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1 Anholonomy in geometry

Before introducing the Berry phase, we review the elegarnhematical framework behind it.
It helps explaining why the Berry phase is often also calledgeometric phase.

1.1 Parallel transport and anholonomy angle

Consider a two-dimensional curved surface embedded irea timensional Euclidean space.
At each pointr = (z1,x2) on the surface, there is a vector spd¢eformed by the tangent
vectors at that point. For an ant living on the surface, iggible to judge if two vectors at
different locations (1 and 2) of the surface are nearly {rat far from it?
One possible way to calibrate the difference between twdovea@t different locations is as
follows: Starting from point, the ant can carry the vector around in such a way that it makes
a fixed relative angle with the tangent vector along a pativéen 1 and 2 (see Fig. 1a). Such
a vector is said to bparallel transported One can then compare the vector already at point 2
with the parallel transported vector for difference.
Notice that, if we follow this rule, then “being parallel” &path-dependent concept. That is,
one cannot have a global definition of “being parallel” on¢heved surface. The other way to
say the same thing is that, if you parallel transport a veaiong a closed loop on the surface,
then the final vectov ; is generically different from the initial vector; (see Fig. 1b).
The angle between these two vectors is called the anholomomle (or defect angle). Such
an angle is an indication of how curved the surface is. Oneusanit to define the intrinsic
curvature of the surface. For example, for a sphere withusadli the defect anglex for a
vector transported around a spherical triangle is equdia@csblid angle? subtended by this
triangle,

A

O{:Q:ﬁ7

(1)

whereA is the area enclosed by the triangle.

One can define the curvature at poings the ratio betweea and A for an infinitesimally
closed loop around. According to this definition, the sphere has a constantature1/R>
everywhere on the surface.

You can apply the same definition to find out the intrinsic etuve of a cylinder. The result
would be zero. That is, the cylinder has no intrinsic curkatd hat is why we can cut it open
and lay it down on top of a desk easily without stretching.

1.2 Moving frameand curvature

In practice, apart from a few simple curved surfaces, it isgasy to determine the curvature
without using algebraic tools. At this point, it helps irdiing the method of the moving
frame. We follow a very nice article by M. Berry (see Berrydroductory article in Ref. [1])
and apply this method to calculate the curvature.

Instead of moving a vector, one now moves an orthonormaldr@mtriad) along a patly
between two points. At the starting point, the triadrisé,, é;), wherer is the unit vector along
the normal direction an¢¥,, é;) is an orthonormal basis of the tangent vector sgace

As a rule of parallel transport, we require that, when mowlungC, the triad should not twist
aroundr. Thatis, ifw is the angular velocity of the triad, then

w-r=0. (2)
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Fig. 1. (a) Parallel transport of a vector from 1 to 2. It offers a waydomparev; andv, on a
curved surface. (b) A vector is parallel transported aroundosed path. When the surface is
curved, the final vector would point to a different directioom the initial vector. The angle of
differencex is called the anholonomy angle.

Using the identityé; = w x é, it follows from this requirement that, - é, = 0:

w-r = (.«J'é1><é2

= WXél'éQIél'éQIO. (3)

Likewise also the relatiod, - ¢, = 0 is shown easily.
To make further analogy with the complex quantum phase iméx¢ section, let us introduce
the following complex vector,

L. .
Y= NG (61 +iéa). (4)

Then the parallel transport condition can be rephrased as,
Im(z/}*-@/.)):& or i)* - =0. (5)

Notice that the real part af* - ¢ is always zero sincé, - ¢, andé, - é, are time independent.
Instead of the moving triad, we could also erect a fixed trigdy, v), at each point of the

surface and introduce |

nzﬁ(a+i@). (6)
Assuming these two triads differ by an angler) (around the*-axis), then)(z) = n(x)e @),
It follows that

Y* - dip =n" - dn —ida. (7

Because of the parallel transport condition in Eq. (5), aa&lh = —in* - dn. Finally, the twist
angle accumulated by the moving triad after completing aezdldoopC s,

a(C) = —i?én* . %da:, (8)

where we have changed the variable of integration to theduoate on the surface. Therefore,
the defect angle can be calculated conveniently using tbdisiad basis.
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With the help of the Stokes theorem, one can transform tleaiitegral to a surface integral,

1 /dn* dn dn* dn
)= [ - o 2 ) dad 9
Oé( ) /SZ (dl’l d{EQ d{EQ dl‘l) T, ()

where S is the area enclosed [fy. In the case of the sphere, one can chogsex,) to be
the spherical coordinaté8, ¢), and choos& andv to be the unit vector§ andg?> in spherical
coordinates. That ig; = (cos  cos ¢, cos 0 sin ¢, —sinf) andv = (— sin ¢, cos ¢, 0). It is not
difficult to show that the integrand in Eq. (9)d810dfd¢. Thereforen(C) is indeed the solid
angle of the are&.

The integral in Eq. (9) over the whole sphere (the total cume is equal to its solid angle,
47. In fact, any closed surface that has the same topology abexesgvould have the same
total curvaturer x 2. The value of 2 (Euler characteristic) can thus be regardedraumber
characterizing the topology of sphere-like surfaces. Imegal, for a closed surface withholes,
the Euler characteristic i5— 2g. For example, the total curvature of a dongtf 1) is 0. This
is the beautiful Gauss-Bonnet theorem in differential getryn

2 Anholonomy in quantum mechanics

Similar to the parallel transported vector on a curved sa;fthe phase of a quantum state (not
including the dynamical phase) may not return to its origuzdue after a cyclic evolution in
parameter space. This fact was first exposed clearly by Midexry [3] in his 1984 paper. In
this section, we introduce the basic concept of the Berrngghia later sections we will move
on to examples of the Berry phase in condensed matter.

2.1 Introducingthe Berry phase

Let us start from a timédependensystem described by a HamiltoniaH(r, p). We denote the
eigenstates biyn) and the eigenvalues lay,. For simplicity, the energy levels are assumed to be
non-degenerate. An initial state,) = > a,,/m) evolves to a stat),) = > a,,e "/ nt|m)

at timet. The probability of finding a particle in a particular levelnnains unchanged, even
though each level acquires a different dynamical plagé<t. In particular, if one starts with
an eigenstate of the Hamiltoniany,) = |n), with a,,, = d,, ., then the probability amplitude
does not “leak” to other states.

Let us now consider a slightly more complicated system with $ets of dynamical variables
H(r,p; R, P). The characteristic time scale of the upper-case set israbto be much longer
than that of the lower-case set. For example, the systemeandiatomic moleculél,”. The
electron and nuclei positions are represented laynd R respectively. Because of its larger
mass, the nuclei move more slowly (roughly by a thousanddjraempared to the electron. In
the spirit of the Born-Oppenheimer approximation, one cest freatR as a time-dependent
parameter, instead of a dynamical variable, and study tegegyat each “snapshot” of the
evolution. The kinetic part of the slow variable is ignored fow.

