

C PROGRAMMINGTUTORIAL

Simply Easy Learningdnaieint.com

COPYRIGHT & DISCLAIMER NOTICE

a Al the content and graphics on this tutorial are the property of tutorialsp oint.com. Any content from
tutorialsp oint .com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the
written permission of tutorialsp oint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provide s no guarantee regarding the accuracy of
the site or its contents including this tutorial. If y ou discover that the tutorialspoint.com site or this tutorial
content contains some errors, please contact us at webmaster@tutorialspoint.com

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

Table of Contents

C LangUuAgE OVEIVIEW.........uiieiiieeeiieeeeiieeeeei e eea e e e e e eenaeas 1
FACLS @bDOUL C....ooeee e e e e eens 1
WRY T0 USE € 2. e e e e 2
(O o 00| =11 11 TP 2
C ENVIrONMENT SETUP ...uiiiiiiieiie e 3
I =0 [(o] ST 3
THE C COMPIIEL....eeiiiieiiieee et 3
Installation 0N UNIX/LINUX.......oooiiiiiieeiiieeeeeeie e e e 4
Installation 0N MaC OS......cooviiiiiiie e e 4
Installation 0N WINAOWS...........oiiiiiiiiii et e s 4
C Program STIUCKUIEiviiiii i 5
C Hello World EXample.........ooooiiii 5
Compile & EXecute C Programl.........cooouuuuiiiiiieeeeeeeeeiiiiie e e e eeeeenn e 6
(O oY= 1S o) 4] €= b 7
TOKENS IN €t e et e e e e e a e e e e e eaa e e eaaeeeans 7
=1 010] (o 7
(00 0 1] 1= 0 £ 8
[0 L2101 1)1 =T £ 8
KBYWOITS .. 8
WHhIteSPACE IN €. e e e e e e e e e e e eaeanes 9
O B - L= Y/ 012 PPN 10
FaT =T o T G 1Y 01 PP 10
FloatinGPoINt TYPES ... 11
LI Y0 1o I 1Y/ 1= O USPPPPPIN 12
CVariabIEscoveie e 13
Variable Declaration in.C....................oeec. Error! Bookmark not defined.
Variablelnitialization in C............ccooeevvveeeennnn. Error! Bookmark not defined.
Lvalues and RvalueS IN.C........coouniiiii e 15
C Constants and LIteralSccccoeveiviiiiiieiiiieeieeeeeeeeee e 17
INtEgEr ITEIaAlS...... e 17
Floatingpoint IteralS........cooooeee i 18
Character CONSIANTS........cciiii i e e eaaans 18

SING EEIAIS ...eeeiie e 19

DefiNiNg CONSLANTS.ii i e e e e 19
The #defiNne PreproCeSSONccciiiiiieiiiiie ettt 19
The CONSt KEYWOITcvviiiiiiee et e e e e e e 20
C Storage ClasSSesSuviiviiiiieieiie e 22
The auto Brage ClassS......ccoooee i e e e eaeans 22
The register Storage Class..........oovvuviiiiiiiecceeeeces e 22
The static StOrage ClasS.........uuuuriiiiiiiiiiiiiiiiiiiiiii e 23
Theextern Storage ClassS.........coovvvuiiiiiiiie e e e eeaans 24
OR @01 =110] £ T PPTPRPN 25
ArthmetiC OPEIatOrS.......ccceiiieeeicce e e 25
Relational OPEratorS........coooveiieeeee e 26
(oo (ot @] 1] = 11e] 1= T TP 28
BT Y O T = (0] £ PSS 29
ASSIGNMENT OPEIALOLS. ... ettt neeenananeae 31
Misc Operators? Sizeof & terNAIY......ccooveeeeee e 33
Operators Precedence iN.C.........coo i 33
Decision Making in C.......cooovuiiiiiiie e 35
1S3 =1 =] 0 0= o | U 36
)L 1€= ¥ G PRSPPI 36
FIOW DIBOIAIMeiiiiiiiii ettt 36
EXQMIPIE .. 36
=] TSI o= 1 = o | 37
SYNEBX 1ttt e e e e 37
FIOW DIagIam s 38
EXQMIPIE ... 38
The if...else if...else Statement............ccoooooiiiiiiiiii e, 39
1)1 €= ¥ G PSP UTPPOTRSPPPN 39
EXQMIPIE ... 39
Nested if StatEMENTS.........cooiiiiiie e 40
1)1 €= ¥ G PSP UTPPOTRSPPPN 40
EXQMIPIE ... 40
SWILCH StatEMENT...... e 41
SYNEAX e 41
FIOW DIBQIAM ...ttt e e e e e e s aeees 42
EXAMPIE e e 42
Nested SWILCh StateMENTS...........uuiiiee e 43
SYNEAX e 43
L= 1] o[SRR 43

O 0o 0 1T PPN 45
1V 1138 o T o N o 1K PP 46
SYNTAX e 46
[(01T A I 1 =V = o SRS 46
EXAMPIE .. a7
L0 G [Yo o I 1 15 SRPPPRIN 47
)L 1€= ¥ G TP OPPPPTPPOTRPPPPPIN 47
FIOW DIBOIAIMeeiiiiiieie et 48
EXAMPIE .. 48
do...While 100 IN C...oooviiiiiiiiii 49
SYNEBX 1ttt e e 49
FIOW DIBOIAIMeiiiiiiiii ettt 50
EXQMIPIE ... 50
(LTS (=To I (oo o 1SN o 1 oS 51
SYNEBX 1ttt e e 51
EXAMIPIE ... 52
break statement in C.......coooeiiiiiiiee 53
SYNEBX 1ttt e e 53
FIOW DIagIam s 53
EXAMPIE e 54
continue statement iN C.......oovviiiiiiiiiiieee e 54
1)1 €= ¥ G PR SPPTPTPPOTRSPPPN 54
FIOW DIBOIAIMeiiiiiiiie ettt 55
EXAMPIE e 55
QOtO StAtEMENT IN Co.oeeeiiiiiiiieeeee e 56
SYNEBX ittt e e 56
FIOW DIBOIAIMeiiiiiiiii ettt 56
EXQMIPIE ... 57
The INfINItE LOOP.....ciiiieiiiie e e e e e e eeaans 57
(O3 U T 1o I P 59
Defining @ FUNCLION.......cccoiiiiieie e e 59
EXAIMPIE ..t e e 60
FUNCHION DECIArationsS.........coovvuveiiiiie e e e e e 60
Calling @ FUNCHOM......uiiiiii e e e e e e eees 60
FUNCHON ATQUIMENTS ... 61
Function call DY Valueeveiiiiii e 62
Function call by reference..........oooieeiiiiiiii e 63
C SCOPE RUIES ... 65

LOCAl VaAlTADIES. ... 65

Global Variables............coooo i, 66
Formal ParameterS........oooooiiie e 67
Initializing Local and Global Variahles...............cccccoiiiiiiiiiiiiiiiiiis 67
A AY S e 69
DT F= U T A £ = YA U 69
INILIALIZING ATTAYS...ciieeeiiiii et e e e e e e e e e e e e e et e e e e e eeeeeennes 70
Accessing Array EIEMENtS..........uuuiiiiiiiiiiiiiiiiiiiii 70
Multi-dimenSIoNal AITAYS.........euuuiiiiiee et e 71
TWO-DIMENSIONAI AITAYS.ccieeeeeeeeiiiiie e e e e e e e e e e e e e eeeeans 71
Initializing TWeDIMENSIONAl AITAYS........uuuuriiiiiiiiiiiiiiiiiiiiiiinieeeeeeeeeeaees 72
Accessing Twdimensional Array Elements............ccovvvviiiiie e, 72
Passing Arrays as Function ArgumentS........cccooeeeeeverveiiiiiiiiee e, 73

WY=Lttt 73

WVAY2 ..ttt 74
LAY =Y T PRSPPI 74

EXAMIPIE ... 74
Return array from fUNCHON............cooiii e, 75
0TI (T g (o I= L I Y £ -\ Y SO 77
(O o 1 (=] £ 79
What Are POINIEIS2.... . it e e e e e 80
HOW 0 USE POINTEISZ. .. et e e e 80
NULL POINTEIS IN.Coenceeeeeeeeeeeeeeeee e 81
PoINterarithmetiC.........coove e 81
INCremMeENtiNg & POINTEL.......uuuiiiiiiiiiiiiiiiiii e 82
Decrementing @ POINLEL..........ovvuiiiiiie e 83
POINtEr COMPAIISONS......cco i 83
ATTAY OF POINTEIS. ...ttt aeeennnes 84
POINTEI 10 POINIEL. ... 86
Passing pointers to fUNCLONS..........oooeeeereie e 87
Return pointer from fuNCLONS..........coooeeeei i, 88
(ORS1 1 0T 91
C SHUCTUIES ... 94
DefiniNg @ StIUCIULE.o 94
Accessing Structure MembDEeLS..........cooviiiiiiii 95
Structures as FUNCLION ArQUMENIS.........coiviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee e 96
POINTEIS 0 SIUCLUIES.o 97
(3 o1 o] 0 1S 100
DefiniNg @ UNION.........uiiiie e 100

Accessing Union MEeMDErS...........uuuiiiiiiiiiiiiiiiii e 101

Bit FIEIAS ... 103
Bit Field DeCIGLIONccoeeeeee e 104
TYPEAET ... 106
typedef VS HAETINE..........eiie e 107
INPUE & OULPUL....ceniiiieie e 108
The Standard FIles...........oi i 108
The getbar() & putchar() fUNCHONS.....cooviiiiiie e 108
The gets() & puts() FUNCLIONS.........ovuiiiii i 109
The scanf() and printf() fUNCLONS........cooviiiiiiiiiiii e 110
FIHE 1O e 111
OPENING FIlES...ccooiiiiiiiiii 111
(@4 [0S To = W | = U 112
WIHEING @ HEB ..o e e e e eeanns 112
ReadING @ FIlE.. . 113
Binary 1/O FUNCLONS.........cooiiiiiiiee e 114
P PIOCESSOIS . ittt 115
Preprocessors EXamples..........coiiiiiiiiiiieeiiee e 115
[(=T0 (] (] = To [1Y = T 01 R 116
PreproCesSor OPEIratOrS.........v it e e 117

Macro ContinUALIoN (1)eooiiereriiiiie et 117

StNGIZE (H) oo 117

TOKEN PASHING (FH) ..ottt 118

The defined() OPEratoreeiiiiiiie e 118
Parameterized MaCIOS........coouuuuiiiiee e e e e e e e ee s 119
Header FIleS........coo i 120
INCIUAE SYNTAX ...ttt 120
INCIUAE OPEIatiON........vuiiiiee e e e e e e eeanes 121
ONCeONly HEAEIS........ccooviiiiiiiiiiiiiiieeeeeeeeeee e 121
Computed INCIUAES ..., 122
I/ 0 LSO 1] 1] o P 123
INtEgEr PrOMOIDN......ceiiiiiiie e e e e e eeeanes 124
Usual Arithmetic CONVEISION........cooieeeiiiieiiiiie e e e 124
Error Handlingoooouiiiiii e 126
The errno, perror() and SIrerTOL()..........uuuuuerrurriiiiiiiiiiiiiiiiiiiieeeeeeeaaees 126
DiIVIAE DY ZEI0 BITOIS.. .o 127
Program EXIt STAtUS.......cccuuiiiriiiii e 128
ST o1 [£ [0} o [129
N[g oL gl = Tox (] - 129

FIDONACCH SIS, ..o 130

Variable ArgumentsS.........cccooovuiiiiiiieeeee e 131
Memory Managementccoeuviiiiiieinee e 133
AllocatingMemory DynamicCally...........coooeiiiiiiiiiiiiiieeeeeeie e 133
Resizing and Releasing MemOLy........ccoovvvviiiiiiie e 134
Command Line ArgUMENTS.........oveviuiieeiiineeeeiineeeein e e eeees 136

CHAPTER

C Language Overview

This chapter describes thetdsidouC pogramming language, how it emerge
what are strengths of C and why we should use C.

he C programming language is a general -purpose , high -level language that was
originally developed by Dennis M. Ritchie to develop the UNIX operating system at Bell
Labs. C was originally first implemented on the DEC PDP -11 computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

The UNIX operating system, the C compiler, and essentially all UNIX applications programs
have been written in C. The C has now become a wid ely used professional language for
various reasons.

il Easy to learn

il Structured language

il It produces efficient programs.

il It can handle low-level activities.

T It can be compiled on a variety of computer platforms.

Facts about C

il C was invented to write an operating system called UNIX.

il C is a successor of B language, which was introduced around 1970.

il The language was formalized in 1988 by the American National Standard Institute.
(ANSI).

il The UNIX OS was totally written in C by 1973.

