dis-
crete energies (the Landau levels). The EOM in momentum space, Eq. (69), follows from the
effective Lagrangian,

L(kc; k̇c) =
~

2

2eB
kc × k̇c · B̂ + ~k̇c · Rc − E(kc). (70)

This gives the generalized momentum,

π =
∂L

∂k̇c

= − ~
2

2eB
kc × B̂ + ~Rc. (71)
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Fig. 10: The quantized cyclotron orbits on two different energy surfaces. The one on the left is
a paraboloid near its band edge; the one on the right is a conical surface. Without Berry phase
correction, the Landau-level energies areEn = (n + 1/2)~ωc andEn = vF

√

2eB~(n+ 1/2)
respectively. In graphene, an orbit circling the Dirac point acquires a Berry phase ofπ, which
cancels the 1/2 in the square root.

The quantization condition is given by
∮

π ·dkc = (m+γ)h, wherem is a non-negative integer
andγ = 1/2 for the cyclotron motion. Therefore, we have

B̂

2
·
∮

Cm

(kc × dkc) = 2π

(

m+
1

2
− Γ(Cm)

2π

)

eB

~
, (72)

whereΓ(Cm) =
∮

Cm
Rc · dkc is the Berry phase for orbitCm.

This equation determines the allowed size (and therefore energy) of the cyclotron orbit. The
Berry phase correction slightly shifts the Landau-level energies. For example, the orbit around
the Dirac point of graphene picks up a Berry phase ofπ due to the monopole at the origin.
This cancels the other1/2 in Eq. (72) and results in a zero-energy level at the Dirac point (see
Fig. 10). This agrees nicely with experimental measurements [32].

5.2 Non-Abelian generalization

In the one-band theory without internal degrees of freedom,the Bloch state has only one com-
ponent and the gauge structure of the Berry phase is Abelian.When the band has internal
degrees of freedom (henceforth simply called the spin), theBloch state has several components
and the gauge structure becomes non-Abelian. This happens,for example, in energy bands with
Kramer’s degeneracy. By extending the semiclassical dynamics to such cases, one is able to
investigate problems involving spin dynamics and spin transport.
The scheme for building such a theory is the same as the one in the previous subsection. There-
fore, we only give a very brief outline below. One first constructs a wave packet from the Bloch
statesψnq,

|W 〉 =

D
∑

n=1

∫

BZ

d3qa(q, t)ηn(q, t)|ψnq〉. (73)

Heren is a spinor index for an isolated band withD-fold degeneracy,η = (η1, · · · , ηD)T is a
normalized spinor at eachq, anda(q, t) is again a narrow distribution centered atqc(t).
Similar to the non-degenerate case, there are three basic quantities in such a formalism, the
Bloch energyH0(q), the Berry connectionR(q) (and related curvature, now written asF(q)),



X5.23

and the spinning angular momentumL(q) [33]. They all become matrix-valued functions and
are denoted by calligraphic fonts. The Bloch energy is simply an identity matrix multiplied by
E0(q) since all spinor states have the same energy.
The matrix elements of the Berry connection are,

Rmn(q) = i

〈

umq|
∂unq

∂q

〉

. (74)

The Berry curvature is given by,

F(q) = ∇q × R − iR × R. (75)

Recall that the Berry connection and Berry curvature in the Abelian case are analogous to the
vector potential and the magnetic field in electromagnetism(see Sec. 2.1). Here,R andF

also are analogous to the gauge potential and gauge field in the non-AbelianSU(2) gauge field
theory [34].
The expectation value of the third basic quantity, the spinning angular momentum, is again
given byL(qc) = 〈W |(r− rc)×p|W 〉. However, it is often written in an alternative (Rammal-
Wilkinson) form easier for evaluation,

L(q) = i
m

~

〈

∂u

∂q

∣

∣

∣
×
[

H̃0 −E0(q)
]
∣

∣

∣

∂u

∂q

〉

, (76)

where the cell-periodic function without a subscript is defined as|u〉 =
∑D

n=1 ηn|un〉 andH̃0 is
the Hamiltonian for|u〉. The corresponding matrix-valued functionL therefore has the matrix
elements,

Lnl(q) = i
m

~

〈

∂un

∂q

∣

∣

∣
×
[

H̃0 − E0(q)
]
∣

∣

∣

∂ul

∂q

〉

. (77)

Obviously, after taking the spinor average, one has the angular momentum in Eq. (76),L =
〈L〉 ≡ η

†Lη =
∑

nl η
∗
nLnlηl.