Since the characteristic frequency of the nuclei is muchlsmi&an the electron frequency, an
electron initially in an electronic state) remains essentially in that state after titne

() = e (R)g=i/RJg dien(Ro) |y R, (10)
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Table 1. Anholonomies in geometry and quantum state

geometry quantum state
fixed basis n(x) In; R)
moving basis P(x) |Y; R)
parallel-transport condition iy)* - 1) = 0 i(hlep) =0
anholonomy anholonomy angle Berry phase
classification of topology | Euler characteristic =~ Chern number

Apart from the dynamical phase, one is allowed to add an @ktase-""+(®) for each snapshot
state. Such a phase is usually removable by readjustinghthsepof the basis:; R) [2]. In
1984, almost six decades after the birth of quantum mechaBerry [3] pointed out that this
phase, like the vector in the previous section, may not metiwits original value after a cyclic
evolution. Therefore, it is not always removable.

To determine this phase, one substitutes Eq. (10) intonmedependenschrodinger equation.
It is not difficult to get an equation foy,,(¢),

3u(t) = ilnli). (11)

Therefore, after a cyclic evolution, one has

1 (C) =zy§< o). dszcA-dR, (12)

whereC is a closed path in th&-space. The integrand(R) = i(n|22) is often called the
Berry connection

If the parameter space is two dimensional, then one can uke$Stheorem to transform the
line integral to a surface integral,

[, 0n on., o 9
%(0)22/5<8R Ch) R = /F PR, (13)

The integrandF(R) = Vg x A(R) is usually called theBerry curvature For parameter
spaces with higher dimensions, such a transformation dabestdone using the language of
the differential form.
By now, the analogy between Egs. (8,9) and Egs. (12,13) dhmiktlear. Notice thdh) is a
normalized basis witlin|n) = 1. Therefore(n|n) should be purely imaginary aridn|n) is a
real number. The basis stdte plays the role of the fixed triad in the previous subsection.
Both are single-valued. On the other hand, the parallebparied state))) and the moving
triad ¢ are not single-valued.
A point-by-point re-assignment of the phase of the basig gta R)’ = ¢9®)|n; R), changes
the Berry connection,
9y
OR’
However, the Berry curvaturB and the Berry phase are not changed. This is similar to the
gauge transformation in electromagnetism: one can chafiseethit gauges for the potentials,
but the fields are not changed. Such an analogy will be exgpplomrgher in the next subsection.

A= (14)
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Fig. 2: Along solenoid hinged at the origin is slowly rotating aralLthez-axis. At each instant,
the spin at the origin aligns with the uniform magnetic figldide the solenoid.

A short note: Itis possible to rephrase the anholonomy ofittamtum state using the mathemat-
ical theory of fiber bundles, which deals with geometricalgs that can locally be decomposed
into a product space (the “fiber” space times the “base” gpde globally show nontrivial
topology. The Mobius band is the simplest example of suchagetric object: Locally it is a
product of two one-dimensional spaces but globally it is (hecause of the twisting). In our
case, the fiber is the space of the quantum phéRg and the base is the spaceRf The con-
cept of the parallel transport, the connection, and theature all can be rephrased rigorously
in the language of fiber bundles [4]. Furthermore, theredge altopological number (similar to
the Euler characteristic) for the fiber bundle, which ise@dlihe Chern number.

The analogy between geometric anholonomy and quantum @mbroly is summarized in Ta-
ble 1.

2.2 A rotating solenoid

To illustrate the concept of the Berry phase, we study a srapstem with both slow and fast
degrees of freedom. Following M. Stone [5], we consider atimog (long) solenoid with an
electron spin at its center. The solenoid is tilted with adieagled and is slowly gyrating
around thez-axis (see Fig. 2). Therefore, the electron spin feels soumifmagnetic field that
changes direction gradually. This example is a slight gadreation of the spin-in-magnetic-
field example given by Berry in his 1984 paper. The Hamiltor@gthis spin-in-solenoid system

is,
2

L
H =" -B 15

whereL and[ are the angular momentum and the moment of inertia of thensmerespec-
tively, and the Bohr magneton js; = eh/2mec.

The magnetic field along the direction of the solenoid is our time-dependerdpateR.. In

the quasi-static limit, the rotation energy of the solensideglected. When the solenoid rotates
to the angl€d, ¢), the spin eigenstates are

R 9 R =i qin 8
|+;B>=( ),|—;B>=( ¢ 9“) (16)

i¢ gin 2 9
e'?sin 3 COS 3
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Table 2: Analogy between electromagnetism and quantum anholonomy

Electromagnetism quantum anholonomy
vector potentialA (r) Berry connectiom (R)
magnetic fieldB(r) Berry curvature®(R)
magnetic monopole point degeneracy
magnetic flux®(C') Berry phasey(C)

These states can be obtained, for example, from the spirdop/) states+) by a rotation
e~io0(6/2) in which the rotation axi§ = (— sin ¢, cos ¢, 0) is perpendicular to both and B.
Using the definitions of the Berry connection and the Bermyature in Egs. (12) and (13), one
obtains

11 —cosf -
AL = - 17
* 2 Bsinf (17)
1B
F, = — 1
+ T35 (18)

They have the same mathematical structure as the vectantigdtend the magnetic field of a

magnetic monopole. The location of the “monopole” is at thgio of the parameter space,
where a point degeneracy occurs. The strength of the moadpa) equals the value of the

spin (this is true for larger spins also). That is why the Beonnection and the Berry curvature
are sometimes called the Berry potential and the Berry fieldhis picture, the Berry phase is
equal to the flux of the Berry field passing through a ldgon parameter space. It is easy to
see that,

14(C) = F50(0), (19)

whereQ(C) is the solid angle subtended by lo6pwith respect to the origin. The similarity
between the theory of Berry phase and electromagnetisnmssuized in Table 2.

The Berry phase of the fast motion is only half of the story.eéWkthe quantum state of the fast
variable acquires a Berry phase, there will be an intergsbiack action” to the slow motion.
For example, for the rotating solenoid, the wave functiothefwhole system can be expanded
as

T) = ¢ (R)n;R), (20)
n==+

in which ¢,,(R) describes the slow quantum state. From the SchrodingetiequH |V) =
E|V), one can show that,

h2 1d ?
~T - 92 ___An n
[2131n29 (idgb ) e

wheree, is the eigen-energy for the fast degree of freedom, Apd= i(n;R\%m; R). The
off-diagonal coupling betweepr) and|—) has been ignored. Therefore, the effective Hamil-
tonian for the slow variable acquires a Berry potenfAg)(R). Such a potential could shift
the spectrum and results in a force (proportional to theyBeurvature) upon the slow motion,
much like the effect of vector potentidl(r) and magnetic field on a charged particle.
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Fig. 3: (a) A metal ring in a non-uniform magnetic field. The spin ef&hectron that is circling
the ring would align with the magnetic field and trace out aidaingle in its own reference
frame. (b) A ferromagnetic ring in a non-uniform magneti@fid he spins on the ring are bent
outward because of the magnetic field.

3 Berry phaseand spin systems

A natural place to find the Berry phase is in spin systems. Nauoseresearches related to this
subject can be found in the literature [6]. Here we only nwntivo examples, one is related
to the persistent spin current in a mesoscopic ring, ther sthates to quantum tunneling in a
magnetic cluster.

3.1 Persistent spin current

We know that an electron moving in a periodic system feelseststance. The electric resis-
tance is a result of incoherent scatterings from impuréigs phonons. If one fabricates a clean
one-dimensional wire, wraps it around to form a ring, anddmithe temperature to reduce the
phonon scattering, then the electron inside feels lika¢jvin a periodic lattice without electric
resistance.