TUTORIALS POINT

Pagel

i Today, C is the most widely used and popular System Programming Language.
i Most of the state-of-the-art softwares have been implemented using C.

1 Today's most][popular Linux OS and RBDMS MySQL have been written in C.

Why to use C?

C was initially used for system development work, in particular the programs that make up
the operating system. C was adopted as a system development language because it

produces code that runs nearly as fast as code written in assembly language. Some

examples of the use of C might be:

il Operating Systems

il Language Compilers
il Assemblers

il Text Editors

il Print Spoolers

T Network Drivers

il Modern Programs

il Databases

il Language Interpreters
il Utilities

C Programs

A C program can vary from 3 lines to millions of lines and it should be written into one or
mor e text files with extension ".c"; for example , hello.c. You can use "vi, "vim" or any
other text editor to write your C program into a file.

This tutorial assumes that you know how to edit a text file and how to write source code
using any programming lan guage.

TUTORIALS POINT
Simply Easy Learning Page2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Environment Setup

This section deslkabet agb your system environment before you start doin
programming using C language.

Before you start doing programming using C programming language, you need the following
two softwares available on your computer, (@) Text Editorand (b) The C Compiler.

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad,
OS Edit command, Brief, Epsilon, EMACS, and vim or vi

Name and version of text editor can vary on different operating systems. For example ,
Notepad will be used on Windows , and vim or vi can be used on windows as well as Linux or
UNIX.

The files you create with your editor are called source files and contain program source
code. The source files for C programs are typically named with the extension f.co.

Before starting your programming, make sure you have one text editor in place and you
have enough experience to write a computer program, save it in a file, compile i t and finally
execute it.

The C Compiler

The source code written in source file is the human readable source for your program. It
needs to be "compiled", to turn into machine language so that your CPU can actually
execute the program as per instructions gi ven.

This C programming language compiler will be used to compile your source code into final
executable program. | assume you have basic knowledge about a programming language
compiler.

Most frequently used and free available compiler is GNU C/C++ compile r, otherwise you can
have compilers either from HP or Solaris if you have respective Operating Systems.

Following section guides you on how to install GNU C/C++ compiler on various OS. I'm
mentioning C/C++ together because GNU gcc compiler works for both C and C++
programming languages.

TUTORIALS POINT
Simply Easy Learning Page3

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Installation onJNIALINuUX

If you are using Linux or UNIX, then check whether GCC is installed on your system by
entering the following command from the command line:

$gcc -v

If you have GNU compiler installed on your machine , then it should print a message
something as follows:

Using built -in specs .

Target : i386 -redhat - linux

Configured with : ../ configure -- prefix =/usr ...
Thread model : posix

gcc version 4.1 .2 20080704 (Red Hat 4.1 .2-46)

If GCC is not installed, then you will have to install it yourself using the detailed
instructions available at http://gcc.gnu.org/install/

This tutorial has been written based on Linux and all the given examples have been
com piled on Cent OS flavor of Linux system.

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode development
environment from Apple's web site and follow the simple installation instructions. Once you
have Xcode s etup, you will be able to use GNU compiler for C/C++.

Xcode is currently available at developer.apple.com/technologies/tools/

Installation on Windows

To install GCC at Windows you need to install MinGW. To install MinGW, go to the MinGW
homepage, www.mingw.org , and follow the link to the MinGW download page. Download

the latest version of the MinGW installation program, which should be named MinGW -
<version>.exe.

While installing MinWG, at a minimum, you must install gcc -core, gcc -g++, binutils, and
the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment variable , so
that you can specify these tools on the command line by their simple names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib, dlitool, and
several other GNU tools from the Windows command line.

TUTORIALS POINT
Simply Easy Learning Pages

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://gcc.gnu.org/install/
http://developer.apple.com/technologies/tools/
http://www.mingw.org/

C Program Structure

Letds |l ook into Hello World exampl

efore we study basic building blocks of the C prog ramming language, let us look a

bare minimum C program structure so that we can take it as a reference in upcoming
chapters.

C Hdlo World Example

A C program basically consists of the following parts:

1 Preprocessor Commands
il Functions
il Variables
1 Statements & Expressions
1 Comments
Let us look at a simple code that would print the words " Hello World

#include <stdio.h>
int main ()

/* my first program in C */
printf ("Hello, World! \'n");

return 0;

Let us look various parts of the above program:

TUTORIALS POINT
Simply Easy Learning Page5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The first line of the program #include <stdio.h> is a preprocessor command, which tells
a C compiler to include stdio.h file before going to actual compilation.

The next line int main() is the main function where program execution begins.

The next line /*...*/ will be ignored by the compiler and it has been put to add additional
comments in the program. So such lines are called comments in the program.

The next line printf(...) is another function available in C which causes the message
"Hello, World!" to be displayed on the screen.

The next line return 0; terminates main() function and returns the value 0.

Compile & Execut€ Program

Let & look at how to save the source code in a file, and how to compile and run it. Following
are the simple steps:

1. Open a text editor and add the above-mentioned code.
2. Save the file as hello.c
3. Open a command prompt and go to the directory where you saved the file.
4. Type gcc hello.c and press enter to compile your code.
5. If there are no errors in your code, the command prompt will take you to the next line and
would generate a.out executable file.
6. Now, type a.out to execute your program.
7. You will be able to see "Hello World" printed on the screen
$ gcce hello.c
$.Ja.out
Hello, World!

Make sure that gcc compiler is in your path and that you are running it in the directory
containing source file hello.c.

TUTORIALS POINT

Simply Easy Learning Page6

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Basic Syntax

This chapter gille desabout all the basic syntax about C programming lang

including<ems, keywords, idewrifiers

ou have seen a basic structure of C program, so it will be easy to understand other

basic building blocks of the C programming language.

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a
constant, a string literal, or a symbol. For example, the following C statement consists of
five tokens:

printf ("Hello, World! \n");

The individual tokens are:

printf

(
"Hello, World! \'n"
)

Semicolons ;

In C program, the semicolon is a statement terminator. That is, each individual statement
must be ended with a semicolon. It indicates the end of one logical entity.

For example, following are two different statements:
printf ("Hello, World! \n");
return 0;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Comments

Comments are like helping text in your C program and they are ignored by the compiler.
They start with /* and terminates with the characters */ as shown below:

[* my first program in C */

You cannot have comments within comments and they do not occur within a string or
character literals.

|dentifiers

A C identifier is a name used to identify a variable, function, or any other user -defined
item. An identifier starts with a letter Ato Z or a to z or an underscore _ followed by zero
or more letters, underscores, and digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers. C is a case
sensitive programming language. Thus , Manpower and manpower are two differe nt
identifiers in C. Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal

Keywords

The following list shows the reserved words in C. These reserved words may not be used as
constant or variable or any other identifier names.

auto else Long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while

do int struct _packed
double

TUTORIALS POINT
Simply Easy Learning Pages

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Whitespace in C

A line containing only whitespace, possibly with a comment, is known as a blank line, and a
C compiler totally ignores it.

Whitespace is the term used in C to describe blanks, tabs, newline characters and
comments. Whitespace separates one part of a statement from another and enables the
compiler to identify where one element in a statement, such as int, ends and the next
element begins. Therefore, in the following statement:

int age;

There must be at least one white space character (usually a space) between int and age for
the compiler to be able to distinguish them. On the other hand, in the following statement

fruit = apples + oranges ; /I get the total fruit

No whitespace characters are necessary between fruit and =, or between = and apples
although you are free to include some if you wish for readability purpose.

TUTORIALS POINT
Simply Easy Learning

Page9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Data Types

n th e C programming language, data types refer to an extensive system used for

declaring variables or functions of different types. The type of a variable determines how
much space it occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows:

S.N. Types and Description

Basic Types:
1 They are arithmetic types and consists of the two types: (a) integer types and (b) floating-
point types.

Enumerated types:
2 They are again arithmetic types and they are used to define variables that can only be
assigned certain discrete integer values throughout the program.

The type void:
The type specifier void indicates that no value is available.

Derived types:
4 They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and
(e) Function types.

The array types and structure types are referred to collectively as the aggregate types. The
type of a function specifies the type of the function's return value. We will see basic types
in the following section , whereas , other types will be covered in the upcoming chapters.

Integer Types

Following table gives you detail s about standard integer types with its storage sizes and
value ranges:

Type Storage size Value range
Char 1 byte -128 to 127 or 0 to 255
unsigned char 1 byte 0 to 255

TUTORIALS POINT
Simply Easy Learning Pagel10

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

signed char 1 byte -128 to 127

Int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

Short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

Long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0to 4,294,967,295

To get the exact size of a type or a variable on a particular platform, you can use
the sizeof operator. The expressions sizeof(type) yields the storage size of the object or
type in bytes. Following is an example to get the size of int type on any machine:

#include <stdio.h>
#include <limits.h>

int main ()
printf ("Storage size for int : %d \'n", sizeof (int));
return 0;
}
When you compile and execute the above program , it produces the following result on
Linux:

Storage size forint: 4

FloatingPoint Types

Following table gives you detail s about standard float ing - point types with storage sizes and
value ranges and their precision:

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and other details
about the binary representation of real numbers in your programs. Following example will
print storage space taken by a float type and its range values:

#include <stdio.h>
#include <float.h>

int main ()

TUTORIALS POINT
Simply Easy Learning Pagell

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printf ("Storage size for float : %d \'n", sizeof (float));
printf ("Minimum float positive value: %E \'n", FLT_MIN);
printf ("Maximum float positive value: %E \'n", FLT_MAX);
printf ("Precision value: %d \'n", FLT_DIG);
return O;
}
When you compile and execute the above program , it produces the following result on
Linux:

Storage size for float : 4
Minimum float positive value: 1.175494E - 38
Maximum float positive value: 3.402823E+38

Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of situations:

S.N. Types and Description

Function returns as void

There are various functions in C which do not return value or you can say they return void.
A function with no return value has the return type as void. For example, void exit (int
status);

Function arguments as void
2 There are various functions in C which do not accept any parameter. A function with no
parameter can accept as a void. For example, int rand(void);

Pointers to void

A pointer of type void * represents the address of an object, but not its type. For example,
a memory allocation function void *malloc(size_t size); returns a pointer to void which
can be casted to any data type.

The void type may not be understood to you at this point, so let us proceed and we will
cover these concepts in ~ the upcoming chapters.

TUTORIALS POINT
Simply Easy Learning Pagel2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Variables

variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in C has a specific type, which determines the size and layout of
the variable's memory; the range of values that can be stored within that memory; and the
set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digit s, and the underscore character. It
must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because C is case -sensitive. Based on the basic types explained in previous chapter, there

will be the following basic variablet ypes:

Type Description
Char Typically a single octet(one byte). This is an integer type.
Int The most natural size of integer for the machine.
Float A single-precision floating point value.
Double A double-precision floating point value.
Void Represents the absence of type.
C programming language also allows to define various other type s of variables , which we

will cover in subsequent chapters like Enumeration, Pointer, Array, Structure, Union
For this chapter, let us study only basic variable types.

VariableDefinition in C

A variable definition means to tell the compiler where and how much to create the storage for the
variable. A variable definition specifies a data type and contains a list of one or more variables of
that type as follows:

, etc.

type variable_list ;

Here, type must be a valid C data type including char, w_char, int, float, double, bool or any user-
defined object, etc., and variable_list may consist of one or more identifier names separated by
commas. Some valid declarations are shown here:

TUTORIALS POINT
Simply Easy Learning Pagel3

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

int i, j., k;
char c, ch;
float f, salary ;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler
to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of
an equal sign followed by a constant expression as follows:

type variable_name = value ;

Some examples are:

extern int d =3, f =5; /I declaration of d and f.

int d=3, f =05; /I definition and initializing d and f.
byte z = 22; /I definition and initializes z.

char x = X' ; /I the variable x has the value 'X'.

For definition without an initializer: variables with static storage duration are implicitly initialized
with NULL (all bytes have the value 0); the initial value of all other variables is undefined.

Variable Declaration in:C

A variable declaration provides assurance to the compiler that there is one variable existing with
the given type and name so that compiler proceed for further compilation without needing
complete detail about the variable. A variable declaration has its meaning at the time of
compilation only, compiler needs actual variable declaration at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in
one of the files, which will be available at the time of linking of the program. You will
use extern keyword to declare a variable at any place. Though you can declare a variable multiple
times in your C program but it can be defined only once in a file, a function or a block of code.