Equations of motion
So far we have laid out the necessary ingredients in the non-Abelian wave packet theory. Similar
to Sec. 5.2, we can use Eq. (59) to get the effective Lagrangian for the center of mass,(rc,kc),
and the spinorη. Afterwards, the Euler-Lagrange equation for this effective Lagrangian leads
to the following EOM [33],

~k̇c = −eE − eṙc × B, (78)

~ṙc =

〈[ D
Dkc

,H
]〉

− ~k̇c × F, (79)

i~η̇ =
( e

2m
L · B − ~k̇c · R

)

η, (80)

whereF = 〈F〉, and the covariant derivativeD/Dkc ≡ ∂/∂kc − iR. The semiclassical
Hamiltonian inside the commutator in Eq. (79) is

H(rc,kc) = H0(kc) − eφ(rc) +
e

2m
L(kc) · B, (81)

wherekc = qc + (e/~)A(rc).
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Even though these equations look a little complicated, the physics is very similar to that of the
simpler Abelian case in Sec. 5.1. There are two differences,however. First, the anomalous
velocity in Eq. (79) is now spin-dependent in general. In some interesting cases (see below),F

is proportional to the spin vectorS = 〈S〉, whereS is the spin matrix. Therefore, if one applies
an electric field to such a system, the spin-up and spin-down electrons will move to opposite
transverse directions. This is the cause of the AHE and the spin Hall effect.
Second, we now have an additional equation (Eq. (80)) governing the spinor dynamics. From
Eq. (80) we can derive the equation forS,

i~Ṡ =
〈[

S,H− ~k̇c · R
]〉

. (82)

The spin dynamics in Eq. (82) is influenced by the Zeeman energy in H, as it should be. We
will demonstrate below that the term with the Berry connection is in fact the spin-orbit energy.
Such an energy is not explicit inH, but only reveals itself afterH is being re-quantized.

Re-quantization
As we have shown in Sec. 5.1, re-quantization of the semiclassical theory is necessary when
one is interested in, for example, the quantized cyclotron orbits that correspond to the Landau
levels. Here we introduce the method of canonical quantization, which is more appropriate for
the non-Abelian case compared to the Bohr-Sommerfeld method.
In this approach, one needs to find variables with canonical Poisson brackets,

{rα, rβ} = 0,

{pα, pβ} = 0,

{rα, pβ} = δαβ, (83)

then promote these brackets to quantum commutators. As a result, the variables become non-
commutating operators and the classical theory is quantized.
An easier way to judge if the variables are canonical is by checking if they satisfy the canonical
EOM,

ṙ =
∂E

∂p
; ṗ = −∂E

∂r
. (84)

The variablesrc andkc that depict the trajectory of the wave packet are not canonical variables
because their EOM are not of this form. This is due to the vector potential and the Berry
connection,A(rc) andR(kc), in the Lagrangian (see Eq. (63)).
In fact, if one can remove these two gauge potentials from theLagrangian by a change of
variables,

L = p · ṙ −E(r,p), (85)

then these new variables will automatically be canonical. Such a transformation is in general
non-linear and cannot be implemented easily. However, if one only requires an accuracy to
linear order of the electromagnetic fields (consistent withthe limit of our semiclassical theory),
then the new variables can indeed be found.
The canonical variablesr andp accurate to linear order in the fields are related to the center-
of-mass variables as follows [35],

rc = r + R(π) + G(π),

~kc = p + eA(r) + eB × R(π), (86)
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whereπ = p+eA(r), andGα(π) ≡ (e/~)(R×B) ·∂R/∂πα. The last terms in both equations
can be neglected in some cases. For example, they will not change the force and the velocity in
Eqs. (78) and (79). These relations constitute a generalization of the Peierls substitution.
When expressed in the new variables, the semiclassical Hamiltonian in Eq. (81) becomes,

H(r,p) = H0(π) − eφ(r) + eE · R(π)

+ B ·
[

e

2m
L(π) + eR × ∂H0

∂π

]

, (87)

where we have used the Taylor expansion and neglected terms nonlinear in the fields. Finally,
one promotes the canonical variables to quantum conjugate variables to convertH to an effec-
tive quantum Hamiltonian.
The dipole-energy termeE ·R is originates from the shift between the charge centerrc and the
canonical variabler. We will show below that for a semiconductor electron, the dipole term is
in fact the spin-orbit coupling.
The correction to the Zeeman energy is also related to the Berry connection. Near a band edge,
where the effective mass approximation is applicable andE0 = π2/2m∗, this term can be writ-
ten aseR · v × B, wherev = π/m∗. We know that an electron moving in a static magnetic
field feels an effective electric fieldEeff = v ×B. Therefore, this term arises as a result of the
electric dipole energy in electron’s own reference frame.

Semiconductor electron
A necessary requirement for the non-Abelian property is that the Bloch electron has to have
internal degrees of freedom. In a semiconductor with both space-inversion and time-reversal
symmetries, every Bloch state is two-fold degenerate due toKramer’s degeneracy. But where
do we expect to see the non-Abelian Berry connection and curvature?
Instead of the full band structure, one can start from a simpler band structure using thek · p
expansion. Assuming the fundamental gap is located atk = 0, then for smallk, one has an
effective Hamiltonian with 4 bands, 6 bands, 8 bands, or more, depending on the truncation.
In the following discussion, we use a 8-band Kane Hamiltonian that includes the conduction
band, the HH-LH bands, and the spin-orbit (SO) split-off band, each with 2-fold degeneracy
(see Fig. 11). The explicit Kane Hamiltonian can be found in Ref. [36].
We focus only on the wave packet in the conduction band. Without going into details, we first
show the Berry connection that is essential to the wave packet formulation. The result correct
to orderk1 and up to a gauge rotation is [35],