For such a design to work, two ingredients are essentiadt,Fire electron has to remain phase
coherent (at least partially) after one revolution. Therefa mesoscopic ring at very low tem-
perature is usually required. Second, to have a travelingwéaere has to be a phase advance
(or lag) after one revolution. This can be achieved by thread magnetic fluxs through the
ring, so that the electron acquires an Aharonov-Bohm (ABJsglie/h)¢p = 2m(¢p/¢g) after
one cycle, where, is the flux quantunk/e. When this does happen, it is possible to observe
the resultingpersistent charge curremmh the mesoscopic ring.

Soon after this fascinating phenomenon was observed [Wjstproposed that, in addition to
the AB phase, a spinful electron can (with proper designlisiec Berry phase after one cycle,
and this can result in a persistemincurrent [8]. The design is as follows: Instead of a uniform
magnetic field, a textured magnetic field is used, so thahdwne revolution, the electron spin
follows the direction of the field and traces out a non-zefmsmgle( (see Fig. 3a). According
to Eq. (19), this gives rise to a spin-dependent Berry pha&@) = —(0/2)Q2, whereo = +.
After combining this with the (spin-independent) AB phasgin-up and spin-down electrons
have different phase shifts, generating different amoahisersistent particle currert,, I_.
Therefore, a spin current definedas= (h/2)(1. — I_) is not zero.
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Fig. 4. Persistent spin current as a function of the solid angle. &t-aero temperature, the
sharp edges of the sawtooth become smooth.

To illustrate the physics just mentioned, consider a rirag #lows only angular motion. Before
applying the magnetic flux, the electron with wave vediqicks up a phasgL from circling

the ring, wherel. = 27 R and R is the radius of the ring. Because of the periodic boundary
condition, one hagL = 27n (n € Z). After adding the AB phase and the Berry phase, it
becomesL = 2mn + 27w (¢p/po) — 0(2/2). Therefore, the energy of an electron in th¢h
mode is

h2 k> h? 0] (039}
— Bo = +——0—) +ugB 22
€no 5 wpbo omR ( 0 o %) HwBbOo, (22)

wheregq /¢y = /4.
The spin current can be calculated from

aeno
=13 (5) @)

whereP,, = exp(—e,,/kgT)/Z is the probability of the electron in the, o)-state, andZ =
> no € me/F5T. For a particulak and¢, the current can also be written as

Oe
L=-S"%wp 24

To get a rough understanding, we consider the simplestwésee the: = 1 mode is populated
with equal numbers of spin-up and -down electrons (if thenZae splitting is negligible). The
higher modes are all empty at low enough temperature. Inctse, the spin currerdt =
—(R*/4rmR?)(Q/47) is proportional to the solid angle of the textured magnetdtdfisee
Fig. 4). At higher temperature, the sawtooth curve will beecsmooth.

The mesoscopic ring considered above is a metal ring withimgalectrons that carry the spins
with them. A different type of spin current has also been psagl in a ferromagnetic ring with
no moving charges [9]. Again the ring is subject to a textureynetic field, such that when
one moves round the ring, one sees a changing spin vectdrdkas out a solid angke (see
Fig. 3b). As a result, the spin wave picks up a Berry phase wtamling around the ring,
resulting in a persistent spin current. So far neither typpeassistent spin current has been
observed experimentally.
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3.2 Magnetic cluster

Berry phase plays a dramatic role in the quantum tunnelingaob-sized magnetic clusters.
The tunneling between two degenerate spin states of theecldepends on whether the total
spin of the particle is an integer or a half-integer. In theelacase, the tunneling is completely
suppressed because different tunneling paths interfesudévely as a result of the Berry
phase [10].

Consider a single-domain ferromagnetic particle withtinerant spin. Its total spid can be
of order ten or larger, as long as tunneling is still possiBlesume that the particle lives in an
anisotropic environment with the Hamiltonian,

2 2 2
H:—kl%Jrkz (%—%) (k1 > ko). (25)
That is, the easy axis is along theaxis and the easy plane is the-plane. The cluster is in
the ground state when the spin points to the north pole oretgthith pole of the Bloch sphere.
Even though these two degenerate states are separated bjea bi#ze particle can switch its
direction of spin via quantum tunneling.

To study the Berry phase effect on the tunneling probability best tool is the method of path
integrals. In the following, we give a brief sketch of itsraulation.

The fully polarized spin staté:, J) along a directiom: with spherical angle$d, ¢) can be
written as,

2J .
= JIe =12+, (26)

=1

where|n, +) is the spin-1/2 “up” state along thieaxis and is a unit vector along the x n di-
rection. Such a so-callespin coherent statean be used to “resolve” the identity operator [11],

2 1
=22 [aauiyal, 27)

where|n) is an abbreviation offi, .J).

In order to calculate the transition probability amplitu@de| exp[—(:/h) HT]|n;), one first di-
vides the time evolution into stepssp(—i/hHT) = [exp(—i/hHdt)]™, dt = T/N, then insert
the resolution of identity in Eq. (27) between neighboriteps. The transition amplitude then
becomes a product of factors with the following form,

i
T h
1 — (a|h)dt — %H(Jﬁ)dt. (28)

(n(t+ dt)|e‘%Hdt|ﬁ(t)> ~ (n(t+dt)|n(t)) (n(t+dt)|H(J)|n(t))dt

12

In the final step, we have replaced the quantum Hamiltoniaa thassical Hamiltonian. That
is, (H(J)) = H({J)). This holds exactly if the Hamiltonian is linear ih but is only an
approximation in general. The correction due to the non+oaiativity of the spin operator is
roughly of the fractiorl /J and can be ignored for large spins.
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Fig. 5: According to the Hamiltonian in Eq. (25), theaxis and ther-axis are the easy axis and
the hard axis, respectively. There are two (degenerate)micstates at the north pole and the
south pole of the Bloch sphere. Tunneling from one grourtd stethe other follows the dashed
line on they — z plane. Applying a magnetic field along thedirection moves the locations of
the ground states and shrinks the tunneling path to a smkltgy.

Finally, by summing over paths in thiespace, one has

l

(i gle HHT i) — / D] exp {ﬁ /t y [inaliy — m(70)| dt}. (29)

Notice that the first integral in the exponent generates syB#rase for a path (see Eq. (12)). In
the semiclassical regime, the functional integral in EQ) (2 dominated by the classical path
n. with least action, which is determined from the dynamicaiapn ofrn (see below). During
tunneling, the paths under the barrier are classicallycessible and» becomes an imaginary
vector. It is customary to sacrifice the reality of time keepn real. The good news is that the
final result does not depend on which imaginary world you skdo live in.

Definer = it, then the transition amplitude dominated by the classicaba s,

(ﬁf|6_%HT|fli) o ¢t I Adieo=1/R ] H(Jhe)dr (30)

whereA = i(n|Vn) is the Berry potential. The integral of the Berry potents&agjauge depen-
dent if the path is open. It is well defined for a closed looghsas the classical path on the
yz-plane in Fig. 5. The Berry phase for such a loop#s/ since it encloses an area with solid
angle2r (Cf. Eg. (19)). This is also the phase difference betweernvioeclassical paths from
the north pole to the south pole. Therefore,

(—2le”nHT)2) cos(wJ)e’l/hfif H(Jhe)dr, (31)
When J is a half integer, the transition process is completely segged because of the Berry
phase. The conclusion remains valid if one considers dalgsaths with higher winding num-
bers [10].
As a reference, we also write down the equation of motiomfothat is determined from the

classical action in Eq. (30),
J@ Caw OH(Jn)
a on

(32)
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Unit cell P
D (a)

+ N
@ © ® o ® o
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Fig. 6: An one-dimensional solid with infinite length. Differenbides of the unit cell give
different electric polarization vectors ((a), (b)). On thther hand, the change of polarization
does not depend on the choice of the unit cell (c).