Example

Try the following example, where variables have been declared at the top, but they have been
defined and initialized inside the main function:

#include <stdio.h>

/I Variable definition
extern int a, b;
extern int c;

extern float f:

int main ()

/I Variable definition
int a, b;

int c;

float f;

/I actual initialization
a =10;

TUTORIALS POINT
Simply Easy Learning Pageld

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

b =20;

c =a+ b
printf ("value of ¢ : %d \'n", c¢)
f = 70.0/3.0;
printf ("value of f: %f \n", f);
return 0;
}
When the above code is compiled and executed, it produces the following result:

value of ¢ : 30

value of f: 23.333334

Same concept applies on function declaration where you provide a function name at the time of its
declaration and its actual definition can be given anywhere else. For example:

/I function declaration
int func ();

int main ()

/I function call
int i = func ();

/I function definition
int func ()

return 0;

Lvalues and Rvalues in C

There are two kinds of expressions in C:

1. Ivalue: An expression that is an lvalue may appear as either the left-hand or right-hand
side of an assignment.

2. rvalue: An expression that is an rvalue may appear on the right- but not left-hand side
of an assighment.

Variables are Ivalues and so may appear on the left -hand side of an assignment. Numeric
literals are rvalues and so may not be assigned and cannot appear on the left -hand side.
Following is a valid statement:

int g = 20;

But following is not a valid statement and would generate compile -time error:

TUTORIALS POINT
Simply Easy Learning Pagel5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

10 = 20;

TUTORIALS POINT
Simply Easy Learning Pagel6

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Constants and Literals

he constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals .
Constants can be of any of the basic data types like an integer constant , a floating
constant, a character constant, or a string literal. There are also enumeration

constants as well.

The constants are treated just like regular variables except that their values cannot be
modified after their definition.

Integer literals

An integer literal can be a de cimal, octal, or hexadecimal constant. A prefix specifies the
base or radix: Ox or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and
long, respectively. Th e suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

OxFeeL /* Legal */

078 /* lllegal: 8 is not an octal digit */

032UU /* llegal: cannot repeat a suffix */

Following are other e xamples of various types of Inte ger literals:

85 [* decimal */

0213 [* octal */

Ox4b /* hexadecimal */

30 [*int*/

30u /* unsigned int */

301 /* long */

30ul /* unsigned long */

TUTORIALS POINT
Simply Easy Learning Pagel?

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Floatingpoint literals

A floating -point literal has an integer part, a decimal point, a fractional part, and an
exponent part. You can represent floating point literals either in decimal form or
exponential form.

While representing using decimal form, you must include the decimal point, the exponent,
or both and while representing using exponential form, you must include the integer part,
the fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating - point literals:

3.14159 /* Legal */

314159E - 5L /* Legal */

510E /* lllegal: incomplete exponent */
210f /* lllegal: no decimal or exponent */

. e55 /* lllegal: missing integer or fraction */

Character constants

Character literals are enclosed in single quotes , €.g., X' and can be stored in a simple
variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., ' \t), or a
universal character (e.g., ' \u02C0").

There are certain characters in C when they are preceded by a backslash they will have
special meaning and they are used to represent like newline (\n) or tab (\t). Here , you

have a list of some of such escape sequence codes:

Escape

sequence MM

\\ \ character

\ ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab
\ooo Octal number of one to three digits

TUTORIALS POINT
Simply Easy Learning Pagel8

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

\xhh . . . Hexadecimal number of one or more digits
Following is the example to show few escape sequence characters:

#include <stdio.h>

int main ()

printf ("Hello \tWorld \ n\ n");

return 0;

When the above code is compiled and executed, it produces the following result:

Hello World

String literals

String literals or constants are enclosed in double quotes "'. A string contains characters
that are similar to character literals: plain characters, escape sequences, and universal
characters.

You can break a long line into multiple lines using string literals and separating them using
whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear”

"hello, " "d* “ear"

Defining Constants

There are two simple ways in C to define constants:
1. Using #define preprocessor.
2. Using const keyword.

The #define Preprocessor

Following is the form to use #define preprocessor to define a constant:

TUTORIALS POINT
Simply Easy Learning

Pagel9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

#define identifier value

Following example explains it in detail:

#include <stdio.h>
#define LENGTH10
#define WIDTH 5
#define NEWLINE' \ n'

int main ()

{

int area ;

area = LENGTH* WIDTH

printf ("value of area : %d" , area);
printf ("%c", NEWLINE;

return 0;

When the above code is compiled and executed, it produces the following result:

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows:
const type variable = value ;

Following example explains it i n detail :

#include <stdio.h>

int main ()

{
const int LENGTH= 10;

const int WIDTH = 5;
const char NEWLINE= '\n';
int area ;

area = LENGTH* WIDTH
printf ("value of area : %d" , area);
printf ("%c", NEWLINE;

return 0;

When the above code is compiled and executed, it produces the following result:

TUTORIALS POINT
Simply Easy Learning

Page20

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

value of area : 50

Note that it is a good programming practice to define constants in CAPITALS.

TUTORIALS POINT
Simply Easy Learning Page21

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Storage Classes

storage class defines the scope (visibility) and life-time of variables and/or functions

within a C Program. These specifiers precede the type that they modify. There are the following
storage classes, which can be used in a C Program

f
f
f
f

auto
register
static

extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

mount ;
int month;

The example above defines two variables with the same storage class, auto can only be
used within functions, i.e. , local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a
register instead of RAM. This means that the variable has a maximum size equal to the

register size (usually one word) and can't have the unary '&' operator applied to it (as it
does not have a memory location).

register int miles ;

TUTORIALS POINT
Simply Easy Learning Page22

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The register should only be used for variables that require quick access such as counters. It

should also be noted that defining 'register’ does not mean that the variable will be stored
in a register. It means that it MIGHT be stored in a register depending on hardware and
implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during
the life -time of the program instead of creating and destroying it each time it comes into
and goes out of scope. Therefore, making local variables static allows them to maintain
their values between function calls.

The static modifier may also be applied to global vari ables. When this is done, it causes
that variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of
that member to be shared by all objects of its class.

#include <stdio.h>

[* function declaration */
void func (void);

static int count = 5; /*global variable */
main ()
while (count --)

func ();
}

return O;

}

/* function definition */
void func (void)

{
static int i =5; /*local static variable */
i ++;
printf ("i is %d and count is %d \'n", i, count);
}
You may not understand this example at this time because | have used function and global
variables , which | have not explained so far. So for now , let us proceed even if you do not
understand it completely. When the above code is compiled and executed, it produces the

following result:

i is 6 and count is 4
iis 7 and count is 3
i is 8 and count is 2
iis9and countis 1

iis 10 and count is O

TUTORIALS POINT
Simply Easy Learning Page23

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Theextern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to

ALL the program files. When you use 'extern’ , the variable cannot be initialized as all it
does is point the variable name at a storage locati on that has been previously defined.
When you have multiple files and you define a global variable or function , which will be

used in other files also, then extern will be used in another file to give reference of defined
variable or function. Just for und erstanding , extern is used to declare a global variable or
function in another file.

The extern modifier is most commonly used when there are two or more files sharing the
same global variables or functions as explained below.

First File: main.c
#include <stdio.h>

int count ;
extern void write_extern 0;

main ()

{
}

write_extern ();

Second File: write.c

#include <stdio.h>
extern int count ;

void write_extern (void)
{

count = 5;
printf ("countis%d \n", count);

Here, extern keyword is being used to declare count in the second file where as it has its
definition in the first file , main.c . Now , compile these two files as follows:

$gcc main . cwrite . c

This will produce a.out executable program, when this program is executed, it produces
the following result:

TUTORIALS POINT
Simply Easy Learning Page24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Operators

n operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C language is rich in built-in operators and provides the following types of
operators:

i Arithmetic Operators
i Relational Operators
il Logical Operators

il Bitwise Operators

i Assignment Operators
il Misc Operators

This tutorial will explain the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by C language. Assume
variable A holds 10 and variable B holds 20 , then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

TUTORIALS POINT
Simply Easy Learning Page25

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

++ Increments operator increases integer value by one

- Decrements operator decreases integer value by one

A++ will give 11

A-- will give 9

Try the following example to understand all the arithmetic operators available in C

programming language:

#include <stdio.h>

main ()

{
int a = 21;
int b = 10;
int c ;
c =a + b;
printf ("Line 1
c = a - b;
printf ("Line 2
c =a* b;
printf ("Line 3
c =a/ b;
printf ("Line 4
c = a %b;
printf ("Line 5
CcC = at+,
printf ("Line 6
c = a- ;

printf ("Line 7

When you compile and execute the above program

Linel - Value of

Value of c is %d

Value of c is %d

Value of c is %d

Value of c is %d

Value of c is %d

Value of c is %d

Value of c is %d

cis 31

Line2 - Valueofcis11l

Line3 - Valueofcis 210

Line4 - Valueofcis?2
Line5 - Valueofcis1l
Line6 - Valueofcis?21
Line7 - Valueof cis 22

Relational Operators

the following result:

Following table shows all the relational operators supported by C langu age. Assume
variable A holds 10 and variable B holds 20 , then:

Operator Description Example

TUTORIALS POINT

Simply Easy Learning Page26

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Checks if the values of two operands are equal or not, if
yes then condition becomes true.

Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

Checks if the value of left operand is greater than the
value of right operand, if yes then condition becomes
true.

Checks if the value of left operand is less than the value
of right operand, if yes then condition becomes true.

Checks if the value of left operand is greater than or
equal to the value of right operand, if yes then condition
becomes true.

Checks if the value of left operand is less than or equal
to the value of right operand, if yes then condition
becomes true.

(A == B) is not true.

(A!=B)is true.

(A > B) is not true.

(A < B) is true.

(A >= B) is not true.

(A <= B) is true.

Try the following example to understand all the relational operators available in C
programming language:

#include <stdio.h>
main ()
int a = 21;
int b = 10;
int ¢ ;
if (a==~D0b)
printf ("Linel - aisequaltob \n");
}
else
{
printf ("Linel - aisnotequaltob \n");
}
if (a<b)
printf ("Line2 - a islessthanb \n");
}
else
{
printf ("Line2 - aisnotlessthanb \n");
}
if (a>b)
{
printf ("Line3 - ais greaterthanb \n");
}
else
{
printf ("Line3 - ais not greater than b \ n"
}
[* Lets change value of a and b */
a = 5;
b = 20;
if (a<=b)

TUTORIALS POINT
Simply Easy Learning

Page27

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printf ("Line4 - ais either less than or equal to b \n")
if (b>=a)
- . .
printft ("Line5 - bis either greater than or equal to b \n");
}
}
When you compile and execute the above program , it produces the following result:
Linel - aisnotequaltob
Line2 - aisnotlessthanb
Line3 - aisgreaterthanb
Line4 - ais either less than or equal to b
Line5 - bis either greater than or equal to b

LogicaDperators

Following table shows all the logical operators supported by C language. Assume

variable A holds 1 and variable B holds 0 , then:

Example

(A && B) is false.

(A || B) is true.

I(A && B) is true.

Operator Description
88 Called Logical AND operator. If both the operands are non-zero,
then condition becomes true.
I Called Logical OR Operator. If any of the two operands is non-
zero, then condition becomes true.
Called Logical NOT Operator. Use to reverses the logical state
! of its operand. If a condition is true, then Logical NOT operator
will make false.
Try the following example to understand all the logical operators available in C

programming language:

#include <stdio.h>
main ()
{
int a = 5;
int b = 20;
int ¢ ;

if (a&b)
{

printf ("Linel - Condition is true \n");

}

it (Call b)
{

TUTORIALS POINT
Simply Easy Learning

Page28

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printt ("Line2 -

Condition is true \n");

/* lets change the value of a and b */

a = 0;
b = 10;
if (a&hb)
{
printft ("Line3 - Condition is true \n");
}
else
printft ("Line3 - Condition is not true \n");
}
if (!(a&&hb))
printf ("Line4 - Condition is true \n");
}
When you compile and execute the above program , it produces the following
Linel - Condition is true
Line2 - Condition is true
Line3 - Condition is not true
Line4 - Condition is true

Bitwise Operators

Bitwise operator works on bits and perform

and " are as follows:

P q
0 0
0 1
1 1
1 0

Assume if A = 60; and B = 13;

A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B =0011 1101

p&q Plq
0 0
0 1
1 1
0 1

now in binary format they will be as follows:

result:

s bit -by -bit operation. The truth tables for &, |,

O + O ©

"q

TUTORIALS POINT
Simply Easy Learning

Page29

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

A”B = 0011 0001

~A

=1100 0011

The Bitwise operators supported by C language are listed in the following table. Assume
variable A holds 60 and variable B holds 13

Binary AND Operator copies a bit to the

result if it exists in both operands.

Binary OR Operator copies a bit if it

exists in either operand.

Binary XOR Operator copies the bit if it

is set in one operand but not both.

Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right

Operator Description
&
I
N
<<

operand.
>>

operand.