R =
V 2

3

[

1

E2
g

− 1

(Eg + ∆)2

]

σ × k, (88)

whereV = ~

m
〈S|p̂x|X〉, Eg is the energy gap, and∆ is the SO gap. Therefore, the dipole term

eE · R in Eq. (87) becomes,

Hso = eE · R = αE · σ × k, (89)

whereα ≡ (eV 2/3)[1/E2
g −1/(Eg +∆)2]. It coincides precisely with the spin-orbit coupling of

a conduction electron. This shows that the SO coupling has a very interesting connection with
the Berry connection. This is also the case for the SO coupling in Dirac’s relativistic electron
theory [37].



X5.26 Ming-Che Chang

4-band 
Luttinger
model

8-band 
Kane 
model

E(k)

Eg

∆
HH

LH

SO

CB

Fig. 11: One can use the 4-band Luttinger model or the 8-band Kane model to approximate the
energy bands near the fundamental gap.

The Berry curvature calculated from Eq. (75) gives (to the lowest order)F = α/eσ, which is
proportional to spin. Therefore, the anomalous velocityeE × F in Eq. (79) isαE × 〈σ〉. That
is, spin-up and spin-down electrons acquire opposite transverse velocities. In non-magnetic
materials, these two species have the same population and wedo not expect to see a net trans-
verse current. However, “if” one defines a spin current as thedifferenceof these two transverse
currents, then there will be a netspincurrent, giving rise to the spin Hall effect [38].
One can also calculate the spinning angular momentum of the conduction electron from Eq. (77).
The result is,

L = −2mV 2

3~

(

1

Eg
− 1

Eg + ∆

)

σ. (90)

Through the Zeeman energy in Eq. (87), the orbital magnetic moment generated from Eq. (90)
contributes an extrag-factor,

δg = −4

3

mV 2

~2

(

1

Eg

− 1

Eg + ∆

)

. (91)

This is the anomalousg-factor of the conduction electron [39]. Therefore, the anomalousg-
factor in solid is indeed a result of the self-rotating motion of the electron wave packet.
Finally, the effective quantum Hamiltonian in Eq. (87) for the conduction band has the following
form,

H(r,p) = E0(π) − eφ(r) + αE · σ × π +
δg

2
µBB · σ, (92)

whereE0 includes the Zeeman energy from the bare spin,α is given below Eq. (89),δg is given
in Eq. (91), and the correction to the Zeeman energy has been neglected. This Hamiltonian
agrees with the one obtained from block diagonalization [36]. The wave packet approach is not
only simpler, but also reveals the deep connections betweenvarious effective couplings and the
Berry potential.
Some comments are in order: First, we emphasize again that itis necessary to include the
Berry curvature and orbital moment in order to account for physical effects to first order in
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external fields. Furthermore, from the discussions above, we can see that these quantities are
also sufficient for building a correct quantum theory.
Second, starting from a quantum theory, one can construct a semiclassical theory in a specific
subspace. This theory can later be re-quantized. The re-quantized effective theory applies to a
smaller Hilbert space compared to the original quantum theory. Nevertheless, it can still have
its own semiclassical theory, which in turn can again be re-quantized. As a result, a hierarchy
of effective theories and gauge structures can be produced,all within the wave packet approach
(see Ref. [35] for more discussions).

6 Concluding remarks

In this review, selected topics related to Berry phase in solid state physics are reported. Many
of these topics have been fully developed over the years. Theexposition here only serves as
an introduction, without going into details and more recentdevelopment. Readers interested
in certain topics can consult some of the following books or review articles: [1] and [40] on
Berry phase in general, [41] and [42] on electric polarization, [43] on quantum Hall effect, [44]
and [45] on anomalous Hall effect, [46] and [47] on dynamics of Bloch electrons, and [35] on
non-Abelian wave packet dynamics.
In optics, the Berry curvature is related to a transverse shift (side jump) of a light beam reflected
off an interface.[48] The shift is roughly the order of the wavelength. Its direction depends
on the circular polarization of the incident beam. This is called theoptical Hall effect, or the
Imbert-Federov effect,[49] which is not covered here. The side jump of a light beam is similar to
the analogous “jump” of an electron scattering off an impurity in the anomalous Hall effect [22].
A more detailed study of the optical transport involving spin can be found in Ref. [50].
Several topics not covered here can be found in an upcoming review on Berry phase in solid state
physics [51]. These topics include the orbital magnetization of a solid, dipole moment of the
wave packet, anomalous thermoelectric transport, and inhomogeneous electric polarization. It is
amazing that the Berry phase plays such a versatile role in somany solid-state phenomena. On
the other hand, several challenging subjects still remain largely unexplored. For example, the
effect of the Berry phase in systems in which non-adiabatic processes or many-body interaction
is crucial. Therefore, one can expect to see more of the intriguing Berry phase effects in solid
state systems.
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