This is the Bloch equation for spin precession, in whidti/on plays the role of an effective
magnetic field.

One comment s in order: One can apply a magnetic field alomg-txis that shifts the energy
minima along that direction and shrinks the classical losge(Fig. 5). In an increasingly
stronger field, the size of the lod@p eventually would shrink to zero. That is, the Berry phase
~vc would decrease from the maximum value2af/ to zero. During the process, one expects
to encounter the no-tunneling situation several times when, /27 hits a half-integer. Such

a dramatic Berry phase effect has been observed [12].

4 Berry phase and Bloch state

In the second half of this article, we focus on the Berry pliaperiodicsolids. It has been play-
ing an ever more important role in recent years due to sedesabveries and “re-discoveries”,
in which the Berry phase either plays a crucial role or oféefgesh perspective.

4.1 Electric polarization

It may come as a surprise to some people that the electricipatian P of an infinite periodic
solid (or a solid with periodic boundary conditions) is gecally not well defined. The reason
is that, in a periodic solid, the electric polarization deg® on your choice of the unit cell
(see Fig. 6a,b). The theory of electric polarization in aamional textbooks applies only to
solids consisting of well localized charges, such as ionimolecular solids (Clausius-Mossotti
theory). It fails, for example, in a covalent solid with bortthrges such that no natural unit cell
can be defined.

A crucial observation made by R. Resta [13] is that, evendhate value of® may be am-
biguous, its change is well defined (see Fig. 6¢). It was laténted out by King-Smith and
Vanderbilt [14] thatAP has a deep connection with the Berry phase of the electromiess
The outline of their theory below is based on one-particddest However, the same scheme
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applies to real solids with electronic interactions, agjlas one replaces the one-particle states
by the Kohn-Sham orbitals in the density functional theory.

We will use A to label the degree of ion displacement. It varies from 0 t® th& ions shift
adiabatically from an initial state to a final state. Theeat&nce of polarizations between these
two states is given bjo1 dA\dP /d\, where

= %Z<¢z|r|¢z> (33)

The summation runs over filled Bloch statges(with A\-dependence) and is the volume of
the material. For an infinite crystal, the expectation val@e is ill-defined. Therefore, we
consider a finite system at first, and Iét— oo when the mathematical expression becomes
well-defined.

The Bloch states are solutions of the Schrodinger equation

2

m16) = (3-+13) 160 = alo, (34)

whereV), is the crystal potential. From Eq. (34), it is not difficultsbow that, for; # i, one
has

0o; 0
(6= &) (63l 52 = (6 aﬁw (35)
Therefore,

)
There is a standard procedure to convert the matrix elenoémtso those ofp: Start with the

commutation relationjr, H,] = ihp/m, and sandwich it between thestate and thg-state
(againj # i), we can get an useful identity,

<<Z>z|p|<Z>J>

€ — €

(dilr] o) = (37)

With the help of this identity, Eq. (36) becomes the follog/expression derived by Resta [13],

9i|Pl9;) (051 Valds)
ZmVZZ[ pez_ej) NP el (38)

)

Now all of the matrix elements are well-defined and the voluimean be made infinite. After
integrating with respect ta, the resultingAP is free of ambiguity, even for an infinite covalent
solid.

For Bloch states, the subscripts are (m, k) and;j = (n, k), wherem, n are the band indices
andk is the Bloch momentum defined in the first Brillouin zone. E38)(can be transformed to
a very elegant form, revealing its connection with the Beuywature [14]. One first defines a
k-dependent Hamiltoniar] = e~***He* " It is the Hamiltonian of the cell-periodic function
Upk. That is,ﬁ|unk) = €nk|Unk), Whereo, = eTu,,. Itis then straightforward to show that,

aunk

S5, (39)

(Gonlplonad = 3 s | e 1] o) = e = el 2
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With the help of this equation and another one very simild&do(35) (just replace the;’s by
thew;’s), we finally get ¢ = z, y, 2)

dﬁ _ _ﬂ Z aunk | aunk _ 6unk | 6unk
d\ Vv — Oks = O oX 0Ok,

= > k), (40)
nk

whereQ} | =i ((a% Guy c.c.) is the Berry curvature for the-th band in the parameter

space of, and\ (Cf. Eq. (13)).
Let us take a one-dimensional system as an example. Assuhd@ngttice constant is. Then
the difference of polarization ig (= —e),

e 2m/a 1
AP = — Q- 41
[ @

The area of integration is a rectangle with lengttend 27 /a on each side. The area integral
can be converted to a line integral around the boundary afettangle, which gives the Berry
phasey, of such a loop. Therefore,

AP =c¢e Tn. (42)

n27r

In the special case where the final state of the deformafjos the same as the initial stalg,

the Berry phase,, can only be integer multiples @fr [14]. Therefore, the polarizatioR for a
crystal state is uncertain by an integer chaige

One the other hand, this integer chaégdoes carry a physical meaning when itis the difference
AP between two controlled states. For example, when the ¢aptatential is shifted by one
lattice constant to the right, thig is equivalent to the total charge being transported. Based
on such a principle, it is possible to design a quantum chpuyep using a time-dependent
potential [15].

4.2 Quantum Hall effect

The quantum Hall effect (QHE) has been discovered by K. vatzikh et al. [16] in a two-
dimensional electron gas (2DEG) at low temperature andhgtroagnetic field. Under such
conditions, the Hall conductivity; develops plateaus in the; (B) plot. For the integer QHE,
these plateaus always locate at integer multipleg 6 to great precision, irrespective of the
samples being used. Such a behavior is reminiscent of n@pi@squantum phenomena, such
as the flux quantization in a superconductor ring.

To explain the integer QHE, Laughlin wraps the sheet of th&@DRo a cylinder to simulate
the superconductor ring, and studies the response of tmentwith respect to a (fictitious)
magnetic flux through the cylinder (see Fig. 7). He found,thatthe flux increases by one
flux quantumh/e, integer charge§) = ne are transported from one edge of the cylinder to
the other [17]. This charge transport in the transversectice gives the Hall current, and the
integern can be identified with the integer of the Hall conductane®/i [18].
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B

Fig. 7: In Laughlin’s argument, the 2DEG is on the surface of a cydndrhe real magnetic
field B now points radially outward. In addition, there is atifious flux threading through the
cylinder. When the fictitious flux changes by one flux quantueger number of electrons are
be transported from one edge of the cylinder to the other.

Soon afterwards, Thoulegs al. (TKNdAN) [19] found that the Hall conductivity is closely
related to the Berry curvature (not yet discovered by Betithat time) of the Bloch state. We
now briefly review the TKNdN theory.

Consider a 2DEG subject to a perpendicular magnetic fieldaandak in-plane electric field.
In order not to break the periodicity of the scalar potentad choose a time-dependent gauge
for the electric field. That it = —0A g /0t, A = —Et. The Hamiltonian is,

(7 — eEt)?
2m

H = + Vi (I') , (43)

wherem = p + eA, has included the vector potential of the magnetic field, Ent the lattice
potential. Similar to the formulation the in previous suligm, it is convenient to use the
dependent Hamiltonial and the cell-periodic function, in our discussion. They are related
by H\unk> = Enk|unk>.