Try the

programming language:

#include

<stdio.h>

main ()

int
int
0;

unsigned
unsigned
int ¢ =

a & b;
("Line 1

c =
printf

CcC =
printf

a | b;
("Line 2

c =a"” b
printf ("Line 3

cC =
printf

~a;
("Line 4

c =
printf

a << 2;
("Line 5

c =a > 2

a
b

60;
13;

/*12 = 0000 1100 */

Value of c is %d

/*61=0011 1101 */

Value of c is %d

/*49 = 0011 0001 */

Value of c is %d

, then:

following example to understand all the

\n",

\n",

\'n

/* -61=1100 0011 */
\n",

Value of c is %d

[*240 = 1111 0000 */

Value of c is %d

/*15=0000 1111 */

\'n

3

3

Example

(A & B) will give 12, which is 0000 1100

(A | B) will give 61, which is 0011 1101

(A~ B) will give 49, which is 0011 0001

(~A) will give -60, which is 1100 0011

A << 2 will give 240, which is 1111 0000

A >> 2 will give 15, which is 0000 1111

bitwise operators available in C

/*60 = 0011 1100 */
/*13 = 0000 1101 */

TUTORIALS POINT
Simply Easy Learning

Page30

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printf

When you compile and execute the

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

("Line6 - Value of cis %d \n", c)

above program

Value of cis 12
Value of c is 61
Value of c is 49
Value of cis -61
Value of c is 240

Value of c is 15

Assignment Operators

There are following

Operator

%=

<<=

>>=

Description

Simple assignment operator, Assigns values
from right side operands to left side operand

Add AND assignment operator, It adds right
operand to the left operand and assign the result
to left operand

Subtract AND assignment operator, It subtracts
right operand from the left operand and assign
the result to left operand

Multiply AND assignment operator, It multiplies
right operand with the left operand and assign
the result to left operand

Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

Modulus AND assignment operator, It takes
modulus using two operands and assign the
result to left operand

Left shift AND assignment operator

Right shift AND assignment operator

Bitwise AND assignment operator

bitwise exclusive OR and assignment operator

bitwise inclusive OR and assignment operator

, it produces

the following result:

assignment operators supported by C language:

Example
C = A + B will assign value of A +
Binto C

C+=AisequivalenttoC=C+A

C-=AisequivalenttoC=C-A

C*=AisequivalenttoC=C*A

C/=AisequivalenttoC=C/A

C %= Ais equivalentto C=C % A

C<<=2issameasC=C<<2
C>>=2issameasC=C>>2
C&=2issameasC=C&?2
Chr=2issameasC=C"2

Cl|=2issameasC=C|2

Try the following example to understand all the assignment operators available in C
programming language:

TUTORIALS POINT
Simply Easy Learning

Page31

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

#include <stdio.h>
main ()
int a = 21;
int c ;
c = ;
printf ("Linel - = Operator Example, Value of ¢ = %d \n", c)
c += a;
printf ("Line2 - += Operator Example, Value of ¢ = %d \n", c);
c -= a;
printf ("Line3 - -=Operator Example, Value of ¢ = %d \n", c)
c *= a
printt ("Line4 - *=Operator Exam ple, Value of ¢c = %d \n", c);
c /= a;
printf ("Line5 - /= Operator Example, Value of ¢ = %d \n", c)
c = 200;
c %= a;
printf ("Line6 - %= Operator Example, Value of ¢ = %d \n", c)
C <<= 2;
printf ("Line7 - <<= Operator Example, Value of ¢ = %d \n", c)
c >>= 2;
printt ("Line8 - >>= Operator Example, Value of ¢ = %d \n", c)
c &= 2;
printf ("Line9 - &= Operator Example, Value of ¢ = %d \n", c)
c = 2
printf ("Line 10 - = Operator Example, Value of ¢ = %d \n", ¢);
cl= 2
printf ("Line 11 - |= Operator Example, Value of ¢ = %d \n", ¢)
}
When you compile and execute the above program , it produces the following result:
Linel - = Operator Example, Value of c = 21
Line2 - += Operator Example, Value of c =42
Line3 - -=Operator Example, Value of c = 21
Line4 - *=Operator Example, Value of c = 441
Line5 - /= Operator Example, Value of c = 21
Line6 - %= Operator Example, Value of c = 11
Line7 - <<= Operator Example, Value of c = 44
Line8 - >>= Operator Example, Value of c = 11

TUTORIALS POINT
Simply Easy Learning Page32

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Line9 - &= Operator Example, Value of c =2
Line 10 - 7= Operator Example, Value of c = 0

Line 11 - |= Operator Example, Value of c = 2

Misc Operatorg sizeof & ternary

There are few other important operators including sizeof and ?: supported by C Language.

Operator Description Example

sizeof() Returns the size of an variable. SEEalEl), winene & 8 fniager,

will return 4.
& Returns the address of an variable. &a; W'”. give actual address of
the variable.
& Pointer to a variable. *a; will pointer to a variable.
L -
?: Conditional Expression If Condition is true ? Then

value X : Otherwise value Y
Operators Precedence in C

Operator precedence determines the grouping of terms in an expression. This affects how
an expression is evaluated. Certain operators have higher precedence than others; for
example, the multiplication operator has higher precedence than the addition operator

For example , x=7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precede nce than + , soitfirstget s multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluat ed first.

Category Operator Associativity
Postfix Of->.++-- Left to right
Unary + -1~ ++ - - (type)* & sizeof Right to left
Multiplicative *1 % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational <<=>>= Left to right
Equality === Left to right
Bitwise AND & Left to right
Bitwise XOR & Left to right
Bitwise OR Left to right

TUTORIALS POINT
Simply Easy Learning Page33

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Logical AND &&
Logical OR I
Conditional ?:
Assignment = 4= = *= = Yp=>>= <<= &="\=|=
Comma
Try the following example to understand the operator

programming language:

#include <stdio.h>

precedence available in C

main ()
{
int a = 20;
int b = 10;
int ¢ = 15;
int d = 5;
int e;
e=(a+b *c/ d /I (30*15)/5
printf ("Value of (a+b) *c/dis : %d \n"
e=((a+b *c) / d /I (30*15)/5
printf ("Value of (a+b)*c)/dis : %d
e =(a+b) * (c/ d) /I (30) * (15/5)
printf ("Value of (a+b)*(c/d)is : %d
e=a+ (b*c) / d /I 20 + (150/5)
printf ("Valueofa+ (b*c)/dis : %d \n"

When you compile and execute the above program , it produces

ret

un O;

Value of (a+b)*c/dis: 90
Value of (a+b)*c)/dis : 90
Value of (a+b) *(c/d)is : 90

Valueofa+ (b*c)/dis :50

Left to right
Left to right
Right to left
Right to left

Left to right

the following result:

TUTORIALS POINT
Simply Easy Learning

Page34

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Decision Making in C

ecision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or statements
to be executed if the condition is determined to be true, and optionally, other statements to
be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

If condition If condition
is true is false
conditional \
code
C programming language assumes any non-zero and non-null values as true, and if it is

either zero or null, then it is assumed as false value.

C programming language provides
following types of decision making statements.

TUTORIALS POINT

Simply Easy Learning Page35

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

If statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax
The syntax of an if statement in C programming language is:

if (boolean_expression)

[* statement(s) will execute if the boolean expression is true */

If the boolean expression evaluates to true , then the block of code inside the if

statement will be executed. If boolean expression evaluates to false , then the first set of
code after the end of the if statement (after the closing curly brace) will be executed.

C programming language assumes any non -zero and non -null values as true and if it is
either zero or null thenitis assumedas false value.

Flow Diagram

If condition
is true

If condition

is false conditional code

Example

#include <stdio.h>
int main ()

/* local variable definition */
int a = 10;

TUTORIALS POINT
Simply Easy Learning Page36

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

/* check the boolean condition using if statement */

if (a<20)

{
/* if condition is true then print the following */
printf ("ais less than 20 \n");

printf ("value of a is : %d \n", a)

return O;

}
When the above code is compiled and executed, it produces the following result:

ais less than 20;

value of ais: 10

if...else statement

An if statement can be followed by an optional else statement, which executes when the

boolean expressionis false .

Syntax
The syntax of an if...else statement in C programming language is:

if (' boolean_expression)

[* statement(s) will execute if the boolean expression is true */

}

else

/* statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true , then the if block of code will be executed

otherwise else block of code will be executed.

C programming language assumes any non -zero and non -null values as true and if it is

either zero or null thenitis assumed as false value.

TUTORIALS POINT
Simply Easy Learning

Page37

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Flow Diagram

If condition
is false

If condition

is true
condition

else code

®

Example

#include <stdio.h>

int

{

main ()

/* local variable definition */

int a = 100;

/* check the boolean condition */

if (a<20)
[* if condition is true then print the following */
printf ("ais less than 20 \n");

}

else
[* if condition is false then print the following */
printf ("ais not less than 20 \n");

printf ("value of a is : %d \n", a);

return O;

When the above code is compiled and executed, it produces

a is not less than 20;

value of ais : 100

the following result:

TUTORIALS POINT
Simply Easy Learning

Page38

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The If...else If...else Statement

An if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...elseif statement.

When using if , else if , else statements there are few points to keep in mind

il An if can have zero or one else's and it must come after any else if's .

1 An if can have zero to many else if's and they must come before the else.

il Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in C programming language is:

if (boolean_e xpression 1)

[* Executes when the boolean expression 1 is true */

}
else if (boolean_expression 2)
[* Executes when the boolean expression 2 is true */
}
else if (boolean_expression 3)
[* Executes when the boolean expression 3 is true */
}
else
[* executes when the none of the above condition is true */
}
Example

#include <stdio.h>

int main ()

{

/* local variable definition */
int a = 100;

/* check the boolean condition */
if (a==10)
{

[* if condition is true then print the following */
printf ("Value of a is 10 \n"),

else if (a == 20)

[/* if else if condition is true */
printf ("Value of a is 20 \n"),

TUTORIALS POINT
Simply Easy Learning

Page39

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

}
else if (a==30)
{

[* if else if condition is true
printf ("Value of a is 30 \n");

else

/* if none of the conditions is true */
printf ("None of the values is matching

printf ("Exact value of a is: %d \n",

return O;

*/

When the above code is compiled and executed, it produces

None of the values is matching

Exact value of a is: 100

Nested if statements

the following result:

It is always legal in C programming to nest if-else statements, which means you can use
one if or elseif statementinside another if or elseif statement(s).

Syntax

The syntax fora nested if statement is as follows:

if (boolean_expression 1)

You can nest else if...else

/* Executes when the boolean expression 1 is true */

if (boolean_expression 2)

/* Executes when the boolean expression 2 is true */

Example

#include <stdio.h>

int

{

main ()

/* local variable definition */

int a = 100;
int b = 200;
/* check the boolean condition */

in the similar way as you have

nested if statement.

TUTORIALS POINT
Simply Easy Learning

Page40

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

if (a==100)

/* if condition is true then check the following */
if (b==200)

/* if condition is true then print the following */

printf ("Value of a is 100 and b is 200 \n");
}

} -

printf ("Exact value of a is : %d \n", a),
printf ("Exact value of b is : %d \n", b))
return 0;

}
When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200
Exact value of a is : 100

Exact value of b is : 200

switch statement

A switch statement allows a variable to be tested for equality against a list of values. Each
value is called a case, and the variable being switched on is checked for each switch case.

Syntax
The syntax fora switch statement in C programming language is as follows:

switch (‘expression){
case constant -expression
statement (s);
break ; /* optional */
case constant -expression
statement (s);
break ; /* optional */

/*you can have any number of case statements */
default : /* Optional */
statement (s);

The following rules apply to a switch statement:

i The expression used in a switch statement must have an integral or enumerated type,
or be of a class type in which the class has a single conversion function to an integral or
enumerated type.

TUTORIALS POINT
Simply Easy Learning Page4l

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

= =4 =4 =4 =4

You can have any number of case statements within a switch. Each case is followed by
the value to be compared to and a colon.

The constant -expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

When the variable being switched on is equal to a case, the statements following that
case will execute until a break statement is reached.

When a break statement is reached, the switch terminates, and the flow of control jumps
to the next line following the switch statement.

Not every case needs to contain a break . If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

A switch statement can have an optional default case, which must appear at the end of
the switch. The default case can be used for performing a task when none of the cases
is true. No break is needed in the default case.

Flow Diagram

expression

case | code block 1

code block 2
case 3 code block 3
y/
/s
/]
ol code block N
Example
#include <stdio.h>
int main ()
{

/* local variable definition */

char

grade = 'B' ;

switch (grade)

case

A

TUTORIALS POINT
Simply Easy Learning Page42

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printf ("Excellent! \n");
break ;

case 'B'

case 'C'
printf ("Welldone \n");
break ;

case 'D' :
pri ntf ("You passed \n");
break ;

case 'F'
printf ("Better try again \n");
break ;

default
printf ("Invalid grade \n");

printf ("Your grade is %c \'n", grade);

return O;
}
When the above code is compiled and executed, it produces the following result:
Well done

Your grade is B

Nested switch statements

It is possible to have a switch as part of the statement sequence of an outer switch
Even if the case constants of the inner and outer switch contain common values, no
conflicts will arise.