We will assume that the system can be solved with known e@jeas and eigenstatd$, |u£32) =

Eﬁﬂﬂufﬁb in the absence of an external electric field [20]. The eledteid is then treated as a
perturbation. To the first-order perturbation, one has

n')(n'| Z|n
(ko)) = In) — zﬁg M (44)
wherek(t) = ko — eEt/h, and|n) ande, are abbreviations qufg(t)> andESi{)(t).

The velocity of a particle in the-th band is given by, (k) = (uu|0H /hdk|un). After
substituting the states in Eq. (44), we find

v, (k) = 7?511 = <<n|%_{<[|nl><"/|%?> —c.c.> . (45)

€n — €/
n'#n n n

The first term is the group velocity in the absence of the gteperturbation. With the help of
an equation similar to Eq. (39),

(nl 5 In) = (en = ew) (5 In), (46)
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one finally gets a neat expression,

- (B (B8 e

By a change of variable, the second term becofags< k = —(e/h)2, x E, where(,,, =
icapy (5| 375 is the Berry curvature in momentum space.

For a 2DEG{2, = Q,z. All states below the Fermi energy contribute to the curdamtsity,

j= %Z —ev (k) = %Z/%Qn(k) x E. (48)

nk

Notice that the first term in Eq. (47) does not contribute ®dhbrrent. From Eq. (48), itis clear
that the Hall conductivity is given by,

e 1 9
Oy =T ; o / d*kQ,, (k). (49)

Thoulesset al. have shown that the integral of the Berry curvature over thelevBZ di-
vided by27 must be an integer,. Such an integer (the Chern number mentioned in Sec. 2.2)
characterizes the topological property of the fiber bungbes, in which the base space is the
two-dimensional BZ, and the fiber is the phase of the Blocteg&see the discussion near the
end of Sec. 2.1). Therefore, the Hall conductivity of a filkhd is always an integer multiple
of 2 /h. Such a topological property is the reason why the QHE is bagibagainst disorders
and sample varieties. Even though the discussion here ésllmassingle-particle Bloch states,
the conclusion remains valid for many-body states [21].

Some comments are in order. First, the formulas behind thegshof electric polarizatioAP

in Sec. 4.1 and those of the quantum Hall conductivity heo& hery similar. Both are based
on the linear response theory. In fact, the analogy can beeddurther if AP is considered as
the time integral of a polarization currejit = 0P /0t. The latter, similar to the quantum Hall
current in Eg. (48), can be related to the Berry curvatureatly.

Second, if a solid is invariant under space inversion, thercell-periodic state has the symme-

try,
Up—k(—T) = tnk(r). (50)

On the other hand, if the system has time-reversal symntbay,

U1 (1) = tnie(r). (51)

As aresult, if both symmetries exist, then one can show teBerry potentialA,, = i(n|%%)
(and therefore the Berry curvature) is zero forkallThe conclusion, however, does not hold if
there is band crossing or spin-orbit interaction (not coersed so far).

That is, the Berry potential (or curvature) can be non-z&(y the lattice does not have space
inversion symmetry. This applies to the polarization désad in the previous subsection. (ii)
Time-reversal symmetry is broken, e.g., by a magnetic fi€lds applies to the quantum Hall
system in this subsection. In the next subsection, we censidystem with spin-orbit interac-
tion, in which the Berry curvature plays an important role.



X5.17

saturation slope=R

1 oRarMs

Fig. 8 When one increases the magnetic field, the Hall resisti¥igyferromagnetic material
rises quickly. It levels off after the sample is fully magzed.

4.3 Anomalous Hall effect

Soon after Edwin Hall discovered the effect that bears hmenan 1879 (at that time he was
a graduate student at Johns Hopkins university), he madaitasimeasurement on iron foil
and found a much larger Hall effect. Such a Hall effect inderagnetic materials is called the
anomalous Hall effect (AHE).

The Hall resistivity of the AHE can be divided into two termghwery different physics (pro-
posed by Smith and Sears in 1929) [22],

pr = pn + pan = Bn(T)B + Rau(T)poM (T, H), (52)

whereB = uo(H + M). The first (normal) term is proportional to the magnetic figldhe
sample. The second (anomalous) term grows roughly linewtly the magnetizatiod/ and
the coefficientR 4 is larger thank by one order of magnitude or more. If the applied field
is so strong that the material is fully magnetized, thendghgmo more enhancement from the
anomalous term and the Hall coefficient suddenly drops bgrsrdf magnitude (see Fig. 8).
Since the normal term is usually much smaller than the anmunsaerm, we will neglect it in
the following discussion.
Unlike the ordinary Hall effect, the Halesistivityin the AHE increases rapidly with tempera-
ture. However, the Hatonductivity

o = p%iin%{ =~ Z—g (if pr > pm), (53)
shows less temperature dependence, wperns the longitudinal resistivity. The reason will
become clear later.
Since the AHE is observed in ferromagnetic materials, thgrmaazation (or the majority spin)
must play a role here. Also, one needs the spin-orbit (S@jaction to convert the direction of
the magnetization to a preferred direction of the trangvelsctron motion.
Among many attempts to explain the AHE, there are two pomxplanations [23], both involve
the SO interaction, "

HSO = _WU . (p X VV) (54)

The first theory was proposed by Karplus and Luttinger (KLYLB54 [24]. It requires no
impurity (the intrinsic scenario) and théin Eq. (54) is the lattice potential. The Hall resistivity
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pam is found to be proportional tp? . The other explanation is proposed by Smit in 1958 [25].
It requires (non-magnetic) impurities (the extrinsic s andV is the impurity potential. It
predictspy < pr. When both mechanisms exist, one has

par = a(M)pr, +b(M)p7. (55)

The Smit term is a result of the skewness of the electron-iitypacattering due to the SO
interaction. That is, the spin-up electrons prefer sdatgeto one side, and the spin-down
electrons to the opposite side. Because of the majoritysspiitthe ferromagnetic state, such
skew-scatterings produce a net transverse current. Spnijsosal started as an opposition to
KL's theory and gained popularity in the early years. As allteghe KL scenario seems to have
been ignored for decades.

At the turn of this century, however, several theorists pttkip the KL theory and put it under
the new light of the Berry curvature [26]. Subsequentlyréasing experimental evidences
indicate that, in several ferromagnetic materials, the Keéchanism does play a much more
important role than the skew-scattering. These works phbtl in renowned journals have
attracted much attention, partly because of the beautyedB#rry curvature scenario.

KL's theory, in essence, is very similar to the ones in thevigs two subsections. One can
first regard the Hamiltonian with the SO interaction as dollwathen treat the electric field as a
perturbation. To the first order of the perturbation, onegetrthe electron velocity with exactly
the same form as the one in Eq. (47). The difference is thastdte|n) now is modified by
the SO interaction and the solid is three dimensional. Thatne simply needs to consider a
periodic solid without impurities and apply the Kubo formuivhich (in these cases) can be
written in Berry curvatures,

e 1
= —— Q. (k).
oan = 73 ngk n(k) (56)

However, not every solid with the SO interaction has the AREe transverse velocities (also
called the anomalous velocity) in general have oppositessigr opposite spins in the spin-
degenerate bands. Therefore, these two Hall currentsestil@nceled. Again the ferromagnetic
state (which spontaneously breaks the time reversal symnstcrucial for a net transverse
current.