Syntax
The syntax fora nested switch statement is as follows:

switch (chl) {

case 'A' :
printf ("This A is part of outer switch");
switch (ch2) {
case 'A' :
printf ("This A is part of inner switch”);
break ;
case 'B' : [*case code */
}
break ;
case 'B' : /*case code */
}
Example

#include <stdio.h>

int main ()

TUTORIALS POINT
Simply Easy Learning Page43

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

/* local variable definition */

int a = 100;
int b = 200;
switch (a) {
case 100:
printf ("This is part of outer switch \n", a);
switch (b) {
case 200:
printf ("This is part of inner switch \n", a);
}
}
printf ("Exact value of a is :%d\n", a);
printf ("Exact value of b is : %d \n", b);
return O;
}
When the above code is compiled and executed, it produces the following result:

This is part of outer switch
This is part of inner switch
Exact value of ais : 100

Exact value of b is: 200

The ? . Operator

We have covered conditional operator ? . in previous chapter which can be used to
replace if...else statements. It has the following general form:

Expl ? Exp2 : ExpS;

Where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Expl is evaluated. If it is true , then
Exp2 is evaluated and becomes the value of the entire ? expression. If Explis false , then
Exp3 is evaluated and its value becomes the valu e of the expression.

TUTORIALS POINT
Simply Easy Learning Page44

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Loops

here may be a situation , when you need to execute a block of code several number
of times. In general , statements are executed sequentially: The first statement in a
function is executed first, followed by the second ,and soon .

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general form of a loop statement in mo st of the programming
languages

Conditional Code

If condition
is true

If condition
is false

C programming language provides the following types of loop s to handle looping
requirements.

TUTORIALS POINT
Simply Easy Learning Page45

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

while loop in C

A while loop statement in C programming language repeatedly executes a target
statement as long as a given condition is true .

Syntax
The syntax of a while loop in C programming language is:

while (condition)

{
statement (S);
}
Here, statement(s) may be a single statement or a block of statements.
The condition may be any expression, and true is any nonzero value. The loop iterates

while the condition is true .

When the condition becomes false , program control passes to the line immediately
following the loop.

FlowDiagram

while(condition)

{
}

conditional code ;

If condition
is true

conditional
code If condition

is false

TUTORIALS POINT
Simply Easy Learning Page46

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Here, key point of the
tested and the result is
the while loop will be executed.

Example

#include <stdio.h>

int main ()

{

/* local variable definition */

int a = 10;

[* while loop execution */
while (a < 20)

printf ("value of a: %d \'n

a++;

}

return O;

When the above code is compiled and executed, it produces

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

for loop in C

A for loop is a repetition control structure that allows you to

needs to execute a specific number of times.

Syntax

The syntax ofa for loop in C programming language is:

for (init ; condition ;

{

increment

[}

a);

)

while loop is that the loop might not ever run. When the condition is
false , the loop body will be skipped and the first statement after

the following result:

efficiently write a loop that

TUTORIALS POINT
Simply Easy Learning

Page47

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

statement ('s);

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here, as long
as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is
false, the body of the loop does not execute and flow of control jumps to the next
statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control
variables. This statement can be left blank, as long as a semicolon appears after the
condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After the
condition becomes false, the for loop terminates.

Flow Diagram

for(init; condition; increment)

{

conditional code ;

}
condition
If condition
is true
conditional =
code If condition
is false
] increment
Example

#include <stdio.h>

int main ()

TUTORIALS POINT
Simply Easy Learning Page48

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

[* for loop execution */
for (int a=10; a<20; a=a+ 1)

{
printf ("value ofa:%d \n", a);
return O;
}
When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

do...while loop in C

Unlike for and while loops, which test the loop condition at the top of the loop,
the do...while loop in C programming language checks its condition at the bottom of the
loop.

A do...while loop is similar to a while loop , exceptthata do..while loop is guaranteed to
execute at least one time.

Syntax
The syntax ofa do...while loop in C programming language is:

do
statement (s);
}while (' condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop execute once before the condition is tested.

TUTORIALS POINT
Simply Easy Learning Page49

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

If the condition is true , the flow of control jumps back up to do, and the statement(s) in
the loop execute again. This process repeats until the given condition becomes fal se.

Flow Diagram

do
{

conditional code ;
} while (condition)

conditional

code

If condition
is true

condition

If condition
is false

Example

#include <stdio.h>

int main ()

{

/* local variable definition */
int a = 10;

/* do loop execution */
do

{

printf ("value of a: %d \n", a);
a=a+1;
}while (a < 20);

return O;

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13

value of a: 14

TUTORIALS POINT
Simply Easy Learning Page50

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

nested loops in C

C programming language allows to use one loop inside another loop. Following section
shows few examples to illustrate the concept.

Syntax
The syntax fora nested for loop statementin C is as follows:

for (init ; conditon ; increment)

{

for (init ; condi tion ; increment)
statement (s);

}

statement (s);

The syntax fora nested while loop statementin C programming language is as follows:

while (condition)

while (condition)

{

statement (s);

statement (s);

The syntax for a nested do...while loop statement in C programming language is as
follows:

do
{

statement ('s);
do

statement (s);
}while (condition);

}while (conditon);

TUTORIALS POINT
Simply Easy Learning Page51

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

A final note on loop nesting is that you can put any type of loop inside of any other type of
loop. For example , a forloop can be inside a while loop or vice versa.

Example
The following program uses a nested for loop to find the prime numbers from 2 to 100:

#include <stdio.h>

int main ()

{

[* local variable definition */
int i, j;
for (i=2; i<100; i++) {
for (j=2; j <= (i/j); j++)
if (I(i%)) break ; //iffactor found, not prime
if (j > (i/j)) printf ("%disprime \n", i);

return O;

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime

61 is prime

TUTORIALS POINT
Simply Easy Learning Page52

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

67 is prime
71lis prime
73 is prime
79 is prime
83 is prime
89 is prime

97 is prime

break statement in C

The break statementin C programming language has the following two usage s:

1. When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop.

2. It can be used to terminate a case in the switch statement (covered in the next chapter).

If you are using nested loops (i.e., one loop inside another loop), the break statement
will stop the execution of the innermost loop and start executing the next line of code after
the block.

Syntax
The syntax fora break statementin C is as follows:

break ;

Flow Diagram

conditional

code

If condition

is true
condition @

If condition
is false

TUTORIALS POINT
Simply Easy Learning Page53

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Example

#include <stdio.h>

int main ()
/* local variable definition */
int a = 10;

[* while loop execution */
while (a < 20)

{
printf ("value of a: %d \n", a);
a++;
if (a> 15)
{

[* terminate the loop using break statement */
break ;

}

}

return O;

}
When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14

value of a: 15

continue statement in C

The continue statement in C programming language works somewhat like
the break statement. Instead of forcing termination, however, continue forces the next
iteration of the loop to take place, skipping any code in between.

For the for loop , continue statement causes the conditional test and incr ement portions
of the loop to execute. For the while and do..while loops, continue statement causes
the program control passes to the conditional tests.

Syntax
The syntax fora continue statementin C is as follows:

continue ;

TUTORIALS POINT
Simply Easy Learning Page54

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Flow Diagram

conditional
code

If condition
is true

continue

condition

If condition
is false

Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 10;
/* do loop execution */
do
{
if (a==15)
{
[* skip the iteration */
a=a+ 1;
continue ;

printf ("value of a:%d \n", a);
a++;

twhile (a < 20);

return O;

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

TUTORIALS POINT
Simply Easy Learning Page55

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18

value of a: 19

goto statement in C

A goto statement in C programming language provides an unconditional jump from the
goto to a labeled statement in the same function.

NOTE: Use of goto statement is highly discouraged in any programming language because

it makes difficult to trace the control flow of a program, making the program hard to
understand and hard to modify. Any program that uses a goto can be rewritten so that it
doesn'tneedt he goto .

Syntax
The syntax fora goto statementin C is as follows:

goto label ;
label : statement ;

Here label can be any plain text except C keyword and it can be set anywhere in the C
program above or below to goto statement.

Flow Diagram

label 1 statement 1

label 2 statement 2 label 3

label 3 statement 3 DR

TUTORIALS POINT
Simply Easy Learning Page56

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Example

#include <stdio.h>
int main ()

/* local variable definition */
int a = 10;

/* do loop execution */
LOOP do

{
if (a==15)

[* skip the iteration */
a=a+1;
goto LOOP

printf ("value of a: %d \n",
a++;

}while (a < 20);

return O;

When the above code is compiled and executed, it produces

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value ofa:17
value of a: 18

value of a: 19

The Infinite Loop

the following result:

A loop becomes infinite loop if a condition never becomes false . The for loop is

traditionally used for this purpose. Since

empty.

#include <stdio.h>

int main ()

{

none of the three expressions that form
loop are required, you can make an endless loop by leaving the conditional expression

the for

TUTORIALS POINT
Simply Easy Learning

Page57

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

for (7 1)

printf ("This loop will run forever. \n");

return O;

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C programmers more commonly use the for(;;)
construct to signify an infinite loop.

NOTE : You can terminate an infinite loop by pressing Ctrl+ C keys.

TUTORIALS POINT

Simply Easy Learning Page58

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Functions

unction is a group of statements that together perform a task. Every C program has at least

one function , which is main(), and all the most trivial programs can define additional
functions.

You can divide up your code into separate functions. How you divide up your code among
different functions is up to you, but logically the division usually is so each function
performs a specific task.

A function declaration tells the compiler about a function's name, re turn type, and
parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built -in functions that your program can call. For
example, function strcat() to concatenate two strings, function memcpy() to copy one
memory location to another location and many more functions.

A function is know n with various names like a method or a sub -routine or a procedure , etc.

Defining a Function

The general formof a function definition in C programming language is as follows:

return_type function_name (parameter list)

body of the function

A function definition in C programming language consists of a function header and
a function body. Here are all the parts of a function:

il Return Type : A function may return a value. The return_type is the data type of the
value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return_type is the keyword void .

il Function Name: This is the actual name of the function. The function name and the
parameter list together constitute the function signature.
il Parameters: A parameter is like a placeholder. When a function is invoked, you pass a

value to the parameter. This value is referred to as actual parameter or argument. The

TUTORIALS POINT
Simply Easy Learning Page59

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional; that is, a function may contain no parameters.

i Function Body: The function body contains a collection of statements that define what
the function does.

Example

Following is the source code for a function called max(). This function takes two parameters
numl and num2 and returns the maximum between the two:

/* function returning the max between two numbers */
int max(int numl, int num?2)

{
/* local variable declaration */
int result ;
if (numl > num2)
result = numl;
else
result = num2
return result ;
}

Function Declarations

A function declaration tells the compiler about a function name and how to call the
function. The actual body ofthe function can be defined separately.

A function declaration has the following parts:
return_type function_name (parameter list);

For the above defined function ma x(), following is the function declaration:
int max(int numl, int num2);

Parameter names are not importan t in function declaration only their type is required, so
following is also valid declaration:

int max(int , int);

Function declaration is required when you define a function in one source file and you call
that function in another file. In such case you should declare the function at the top of the
file calling the function.

Calling a Function

While creating a C function, you give a definition of what th e function has to do. To use a
function, you will have to call that function to perform the defined task.

TUTORIALS POINT
Simply Easy Learning Page60

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When a program calls a function, program control is transferred to the called function. A

called function performs defined task

, and when its return s tatement is executed or when

its function -ending closing brace is reached, it returns program control back to the main

program.

To call a function
name , and if function returns a value

#include <stdio.h>
/* function declaration */

int max(int numl, int num2);
int

{

main ()

/* local variable definition */
int a = 100;

int b = 200;

int ret ;

[* calling a function to get
ret = max(a, b);

printf ("Max value is : %d

return O;

}

, you simply need to pass the required parameters along with function

, then you can store returned value. For example:

max value */

\n", ret);

/* function returning the max between two numbers */

int int

{

max(int numl, num2)
/* local variable declaration */

int result ;

if (numl > num2)
result = numl;

else
result = numz

return result

| kept max() function along with main() function and compi

running final executable, it would produce

Max value is : 200

FunctionArguments

led the source code. While
the following result:

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the

The formal parameters behave like other local variables inside the function an

formal parameters of the function.

d are created

upon entry into the function and destroyed upon exit.

TUTORIALS POINT
Simply Easy Learning

Page61

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

While calling a function, there are two ways that arguments can be passed to a function:

Function call by value

The call by value method of passing arguments to a function copies the actual value of an

argument into the formal parameter of the function. In this case, changes made to the
parameter inside the function have no effect on the argument.

By default, C programming language uses call by value method to pass arguments. In
genera |, this means that code within a function cannot alter the arguments used to call the
function. Consider the function swap() definition as follows.
/* function definition to swap the values */
void swap(int x, int y)
{
int temp;
temp = x; /*saveth e value of x */
X =Y, /* puty into x */
y = temp; /*putxintoy*/
return
}
Now, let us call the function swap() by passing actual values as in the following example:
#include <stdio.h>
/* function declaration */
void swap(int x, int y);
int main ()
[* local variable definition */
int a = 100;
int b = 200;
printf ("Before swap, value of a : %d \n", a);
printf ("Before swap, value of b : %d \n", b))
[* calling a function to swap the values */
swap(a, b);
printf ("After swap, value of a : %d \n", a);
printf ("After swap, value of b : %d \n", b);
return 0;
}
Let us put above code in a single C file, compile and execute it, it will produce the following
result:
Before swap, value of a :100
Before swap, value of b :200
TUTORIALS POINT
Simply Easy Learning Page62

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had been changed inside
the function.

Function call by reference

The call by reference method of passing arguments t o0 a function copies the address of an
argument into the formal parameter. Inside the function, the address is used to access the

actual argument used in the call. This means that changes made to the parameter affect

the passed argument.

To pass the value b y reference , argument pointers are passed to the functions just like
any other value. So accordingly you need to declare the function parameters as pointer
types as in the following function swap(), which exchanges the values of the two integer
variables p ointed to by its arguments.

/* function definition to swap the values */
void swap(int *x, int *y)

{
int temp;
temp = *Xx; /* save the value at address x */
X = *fy; /* puty into x */
y = temp; [put x into y */
return ;
}

Let us call the function swap() by passing values by reference as in the following example:

#include <stdio.h>

/* function declaration */
void swap(int *x, int *y);

int main ()

/* local variable definition */

int a = 100;
int b = 200;
printt ("Before swap, value of a : %d \n", a);
printf ("Before swap, value of b : %d \n", b);
[* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and

* &b indicates pointer to b ie. address of v ariable b.
*
swap(&a, &b);
printt ("After swap, value of a : %d \n", a);
printt ("After swap, value of b : %d \n", b);

TUTORIALS POINT
Simply Easy Learning Page63

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

return O;

Let us put above code in a single C file, compile and execute it, it will produce the following
result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :2 00

After swap, value of b :1 00

Which shows that there is no change in the values though they had been changed inside
the function.

TUTORIALS POINT
Simply Easy Learning Page64

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Scope Rules

scope in any programming is a region of the program where a defined variable can have

its existence and beyond that variable cannot be accessed. There are three places where
variables can be declared in C programming language:

i Inside a function or a block which is called local variables,
il Outside of all functions which is called global variables.
i In the definition of function parameters which is called formal parameters.

Let us explain what are local and global variablesand formal parameters.

Localariables

Variables that are declared inside a function or block are called local variables . They can
be used only by statements that are inside that function or block of code. Local variables

are not known to functions outside their own. Following is the example using local
variables . Here all the variables a, b and c are local to main() function.

#include <stdio.h>

int main ()

{
/* local variable declaration */
int a, b;
int c;

/* actual initialization */
a = 10;

b 20;

c a + b;

printf ("value of a = %d, b = %d and ¢ = %d \n", a, b, c);

return 0;

TUTORIALS POINT
Simply Easy Learning Page65

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Global Variables

Global variables are defined outside of a function, usually on top of the program. The
global variables will hold their value throughout the lifetime of your program and they can
be accessed inside any of the functions defined for the program.

A global variable can be acc essed by any function. That is, a global variable is available
for use throughout your entire program after its declaration. Following is the example using
global and local variables:

#include <stdio.h>

/* global variable declaration */
int g;

int main ()

{
/* local variable declaration */
int a, b;

/* actual initialization */
a 10;

b 20;
g=a+b;

printf ("value of a = %d, b = %d and g = %d \n", a, b, 9);

return O;

A program can have same name for local and global variables but value of local variable
inside a function will take preference. Following is an example:

#include <stdio.h>

/* global variable declaration */
int g = 20;

int main ()

/* local variable declaration */
int g = 10;

printf ("value of g=%d \n", @)

return O;

When the above code is compiled and executed, it produces the following result:

value of g = 10

TUTORIALS POINT
Simply Easy Learning Page66

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Formal Parameters

Function parameters,
that function and
example:

so called formal parameters

#include <stdio.h>

/* global variable declaration */
int a = 20;

int main ()

/* local variable declaration in main function */
int a = 10;

int b = 20;

int ¢ = 0;

printf ("value of a in main() = %d \n", a);
c = sum(a, b);

printf ("value of ¢ in main() = %d \n", c¢);
return O;

}

/* function to add two integers */
int sum(int a, int b)

{
printf ("value of a in sum() = %d \n", a);
printf ("value of b insum()=%d \n", b);
return a + b;

}

When the above code is compiled and executed, it produces

value of a in main() = 10
value of a in sum() = 10
value of b in sum() = 20

value of ¢ in main() = 30

, are treated as local variables within
they will take preference over the global variables.

Following is an

the following result:

Initializing Local and Glob#riables

When a local variable is defined, it is not
yourself. Global variables are

as follows:
Data Type Initial Default Value
int 0

initialized by the system, you must
initialized automatically by the system when you define them

initialize it

TUTORIALS POINT
Simply Easy Learning

Page67

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

char \0'

float 0
double 0
pointer NULL

It is a good programming practice to initialize variables properly otherwise, your program
may produce unexpected results because uninitialized variables will take some garbage
value already available at its memory lo cation.

TUTORIALS POINT
Simply Easy Learning Page68

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Arrays

rogramming language provides a data structure called the array , which can store

a fixed -size sequential collection of elements of the same type. An array is used to store a
collection of data, but it is often more useful to think of an array as a collection of variables
of the same type.

Instead of declaring individual variables, such as numberO, numberl, ..., and number99,
you declare one array variable s uch as numbers and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables. A specific element in an array is accessed by

an index .

All arrays consist of contiguous memory locations. The lowest address corresponds to the
first el ement and the highest address to the last element.

First Element Last Element

! !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number
of elements required by an array as follows:

type arrayName [arraySize |;

This is called a single -dimensional array. The arraySize must be an integer constant
greater than zero and type can be any valid C data type. For example, to declare a 10 -
element array called balance of type double, use this statement:

double balance [10];

Now balance is a variable array which is sufficient to hold up -to 10 double numbers.

TUTORIALS POINT
Simply Easy Learning Page69

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Initializing Arrays
You can initialize array in C either one by one or using a single statement as follows:

double balance [5] = {10000 , 20, 34, 17.0, 50.0 }

The number of values between braces { } can not be larger than the number of elements
that we declare for the array between square brackets []. Following is an example to
assign a single element of the array:

If you omit the size of the array, an array just big enough to hold the in itialization is
created. Therefore, if you write:

double balance [] = {10000 , 2.0, 34, 17.0, 50.0 }
You will create exactly the same array as you did in the previous example.

balance [4] = 50.0 ;

The above statement assigns element number 5th in the array a value of 50.0. Array with
4th index will be 5th i .e. last element because all arrays have 0 as the index of their first
element which is also called base index. Following is the pictorial representation of the

same array we discussed above:

0 1 2 3 4

balance 1000.0 2.0 3.4 7.0 50.0

Accessind\rray Elements

An element is accessed by indexing the array name. This is done by placing the index of
the element within square brackets after the name of the array. For example:

double salary = balance [9];

The above statement will take 10th element from the array and assign the value to salary
variable. Following is an example which will use all the above mentioned three concepts
viz. declaration, assignment and accessing arrays:

#include <stdio.h>
int main ()

int n[10]; /*nisan array of 10 integers */
int i,j;

/* initialize elements of array n to 0 */
for (i =0; i <10; i++)

TUTORIALS POINT
Simply Easy Learning Page70

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

n[i] =i + 100; /*setelementatlocationitoi+ 100 */

[* output each array element's value */
for (j =0;) <10; j++)

{
printf ("Element[%d] =%d \n", j, n[j]);
}
return 0;
}
When the above code is compiled and executed, it produces the following result:

Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] =105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

Multi-dimensional Arrays

C programming language allows multidimensional arrays . Here is the general form of a
multidimensional array declaration:

type name [sizel | size2]...[sizeN |;
For example, the following declaration creates a three dimensional 5 . 10 . 4 integer array:

int threedim [5][10][4];

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two -dimensional array. A two -
dimensional array is, in essence, a list of one -dimensional arrays. To declare a two -
dimensional integer array of size x, y you would write something as follows:

type arrayName [x][y [;

TUTORIALS POINT
Simply Easy Learning Page71

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Where type can be any valid C data type and arrayName will be a valid C identifier. A two -
dimensional array can be think as a table which will have x number of rows and y number

of columns. A 2 -dimentional array a, which contains three rows and four columns can be
shown as below:

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0][1] a[0][2] a[0][3]
Row 1 a[1][0] af1][1] | a[1][2] a[1][3]
Row 2 a[2][0] a[2][1] | a[2][2] a[2][3]

Thus, every element in arr ay a is identified by an element name of the form
where a is the name of the array, and i and j are the subscripts that uniquely identify each
elementin a.

alilljl,

Initializing TweDimensional Arrays

Multidimensional arrays may be initialized by spec
Following is an array with 3 rows and each row

ifying bracketed values for each row.
has 4 columns.

int a[3] 4 = {

{0, 1, 2, 3} , /* initializers for row indexed by 0 */
{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} F5 initializers for row indexed by 2 */
I

The nested braces, which indicate the intended row, are optional. The following initialization
is equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9, 10, 11};
Accessing Twbimensional Array Elements

An element in 2 -dimensional array is accessed by using the subscripts
column index of the array. For example:

, i.e., row index and

int val = a[2] 3],

The above statement will take 4th element from the 3rd row of the array. You can verify it
in the above diagram . Let us check below program where we have used nested loop to
handle a two dimensional array:

#include <stdio.h>

int main ()

{

/* an array with 5 rows and 2 columns*/

TUTORIALS POINT
Simply Easy Learning Page72

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

int a[5][2] ={ {0,0}, {1,2} {24} {3,6}{ 4, 8}
int i, j;
/* output each array element's value */
for (i =0; i <5; i++)
{
for (j =0; j <2 j++)
{

}
}

return 0;

printf ("a[%d][%d]=%d \n", i,j, a[illj]);

When the above code is compiled and executed, it produces the following result:

alo][0]: 0
a[o][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
al4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is
likely that most of the arrays you create will be of one or two dimensions.

Passing Arrays as Function Arguments

If you want to pass a single -dimension array as an argument in a function, you would have

to declare function formal parameter in one of following three ways and all three
declaration methods produce similar results because each tells the compiler that an integer
pointer is going to be received. Similar way you can pass multi -dimensional array as formal
parameters.

Way-1
Formal parameters as a pointer as follows. You will study what is pointer in next chapter.

void myFunction (int *param)

{

TUTORIALS POINT
Simply Easy Learning Page73

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

}
Way-2

Formal parameters as a sized array as follows:

void myFunction (int param][10])

{

Way-3

Formal parameters as an unsized array as follows:

void myFunction (int paraml])

{

)
Example

Now, consider the following function

double getAverage (int arr [],

t _
int i;
double avg;
double sum;

for (i =0; i < size ; ++i)

{
}

avg = sum / size ;

sum += arr [i];

return avg;

Now, let us call the above function as follows:

#include <stdio.h>

/* function declaration */
double getAverage (int arr [],

int main ()

, which will take an array as an argument along with
another argument and based on the passed arguments, it will return average of the
numbers passed through the array as follows:

int

int

size)

size);

TUTORIALS POINT
Simply Easy Learning

Page74

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

[* an int array with 5 elements */
int balance [5] = {1000, 2, 3, 17, 50}
double avg;

[* pass pointer to the array as an argument */
avg = getAverage (balance , 5) ;

[* output the returned value */
printf ("Average value is: %f " , avg);
return 0O;
}
When the above code is compiled together and executed, it produces the following result:

Average value is: 214.400000

As you can see, the length of the array doesn't matter as far as the function is concerned
because C performs no bounds checking for the formal parameters.

Return array from function

C programming language does not allow to return an entire array as an argument to a
function. However, you can return a pointer to an array by specifying the array's name
without an index. You will study pointer in next chapter so you can skip this chapter until

you understand the concept of Pointers in C.