From Eqg. (53), one hagy ~ pany = oxp?. Also, the anomalous current generated from the
Berry curvature is independent of the relaxation tim&his explains why the Hall conductivity

in the KL theory is proportional tp?.

In dilute magnetic semiconductors, one can show @) = ¢S x k for the conduction band
of the host semiconductor, whefés the strength of the SO coupling (more details in Sec. 5.2).
Therefore 2 = V x A = 2£S. In this case, the coefficient ) in Eq. (55) is proportional

to M. In ferromagnetic materials with a more complex band stma;tthe Berry curvature
shows non-monotonic behavior in magnetization. For onggthin density-functional-theory
calculations, the Berry curvature can be dramatically anbd when the Fermi energy is near a
small energy gap [27]. However, spin fluctuations may smaathe erratic behavior and lead
to a smooth variation (see Fig. 9) [28].

The Berry curvature is an intrinsic property of the elecitmstates. It appears not only at the
guantum level, but also in the semiclassical theory of ed&ctlynamics. In the next section,
we will see that the QHE, the AHE, and the spin Hall effect clrba unified in the same
semiclassical theory.



X5.19

1000
B Exp. before subfracting S.8.
. ® Exp, after subtracting S.S.
;-E-. 800 —o— Calculated
*.'U 600 - o
S
T 4004 ®
B S i3
200 . B
1 o
J i ) j j 0 L] T L] T L]
28 2 eomim > 25 20 15 10 05 00
e M. (u/Mn)

() (b)

Fig. 9: (a) Calculated anomalous Hall conductivity (the intringiart) versus magnetization
for Mn;Ges using different relaxation times. (b) After averaging ol@ng-wavelength spin
fluctuations, the calculated anomalous Hall conductivieggdmes roughly linear id/. The
initials S.S. refers to skew scattering. The figures are fReh [28].

5 Berry phase and wave-packet dynamics

When talking about electron transport in solids, peopletwsedifferent languages: It is either
particle scattering, mean free path, cyclotron orbit r.lpoalized state, mobility edge, Landau
level ... etc. In this section, we use the first language agat the electrons as particles with
trajectories. Besides being intuitive, this approach hasfollowing advantage: The electro-
magnetic potentials in the Schrodinger equation are ditear inr and diverge with system

size. Such a divergence can be avoided if the wave functitimeaélectron is localized.

5.1 Wave-packet dynamics

Consider an energy band that is isolated from the other baydisite gaps. Also, the energy
band is not degenerate with respect to spin or quasi-spia.eflergy band with internal (e.g.,
spin) degrees of freedom is the subject of the next subsediithen inter-band tunneling can
be neglected, the electron dynamics in this energy band eatebcribed very well using a
wave-packet formalism.

The wave packet can be built by a superposition of Bloch statg in bandn (one band
approximation),

W)= [ daala 0l (57)
BZ
It is not only localized in position space, but also in monuemspace,
WW) =i [ dgalal@ = a. (58)
BZ

wherer, andq, are the centers of mass. The shape of the wave packet is ralcas long as
the electromagnetic field applied is nearly uniform througfithe wave packet.

Instead of solving the Schrodinger equation, we use the-tiependent variational principle to
study the dynamics of the wave packet. Recall that in thelsoee-independent) variational
principle, one first proposes a sensible wave function witknewn parameters, then minimizes
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its energy to determine these parameters. Here, the waketpgagarametrized by its center
of mass(r.(t), q.(t)). Therefore, instead of minimizing the energy, one needstremize the
actionS[C] = [, dtL, which is afunctionalof the trajectoryC' in phase space.

One starts from the following effective Langrangian,

. . d
L(re, qe; fe, ) = ih(W| [W) — (WIH|W). (59)

Notice the resemblance between th{§'| and the the action in the coherent-state path integral
(EQ. (29)). The Hamiltonian for a Bloch electron in an elentagnetic field is

H = ﬁ(p+6A)2+VL(r)—egb(r) :Ho—egb+%rxp-B, (60)
in which Hy = p?/2m + V; and¢ and A = %B x r are treated as perturbations. The fields
are allowed to change slowly in space and time, as long asappsoximately uniform and
guasi-static (adiabatic) from the wave packet’s perspecti
To evaluate the Lagrangian approximately, one can Taypased the potentials with respect to
the center of the wave packet and keep only the linear termisglhis gradient approximation,
the wave-packet energyV|H|W) is evaluated as [29],

€

E = By(q.) — ed(r.) + —L(q.) - B, (61)

2m
where Ej is the unperturbed Bloch energy of the band under considaeraandL(k.) =
(Wl(r —r.) x p|W) is the self-rotating angular momentum of the wave packet.

On the other hand, the first term in Eq. (59) can be written as

, d du :
(W] W) = h{uliz) + ha. - . (62)
in which |u) is the unperturbed cell-periodic function. Therefore,effective Lagrangian is
L =Tk, R+ (k. — eA.) - . — E(r,, k.), (63)
wherehk,. = hq. + €A, is the gauge-invariant quasi-momentuR), = i(n\g—ﬁ) is the Berry
potential, andA. = A(r.). '
Treating bothr. andk. as generalized coordinates and using the Euler-Lagranggtieq, it

is not very difficult to get the following (coupled) equat®onf motion (EOM) for the wave
packet [29],

hk. = —eE —er, x B, (64)
. OF .
ht, = I k. x Q. (65)

wheref2. = Vi, x R, is the Berry curvature of the band under consideration.

Compared to the usual semiclassical EOM in textbooks, @rerevo new quantities in Egs. (64,65),
and both lead to important consequences. The first is they Barvature(2. It generates the
so-called anomalous velocity. In the presence of a perigrélectric field, the anomalous ve-
locity is eE x €2, which is perpendicular to the driving electric field andegvise to, e.g., the
AHE.
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The second is the spinning angular momeniuim Eqg. (61). It is closely related to the orbital
magnetization of a solid [30]. For a spinful wave packet (SeR), thisL. modifies the elec-
tron spin and is the origin of the anomalogdactor in solids. In fact, starting from Dirac’s
relativistic electron theory (which has no explicit spirtive Hamiltonian), we have shown that,
the wave packet in the positive-energy branch of the Dir&cispm has an intrinsic spinning
angular momentum [31]. That is, it explains why an electras $pin.

In the semiclassical theory of electron transport, theemirdensity is given by

i=-—Y fi, (66)

wheref = fy+ 4 f is the distribution function away from equilibrium. The glibution function
f is determined from the Boltzmann equation,

f+k or _ ot

" or ok 1’ (67)

wherer is the relaxation time. For a homogeneous system in an eléeid, 6 f ~ 77E - /o

ok
and
= V (5

The usual current (the first term) depends on carrier ralaxaimer through the change of the
distribution functiorny f. On the other hand, the second term gives the Hall curreetry this
Q is also the one in the Kubo formula of QHE and AHE. (The latteolves spin-degenerate
band and belongs more properly to the next subsection.)

We emphasize that, just like the Bloch eneifgyk), both€2(k) andL(k) are intrinsic to the
energy band (not induced by the applied field). They are treetmain pillars of band theory.
Unlike the Bloch energy that has been around for a very lang tthe other two quantities are
relatively new players, but their importance should insesaver time.