If you want to return a single -dimension array from a function, you would have to declare a
function returning a pointer as in the following example:

int * myFunction ()

{

Second point to remember is that C does not advocate to return the address of a local
variable to outside of the function so you would have to define the local variable
as static variable

Now, consider the following function which will generate 10 random numbers and return
them using an array and call this function as follows:

#include <stdio.h>

/* function to generate and return random numbers */
int * getRandom ()
{

static int r[10];

int i;

TUTORIALS POINT
Simply Easy Learning Page75

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

/* set the seed */
srand ((unsigned)time (NULL));

for (i =0; i < 10; ++i)
r(i] = rand ();
printf ("r%d]=%d \n", i, r[i]);
}
return r;
}
/* main function to call above defined
int main ()
{
/* a pointer to an int */
int *p;
int i;
p = getRandom ();
for (i =0; i <10; i++)
printf ("*(p + %d) : %d \n", i, *(p +i));
}
return 0;
}

When the above code is compiled together and executed,
follows:

r[0] = 313959809
r[1] = 1759055877
r[2] = 1113101911
r[3] = 2133832223
r[4] = 2073354073
r[5] = 167288147
r[6] = 1827471542
r[7] = 834791014
r[8] = 1901409888
r[9] = 1990469526
*(p + 0) : 313959809
*(p + 1) : 1759055877
*(p + 2) : 1113101911
*(p + 3) : 2133832223
*(p + 4) : 2073354073
*(p + 5) : 167288147
*(p + 6) : 1827471542
*(p + 7) : 834791014
*(p + 8) : 1901409888
*(p + 9) : 1990469526

function */

it produces result something as

TUTORIALS POINT
Simply Easy Learning

Page76

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Pointer to an Array

It is most likely that you would not understand this chapter until you are through the
chapter related to Pointersin C.

So assuming you have bit understanding on pointers in C programming language, let us
start: An array name is a constant pointer to the first element of the array. Therefore, in
the declaration:

double balance [50];

balance is a pointer to &balance[0], which is the address of the first element of the array

balance. Thus, the following program fragment assigns p the address of the first element
of balance:

double *p;

double balance [10];

p = balance ;
It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance +

4) is a legitimate way of accessing the data at balance[4].

Once you store the address of first element in p, you can access array elements using *p,
*(p+1), *(p+2) and so on. Below is the example to show all the concepts discussed above:

#include <stdio.h>
int main ()

{

/* an array with 5 elements */
double balance [5] = {1000.0 , 2.0, 3.4, 17.0, 50.0 };
double *p;
int i;
p = balance ;
/* output each array element's value */
printf ("Array values using pointer \n");
for (i =0; i <5; i++)
printf ("*(p + %d) : %f \n", i, *(p+i))
printf ("Array values using balance as address \n");

for (i =0; i <5; i++)

printf ("*(balance + %d) : %f \n", i, *(balance + i));

return 0;

When the above code is compiled and executed, it produces the following result:

TUTORIALS POINT
Simply Easy Learning Page77

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Array values using pointer
*(p + 0) : 1000.000000

*(p + 1) : 2.000000

*(p + 2) : 3.400000

*(p + 3) : 17.000000

*(p + 4) : 50.000000

Array values using balance as address
*(balance + 0) : 1000.000000
*(balance + 1) : 2.000000
*(balance + 2) : 3.400000
*(balance + 3) : 17.000000
*(balance + 4) : 50.000000

In the above example , p is a pointer to double , which means it can store address of a
variable of double type. Once we ha ve address in p, then *p will give us value available at
the address stored in p, as we have shown in the above example.

TUTORIALS POINT
Simply Easy Learning Page78

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Pointers

ointers in C are easy and fun to learn. Some C programming tasks are performed

more easily with pointers, and other tasks, such as dynamic memory allocation, cannot be
performed without using pointers. So it becomes necessary to learn pointers to become a
perfect C programmer. Let's start learning them in simple and easy steps.

As you know , every variable is a memory location and every memory location has its
address defined which can be accessed using ampersand (&) operator , which denotes an
address in memory.

Consider the following example , which will print the address of the variables de fined:

#include <stdio.h>

int main ()

{
int varl ;
char var2 [10];

printf ("Address of varl variable: %x \n", &arl);
printf ("Address of var2 variable: %x \n", &ar2);
return 0O;
}
When the above code is compiled and executed, it produces result something as follows:

Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6

So you understood what is memory address and how to access it, so base of the concept is
over. Now let us see what is a pointer.

TUTORIALS POINT
Simply Easy Learning Page79

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

What Are Pointers?

A pointer is a variable whose value is the address of another variable , i.e., direct address of
the memory location. Like any variable or constant, you must declare a pointer before you

can use it to store any variable address. The general form of a pointer variabl e declaration
is:

type *var - name;

Here, type is the pointer's base type; it must be a valid C data type and var -name is the
name of the pointer variable. The asterisk * you used to declare a pointer is the same

asterisk that you use for multiplication. However, in this statement the asterisk is being

used to designate a variable as a pointer. Following are the valid pointer declaration:

int *ip ; /* pointer to an integer */
double *dp; /* pointer to a double */

float *fp ; [* pointer to a float */
char *ch [* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address. The
only difference between po inters of different data types is the data type of the variable or
constant that the pointer points to.

How to use Pointers?

There are few important operations , which we will do with the help of pointers very
frequently. (a) we define a pointer variable (b) assign the address of a variable to a
pointer and (c) finally access the value at the address available in the pointer variable. This

is done by using unary operator * that returns the value of the variable located at the
address specified by its opera nd. Following example makes use of these operations:

#include <stdio.h>

int main ()

int var = 20; [* actual variable declaration */

int *ip ; I* pointer variable declaration */

ip = &ar; /* store address of var in pointer variable*/
printf ("Address of var variable: %x \n", &ar);

/* address stored in pointer variable */

printf ("Address stored in ip variable: %x \n", ip);
[* access the value using the pointer */

printf ("Value of *ip variable: %d \n", *ip)

return 0O;

TUTORIALS POINT
Simply Easy Learning Pages0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces result something as follows:

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers in C

It is always a good practice to assign a NULL value to a pointer variable in case you do not
have exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned NULL is calleda null pointer.

The NULL pointer is a constant with a value of zero defined in several standa rd libraries .
Consider the following program:

#include <stdio.h>

int main ()
{ int *ptr = NULL
printf ("The value of ptris : %x \'n", &ptr);
return 0;
}
When the above code is compiled and executed, it produces the following result:

The value of ptris 0

On most of the operating systems, programs are not permitted to access memory at

address 0 because that memory is reserved by the operating system. However, the
memory address 0 has special significance; it signals that the pointer is not intended to

point to an accessible memory location. But by convention, if a pointer contains the null

(zero) value, it is assumed to point to nothing.

To check fora null pointer you can use an if statement as follows:

if (ptr) I* succeeds if p is not null */
if (! ptr) I* succeeds if p is null */

Pointer arithmetic

As explained in main chapter, C pointer is an address , Which is a numeric value. Therefore,
you can perform arithmetic operations on a pointer just as you can a numeric value. There
are four arithmetic operators that can be used on pointers: ++, --,+,and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points
to the address 1000. Assuming 32 -bit integers, let us perform the following arithmetic
operation on the pointer:

TUTORIALS POINT
Simply Easy Learning Pages1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ptr ++

Now, after the above operation, the ptr will point to the location 1004 because each time
ptr is incre mented, it will point to the next integer location which is 4 bytes next to the
current location. This operation will move the pointer to next memory location without
impacting actual value at the memory location. If ptr points to a character whose address
is 1000, then above operation will point to the location 1001 because next character will be
available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer

can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer. The following program increments the variable pointer to access each
succeeding element of the array:

#include <stdio.h>

const int MAX= 3;

int main ()
{
int wvar[] = {10, 100, 200}
int i, *ptr;
[* let us have array address in pointer */
ptr = var ;
for (i =0; i < MAX i++)
{
printf ("Address of var[%d] = %x \n", i, ptr);
printf ("Value of var[%d] = %d \n", i, *ptr);
/* move to the next location */
ptr ++;
}
return O;

When the above code is compiled and executed, it produces result something as follows:

Address of var[0] = bf882b30

Value of var[0] = 10

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38
Value of var[2] = 200

TUTORIALS POINT
Simply Easy Learning Pages2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by the
number of bytes of its data type as shown below:

#include <stdio.h>
const int MAX= 3;

int main ()

{
int var[] = {10, 100, 200}
int i, *ptr;

[* let us have array address in pointer */
ptr = &var [MAX 1];

for (i =MAX i >0; i-)

{
printf ("Address of var[%d] = %x \n", i, ptr);
printf ("Value of var[%d] = %d \n", i, *ptr);
/* move to the previous location */
ptr -- ;

}

return O;

When the above code is compiled and executed, it produces result something as follows:

Address of var[3] = bfedbcd8
Value of var[3] = 200
Address of var[2] = bfedbcd4
Value of var[2] = 100
Address of var[1] = bfedbcd0
Value of var[1] = 10

Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and
p2 point to variables that are related to each other, such as elements of the same array,
then pl and p2 can be meaningfully compared.

The following program modifies the previous example one by incrementing the variable
pointer so long as the address to which it points is either less than or equal to the address
of the last element of the array, wh ich is &var[MAX - 1]

#include <stdio.h>

TUTORIALS POINT
Simply Easy Learning

Page83

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

const int MAX= 3;

int main ()

{
int var[] = {10, 100, 200}
int i, *ptr;

/* let us have address of the first element in pointer */
ptr = var;

i =0;
while

{

(ptr <= &ar [MAX- 1])

printf
printf

("Address of var[%d] = %x
("Value of var[%d] = %d \n", i,

/* point to the previous location */
ptr ++;
i ++;

}

return O;

When the above code is compiled and executed, it produces result

Address of var [0] = bfdbcb20
Value of var[0] = 10
Address of var[1] = bfdbch24
Value of var[1] = 100
Address of var[2] = bfdbcb28
Value of var[2] = 200

Array of pointers

Before we understand the concept of arrays of pointers
example , which makes use of an array of 3 integers:

#include <stdio.h>

const int MAX= 3;

int main ()

{
int var [] = {10, 100, 200}
int i;
for (i =0; i < MAX i++)
{
printf ("Value of var[%d] = %d \n", i,
return 0;
}

\n", i, ptr
* ptr

);
):

something as follows:

, let us consider the following

var [i]);

TUTORIALS POINT
Simply Easy Learning

Page84

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces the following result:

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

There may be a situation when we want to maintain an array , which can store pointers to
an int or char or any other data type available. Following is the declaration of an array of
pointers to an integer:

int *ptr [MAX;

This declares ptr as an array of MAX integer pointers. Thus, each element in ptr, now holds
a pointer to an int value. Following example makes use of three integers , which will be
stored in an array of pointers as follows:

#include <stdio.h>
const int MAX= 3;
int main ()

int wvar[] = {10, 100, 200}

int i, *ptr [MAX
for (i =0; i < MAX i++)
{ ptr [i] = &ar [i]; /*assign the address of integer. */
%or (i =0; i < MAX i++)
printf ("Value of var[%d] = %d \n", i, *ptr [i]);
ieturn 0;
}
When the above code is compiled and executed, it produces the following result:

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

You can also use an array of pointers to character to store a list of strings as follows:

#include <stdio.h>
const int MAX= 4;
int main ()

char *names[] = {

TUTORIALS POINT
Simply Easy Learning Pages5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

"Zara Ali" ,

"Hina Ali" ,
"Nuha Ali"
"Sara Ali"
2
int i = 0;
for (i =0; i < MAX i++)
printf ("Value of names[%d] = %s \n", i, names[i]);
return 0O;
}
When the above code is compiled and executed, it produces the following result:

Value of names[0] = Zara Al
Value of names[1] = Hina Ali
Value of names[2] = Nuha Ali

Value of names[3] = Sara Ali

Pointer to Pointer

A pointer to a pointer is a form of multiple indirection , or a chain of pointers. Normally,
pointer contains the address of a variable. When we define a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location that
contains the actual value as shown below.

Pointer Pointer Variable

Address —3% Address e Value

A variable that is a pointer to a pointer must be declared as such. This is done by placing
an additional asterisk in front of its name. For example, following is the declaration to
declare a pointer to a pointer of type int:

int **var ;

When a target value is indirectly pointed to by a pointer to a pointer, accessing that value
requires that the asterisk operator be applied twice, as is shown below in the example:

#include <stdio.h>

int main ()

int var ;
int *ptr ;
int ** pptr
var = 3000;

a

TUTORIALS POINT
Simply Easy Learning

Page86

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

/* take the address of var */

ptr = &var ;
[* take the address of ptr using address of operator & */
pptr = &ptr ;
/* take the value using pptr */
printf ("Value of var = %d \n", var),
printf ("Value available at *ptr = %d \n", *ptr);
printf ("Value available at **pptr = %d \'n", ** pptr);
return 0;
}
When the above code is compiled and executed, it produces the following result:

Value of var = 3000
Value available at *ptr = 3000
Value available at **pptr = 3000

Passing pointers to functions

C programming language allows you to pass a pointer to a function. To do so, simply
declare the function parameter as a pointer type.