If there is only a magnetic field, then combining Eq. (64) ad B5) gives

e
o forE X Qn) . (68)

. -8 xB
hk, = 0 69
© 1+4B-Q (59)

It describes a cyclotron orbit moving on a plane perpendrcid the magnetic field. The orbit
is an energy contour on the Fermi surface. Its size can chemgeuously, depending on the
electron’s initial condition.

One can apply a Bohr-Sommerfeld quantization rule to gehtged orbits, which have dis-
crete energies (the Landau levels). The EOM in momentumesiiag: (69), follows from the

effective Lagrangian,

2

L(kc; kc) - ﬁ

k. x k.- B+ Ik, - R, — E(k,). (70)

This gives the generalized momentum,

oL I

-~ — _ " k.x B+hR,. 71
Py 5o K X + IR, (71)
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Cyclotron orbits Cyclotron orbits

Fig. 10: The quantized cyclotron orbits on two different energyates. The one on the left is
a paraboloid near its band edge; the one on the right is a casarface. Without Berry phase
correction, the Landau-level energies ag = (n + 1/2)hw, and E,, = vp\/2e Bh(n + 1/2)
respectively. In graphene, an orbit circling the Dirac pbatquires a Berry phase af, which
cancels the 1/2 in the square root.

The quantization condition is given lyr - dk. = (m+~)h, wherem is a non-negative integer
and~y = 1/2 for the cyclotron motion. Therefore, we have

B B 1 T(Cpn)\ eB
5.%m(k6xdkc)_2ﬂ(m+§— - )?, (72)

wherel'(C,,,) = fcm R. - dk. is the Berry phase for orbdt,,,.

This equation determines the allowed size (and therefoeeggin of the cyclotron orbit. The
Berry phase correction slightly shifts the Landau-levedrgres. For example, the orbit around
the Dirac point of graphene picks up a Berry phaser @fue to the monopole at the origin.
This cancels the othdr/2 in Eq. (72) and results in a zero-energy level at the Diraotp@ee
Fig. 10). This agrees nicely with experimental measurem&a].

5.2 Non-Abelian generalization

In the one-band theory without internal degrees of freedbmBloch state has only one com-
ponent and the gauge structure of the Berry phase is AbeNghen the band has internal
degrees of freedom (henceforth simply called the spin)Btbeh state has several components
and the gauge structure becomes non-Abelian. This hapjoeesample, in energy bands with
Kramer’s degeneracy. By extending the semiclassical dysgato such cases, one is able to
investigate problems involving spin dynamics and spingpemt.

The scheme for building such a theory is the same as the ohe previous subsection. There-
fore, we only give a very brief outline below. One first consts a wave packet from the Bloch
states),q,

D
W)= [ daata (a0l (73)
n=1vBZ
Heren is a spinor index for an isolated band withfold degeneracyy = (11, -+ ,np)? is a

normalized spinor at eacly anda(q, ¢) is again a narrow distribution centeredegtt).
Similar to the non-degenerate case, there are three baaitites in such a formalism, the
Bloch energyH,(q), the Berry connectiofR (q) (and related curvature, now written 2%q)),



X5.23

and the spinning angular momentuiq) [33]. They all become matrix-valued functions and
are denoted by calligraphic fonts. The Bloch energy is synapl identity matrix multiplied by
Ey(q) since all spinor states have the same energy.

The matrix elements of the Berry connection are,

. duy,
Ron(q) =i <umq|a—qq> . (74)
The Berry curvature is given by,
F(q)=VgxR—-iR xR. (75)

Recall that the Berry connection and Berry curvature in thelfan case are analogous to the
vector potential and the magnetic field in electromagne(see Sec. 2.1). HeréR andF
also are analogous to the gauge potential and gauge field moth-AbelianSU (2) gauge field
theory [34].

The expectation value of the third basic quantity, the spig@ngular momentum, is again
given byL(q.) = (W|(r —r.) x p|W). However, it is often written in an alternative (Rammal-
Wilkinson) form easier for evaluation,

L@ =i {54 x [ - Ea(a] | 51 ). 76)

where the cell-periodic function without a subscript is defl agu) = >>7_ n,|u,,) andH, is
the Hamiltonian foru). The corresponding matrix-valued functightherefore has the matrix

elements,
.m aun d aUl
Lu(@) = 5 (52 | [~ Ba(@] | 52 ). 77)

Obviously, after taking the spinor average, one has thelanguomentum in Eq. (76)l. =
(L) =n'Ly =3, mLun.

Equations of motion

So far we have laid out the necessary ingredients in the ueli#n wave packet theory. Similar
to Sec. 5.2, we can use Eg. (59) to get the effective Lagrarfgrathe center of massr., k.),
and the spinof). Afterwards, the Euler-Lagrange equation for this effextiagrangian leads
to the following EOM [33],

hik, = —eE —er, x B, (78)
D .

S Bk, X F 7

b, <[DkC,H}> ke % F. (79)

i = (%E-B—hkc-’lz) n, (80)

whereF = (F), and the covariant derivativB/Dk, = 9/0k. — iR. The semiclassical
Hamiltonian inside the commutator in Eq. (79) is

Hire ko) = Ho(k.) = ed(r.) + 3 —L(ke) - B, (81)

wherek,. = q. + (e¢/h)A(r,).
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Even though these equations look a little complicated, thesies is very similar to that of the
simpler Abelian case in Sec. 5.1. There are two differenbesiever. First, the anomalous
velocity in Eq. (79) is now spin-dependent in general. In someresting cases (see beloWw),
is proportional to the spin vect®& = (S), whereS is the spin matrix. Therefore, if one applies
an electric field to such a system, the spin-up and spin-ddeatrens will move to opposite
transverse directions. This is the cause of the AHE and timet#g| effect.

Second, we now have an additional equation (Eg. (80)) gawgithe spinor dynamics. From
Eq. (80) we can derive the equation f&y

ihS = <[8,H—hkc-R]>. (82)

The spin dynamics in Eq. (82) is influenced by the Zeeman gnear@t, as it should be. We
will demonstrate below that the term with the Berry conratis in fact the spin-orbit energy.
Such an energy is not explicit i, but only reveals itself afte} is being re-quantized.

Re-quantization

As we have shown in Sec. 5.1, re-quantization of the sensiclalstheory is necessary when
one is interested in, for example, the quantized cyclotrt®that correspond to the Landau
levels. Here we introduce the method of canonical quambizatvhich is more appropriate for
the non-Abelian case compared to the Bohr-Sommerfeld rdetho

In this approach, one needs to find variables with canonigiisBn brackets,

{ra Tﬁ} = 0,
{paupﬂ} = 07
{Tompﬁ} = 50457 (83)

then promote these brackets to quantum commutators. Asil, e variables become non-
commutating operators and the classical theory is quahtize

An easier way to judge if the variables are canonical is bkimg if they satisfy the canonical
EOM,

r=—;p=——. (84)

The variables . andk, that depict the trajectory of the wave packet are not cambrariables
because their EOM are not of this form. This is due to the veptdential and the Berry
connectionA (r.) andR(k.), in the Lagrangian (see Eq. (63)).
In fact, if one can remove these two gauge potentials fromLéggrangian by a change of
variables,

L:p'i‘_E(rvp)v (85)

then these new variables will automatically be canonicaichSa transformation is in general
non-linear and cannot be implemented easily. However, & only requires an accuracy to
linear order of the electromagnetic fields (consistent withlimit of our semiclassical theory),
then the new variables can indeed be found.

The canonical variablesandp accurate to linear order in the fields are related to the cente
of-mass variables as follows [35],

r. = r+R(w)+G(m),
hk., = p+eA(r)+eB x R(m), (86)
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wherer = p+eA(r), andg, (7)) = (e/h)(R xB)-0R /0n,. The last terms in both equations
can be neglected in some cases. For example, they will nagehthe force and the velocity in
Egs. (78) and (79). These relations constitute a genetialivaf the Peierls substitution.

When expressed in the new variables, the semiclassicalltdaman in Eqg. (81) becomes,

H(r,p) = Ho(w)—ed(r) +eE - R(m)
€ 87-{0
+ B- 2m£(7r) + eR X o | (87)

where we have used the Taylor expansion and neglected temfiaear in the fields. Finally,
one promotes the canonical variables to quantum conjugaigbles to convert{ to an effec-
tive quantum Hamiltonian.
The dipole-energy teriE - R is originates from the shift between the charge centand the
canonical variable. We will show below that for a semiconductor electron, theotk term is
in fact the spin-orbit coupling.
The correction to the Zeeman energy is also related to the/Bennection. Near a band edge,
where the effective mass approximation is applicable Ane- 72/2m*, this term can be writ-
ten aseR - v x B, wherev = & /m*. We know that an electron moving in a static magnetic
field feels an effective electric fiel.;; = v x B. Therefore, this term arises as a result of the
electric dipole energy in electron’s own reference frame.

Semiconductor electron

A necessary requirement for the non-Abelian property i$ tiva Bloch electron has to have
internal degrees of freedom. In a semiconductor with bo#tspnversion and time-reversal
symmetries, every Bloch state is two-fold degenerate du&amer’s degeneracy. But where
do we expect to see the non-Abelian Berry connection andature?

Instead of the full band structure, one can start from a ssmipdnd structure using the- p
expansion. Assuming the fundamental gap is locatdd at 0, then for smallk, one has an
effective Hamiltonian with 4 bands, 6 bands, 8 bands, or mdepending on the truncation.
In the following discussion, we use a 8-band Kane Hamiltortieat includes the conduction
band, the HH-LH bands, and the spin-orbit (SO) split-off dha@ach with 2-fold degeneracy
(see Fig. 11). The explicit Kane Hamiltonian can be found éh. [B6].

We focus only on the wave packet in the conduction band. Witgoing into details, we first
show the Berry connection that is essential to the wave pdckmulation. The result correct
to orderk' and up to a gauge rotation is [35],

V2T 1
=5

— = k 88

3 |22 (Eg,+A>2}ch | (59)
whereV = %(S|ﬁ$|X>, E, is the energy gap, aml is the SO gap. Therefore, the dipole term
eE - R in Eq. (87) becomes,

Hy,=¢eE -R=aE o xk, (89)

wherea = (eV?/3)[1/E; —1/(E,+ A)?]. It coincides precisely with the spin-orbit coupling of
a conduction electron. This shows that the SO coupling hasaimteresting connection with
the Berry connection. This is also the case for the SO cogphirDirac’s relativistic electron
theory [37].
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i * Ek)
CB
8-band 4-band T
Kane | Luttinger 5 Eg
model | model |
| - HH
g
= LH
SO

Fig. 11: One can use the 4-band Luttinger model or the 8-band Kane hmdpproximate the
energy bands near the fundamental gap.

The Berry curvature calculated from Eq. (75) gives (to thvedst order)F = «/eo, which is
proportional to spin. Therefore, the anomalous veloelyx F in Eq. (79) isaE x (o). That
is, spin-up and spin-down electrons acquire opposite ¥e&Be velocities. In non-magnetic
materials, these two species have the same population add wet expect to see a net trans-
verse current. However, “if” one defines a spin current agltfierenceof these two transverse
currents, then there will be a ngpincurrent, giving rise to the spin Hall effect [38].

One can also calculate the spinning angular momentum obtiduction electron from Eq. (77).

The result is,
2mV? [ 1 1
L=— — — : 90
3h (Eg B, + A) 7 (%0)
Through the Zeeman energy in Eq. (87), the orbital magnetiment generated from Eq. (90)
contributes an extra-factor,
4mV? [ 1 1
0g=—= — — : 91
I= 78 (Eg E9+A) (1)

This is the anomaloug-factor of the conduction electron [39]. Therefore, theraatousg-
factor in solid is indeed a result of the self-rotating motad the electron wave packet.

Finally, the effective quantum Hamiltonian in Eq. (87) foetconduction band has the following
form,

H(r,p) = Eo(m) — o) + 0B - x 7+ LB o (92)

whereFE includes the Zeeman energy from the bare spiis,given below Eq. (89)¢ is given

in Eqg. (91), and the correction to the Zeeman energy has beglecsted. This Hamiltonian
agrees with the one obtained from block diagonalizatioh. [BGe wave packet approach is not
only simpler, but also reveals the deep connections betweéous effective couplings and the
Berry potential.

Some comments are in order: First, we emphasize again tiemnh#cessary to include the
Berry curvature and orbital moment in order to account foygital effects to first order in
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external fields. Furthermore, from the discussions aboeecan see that these quantities are
also sufficient for building a correct quantum theory.

Second, starting from a quantum theory, one can construainékassical theory in a specific
subspace. This theory can later be re-quantized. The natiqad effective theory applies to a
smaller Hilbert space compared to the original quantumrihddevertheless, it can still have
its own semiclassical theory, which in turn can again beuantjzed. As a result, a hierarchy
of effective theories and gauge structures can be prodadledthin the wave packet approach
(see Ref. [35] for more discussions).

6 Concludingremarks

In this review, selected topics related to Berry phase idsihte physics are reported. Many
of these topics have been fully developed over the years. eXpesition here only serves as
an introduction, without going into details and more recgexelopment. Readers interested
in certain topics can consult some of the following booksesigw articles: [1] and [40] on
Berry phase in general, [41] and [42] on electric polar@ati43] on quantum Hall effect, [44]
and [45] on anomalous Hall effect, [46] and [47] on dynamitBloch electrons, and [35] on
non-Abelian wave packet dynamics.

In optics, the Berry curvature is related to a transverde @nile jump) of a light beam reflected
off an interface.[48] The shift is roughly the order of thewstength. Its direction depends
on the circular polarization of the incident beam. This iBechthe optical Hall effect or the
Imbert-Federov effect,[49] which is not covered here. Tile gimp of a light beam is similar to
the analogous “jump” of an electron scattering off an imgun the anomalous Hall effect [22].
A more detailed study of the optical transport involvingrspan be found in Ref. [50].

Several topics not covered here can be found in an upcomitgywen Berry phase in solid state
physics [51]. These topics include the orbital magnetiratf a solid, dipole moment of the
wave packet, anomalous thermoelectric transport, andmolgeneous electric polarization. Itis
amazing that the Berry phase plays such a versatile role masty solid-state phenomena. On
the other hand, several challenging subjects still renaigely unexplored. For example, the
effect of the Berry phase in systems in which non-adiabaticgsses or many-body interaction
is crucial. Therefore, one can expect to see more of thayintrg Berry phase effects in solid
state systems.
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