Following a simple example where we pass an unsigned long pointer to a function and
change the value inside the function which reflects back in the calling function:

#include <stdio.h>
#include <time.h>

void getSeconds (unsigned long *par);

int main ()

{
unsigned long sec;
getSeconds (&sec);
[* print the actual value */
printf ("Number of seconds: %ld \n", sec)
return 0;
}

void getSeconds (unsigned long *par)

[* get the current number of seconds */
*par = time (NULL);
return ;

TUTORIALS POINT
Simply Easy Learning

Page87

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces the following result:

Number of seconds :1294450468

The function , which can accept a pointer, can also accept an array as shown in the
following example:

#include <stdio.h>

/* function declaration */
double getAverage (int *arr , int size);

int main ()

{
/* an int array with 5 elements */
int balance [5] = {1000, 2, 3, 17, 50}
double avg;

[* pass pointer to the array as an argument */
avg = getAverage (balance , 5) ;

[* output the returned value */
printf ("Average value is: %f \n", avg);

return 0;

}
double getAverage (int *arr , int size)
{

int i, sum = O;

double avg;

for (i =0; i < size ; ++i)

{
}

avg = (double)sum / size ;

sum += arr [i];

return avg;

When the above code is compiled together and executed, it produces the following result:

Average value is: 214.40000

Return pointer from functions

As we have seen in last chapter how C programming language allows to return an array
from a function, similar way C allows you to return a pointer from a function. To do so,
you would have to declare a function returning a pointer as in the following example:

int * myFunction ()

{

TUTORIALS POINT
Simply Easy Learning Pagess

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Second point to remember is that, it is not good idea to return the address of a local

variable to outside of the function so you would have to define the local variable
as static variable.

Now, consider the following function , which will generate 10 random numbers and return

them using an array name which represents a pointer , i.e., address of first array element.

#include <stdio.h>
#include <time.h>

/* function to generate and retrun random numbers. */
int * getRandom ()

{
static int r[10];
int i;
/* set the seed */
srand ((unsigned)time (NULL));
for (i =0; i < 10; ++i)
{
r[i] = rand ();
printt ("%d\n", r[i]);
}

return r;

}

/* main function to call above defined function */
int main ()

/* a pointer to an int */

int *p;

int i;

p = getRandom ();

for (i =0; i < 10; i++)

printf ("*(p + [%d]) : %d \n", i, *(p+ti))
}

return 0;

When the above code is compiled together and executed, it produces result something as
follows:

1523198053
1187214107
1108300978
430494959

TUTORIALS POINT
Simply Easy Learning

Page89

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1421301276
930971084
123250484
106932140
1604461820
149169022

“(p+[0]) :
“(p+[1]):
*p+[2]):
*(P+[3]):
“(p+[4])
“(p+[5]) :
*(p +[6]) :
P+ [7]):
“(p+[8]):
“(p+[9])

1523198053
1187214107
1108300978
430494959
1421301276
930971084
123250484
106932140
1604461820

149169022

TUTORIALS POINT
Simply Easy Learning

Page90

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Strings

he string in C programming language is actually a one -dimensional array of

characters which is terminated by a null character ' \Q'. Thus a null -terminated string

contains the characters that comprise the string followed by a null.
The following declaration and initialization create a string consisting of the word "Hello"
To hold the null character at the end of the array, the size of the character array co ntaining
the string is one more than the number of characters in the word "Hello ".

char greeting [6] = {H , ¢ , 1 , 1 , 'o , "\0}

If you follow the rule of array initialization then you can write the above statement as
follows:

char greeting [| = "Hello" ;
Following is the memory presentation of above -defined string in C/C++:
H e | | o 10’
Actually, you do not place the null character at the end of a string constant. The C compiler
automatically places the ' \0' at the end of the string when it initializes the array. Let us try

to print above mentioned string:

#include <stdio.h>

int main ()
char greeting [6] = {H , e , 1 , 1 , 'o , "\0}
printf ("Greeting message: %s \'n", greeting);

return 0;

TUTORIALS POINT
Simply Easy Learning Page9l

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces result something as follows:

Greeting message: Hello

C supports a wide range of functions that manipulate null -terminated strings:

S.N. Function & Purpose

strepy(sl, s2);

1 Copies string s2 into string s1.
2 strcat(sl, s2);

Concatenates string s2 onto the end of string s1.
3 strlen(s1);

Returns the length of string s1.
4 stremp(sl, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5 strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.
6 strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above -mentioned functions:

#include <stdio.h>
#include <string.h>

int main ()

char strl [12]
char str2 [12]
char str3 [12];
int len ;

"Hello" ;
"World" ;

[* copy strl into str3 */
strcpy (str3 , strl);
printf ("strcpy(str3, strl) : %s \n", str3)

/* concatenates strl and str2 */
strcat (strl , str2);

printf ("strcat(strl, str2): %S n", strl),
/* total lenghth of strl after concatenation */

len = strlen (strl);

printf ("strlen(strl) : %d \n", len);

return 0;

When the above code is compiled and executed, it produces result something as follows:

strepy(str3, strl) : Hello

TUTORIALS POINT
Simply Easy Learning

Page92

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

strcat(strl, str2): HelloWorld
strlen(strl) : 10

You can find a complete list of C string related functions in C Standard Library.

TUTORIALS POINT
Simply Easy Learning Page93

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

C Structures

arrays allow you to define type of variables that can hold several data items of the same

kind but structure is another user defined data type available in C programming, which
allows you to combine data items of different kinds.

Structures are used to represent a record, suppose you want to keep track of your books in
a library. You might want to track the following attributes about each book:

il Title

il Author
il Subject
il Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a
new data type, with more than one member for your program. The format of the struct
statement s this:

struct [structure tag]

member definition :
member definition :

member definition :
} [one or more structure variables 1

The structure tag is optional and each member definition is a normal variable definition,
such as int i; or float f; or any other valid variable definition. At the end of the structure's
definition, before the final sem icolon, you can specify one or more structure variables but it
is optional. Here is the way you would declare the Book structure:

struct Books

{

TUTORIALS POINT
Simply Easy Learning Page94

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

char title [50];
char author [50];
char subject [100];
int book_id ;

} book;

Accessing Structuidembers

To access any member of a structure, we use the

member access operator (.). The

member access operator is coded as a period between the structure variable name and the
structure member that we wish to access. You would use struct
variables of structure type. Following is the example to explain usage of structure:

#include <stdio.h>
#include <string.h>

struct Books

{

int

char title [50];
char author [50];
char subject [100];

int book_id ;
main ()
struct Books Bookl; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book?2 of type Book */
[* book 1 specification */
strcpy (Bookl.title , "C Programming”);
strcpy (Bookl.author , "Nuha Ali");
strcpy (Bookl. subject , "C Programming Tutorial");

Bookl. book_id = 6495407 ;

[* book 2 specification */

strcpy (Book2.title , "Telecom Billing" e
strcpy (Book2. author , "Zara Ali"),
strcpy (Book2. subject , "Telecom Billing Tutorial”):

Book2. book_id = 6495700 ;

[* print Book1 info */

printt ("Book 1 title : %s \'n", Bookl.title);
printf ("Book 1 author : %s \'n", Bookl. author);
printf ("Book 1 subject : %s \'n", Bookl. subject);
printt ("Book 1 book id : %d \'n", Bookl. book id);
[* print Book2 info */

printf ("Book 2 title : %s \'n", Book2.ttle);
printf ("Book 2 author : %s \'n", Book2. author);
printt ("Book 2 subject : %s \'n", Book2. subject);
printt ("Book 2 book id : %d \'n", Book2. book id);

return 0O;

keyword to define

TUTORIALS POINT
Simply Easy Learning

Page95

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces

Book 1 title : C Programming
Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

the following result:

You can pass a structure as a function argument in very similar way as you pass any other
variable or pointer. You would access structure variables in the s
accessed in the above example:

#include <stdio.h>
#include <string.h>
struct Books

{

h

char title [50];
char author [50];
char subject [100];
int book_id ;

/* function declaration */

void printBook
int

(struct
main ()

struct Books Book1;
struct Books Book2;

[* book 1 specification */
strcpy (Bookl. title

strcpy (Bookl. author

strcpy (Bookl. subject

Books book);

imilar way as you have

/* Declare Book1 of type Book */
/* Declare Book2 of type Book */

"C Programming");

“Nuha Ali");
"C Programming Tutorial

Bookl . book id = 6495407 ;

/* book 2 specification */
strcpy (Book2. title

strcpy (Book2. author

strcpy (Book2. subject

Book2 . book id = 6495760;

[* print Book1 info */
printBook (Bookl);

/* Print Book2 info */

"Telecom Billing");

"Zara Ali");
"Telecom Billing Tutorial"

TUTORIALS POINT
Simply Easy Learning

Page96

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printBook (Book2);
return 0;

void printBook (struct Books book)

{
printt ("Book title : %s \'n", book.title);
printf ("Book author : %s n", book. author);
printf ("Book subject : %s \'n", book. subject);
printt ("Book book id : %d \'n", book . book_id);
}
When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Al

Book subject : C Programming Tutorial
Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in very similar way as y ou define pointer to any other
variable as follows:

struct Books *struct_pointer ;

Now, you can store the address of a structure variable in the above defined pointer
variable. To find the address of a structure variable, place the & operator before the
str ucture's name as follows:

struct_pointer = &Bookl;

To access the members of a structure using a pointer tothat structure , you must use the
-> operator as follows:

struct_pointer - >title

Let us re -write above example using structure pointer, hope this will be easy for you to
understand the concept:

#include <stdio.h>

TUTORIALS POINT
Simply Easy Learning Page9?

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

#include <string.h>

struct Books

{
char title [50];
char author [50];
char subject [100];
int book_id ;

I

/* function declaration */
void printBook (struct Books *book);
int main()

{
struct Books Bookl; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book2 of type Book */
[* book 1 specification */
strcpy (Bookl.title , "C Programming”);
strcpy (Bookl.author , "Nuha Ali");
strcpy (Bookl. subject , "C Programming Tutorial"
Bookl. book_id = 6495407 ;
[* book 2 specification */
strcpy (Book2.title , "Telecom Billing");
strcpy (Book2. author , "Zara Ali");
strcpy (Book2. subject , "Telecom Billing Tutorial”
Book2. book_id = 6495700 ;
[* print Book1 info by passing address of Book1 */
printBook (&Bookl);
[* print Book2 info by passing address of Book2 */
printBook (&Book2);
return 0;
}

void printBook (struct Books *book)

{

printt ("Book title : %s \'n", book->title);
printf ("Book author : %s \'n", book - >author);
printf ("Book subject : %s \'n", book - >subject);
printf ("Book book_id : %d \'n", book - >book id);

When the above code is compiled and executed, it produces

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

the following

result:

TUTORIALS POINT
Simply Easy Learning

Page98

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

TUTORIALS POINT
Simply Easy Learning Page99

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

C Unions

union is a special data type available in C that enables you to store different data

types in the same memory location. You can define a union with many members, but only
one member can contain a value at any given time. Unions provide an efficient way of
using the same memory location for multi -purpose.

Defining a Union

To define a union , you must use the union statement in very similar was as you did while
defining structure. The union statement defines a new data type, with more than one
member for your program. The format of the union statement is as follows:

union [union tag]

member definition ;
member definition :

member definition ;
} [one or more union variables |;

The union tag is optional and each member definition is a normal variable definition, such

as int i; or float f; or any other valid variable definition. At the end of the union's definition,

before the final semicolon , you can specify one or more union variables but it is optional.
Here is the way you would define a union type named Data which has the three members i,

f, and str:

union Data

t

int i;

float f:

char str [20];
} data ;
Now, a variable of Data type can store an integer, a floating -point number, or a string of
characters. This means that a single variable i .e. same memory location can be used to
store multiple types of data. You can use any built -in or user defined data types inside a

union based on your requirement.

TUTORIALS POINT
Simply Easy Learning Page100

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The memory occupied by a union will be large enough to hold the largest member of the
union. For example, in above example Data type will occupy 20 bytes of memory space
because this is the maximum space which can be occupied by character string. Following is
the exa mple which will display total memory size occupied by the above union:

#include <stdio.h>
#include <string.h>

union Data

L
int i;
float f:
char str [20];

I

int main()

{
union Data data ;
printt ("Memory size occupied by data : %d n", sizeof (data));
return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.) . The member
access operator is coded as a period between the union variable name and the union
member that we wish to access. You would use union keyword to define variables of union

type. Following is the example to explain usage of union:

#include <stdio.h>
#include <string.h>

union Data

{
int i;
float f;
char str [20];

h

int main()

{
union Data data ;
data .i = 10;
data .f = 2205 ;

strcpy (data .str , "C Programming");

printf ("data.i : %d \'n", data.i);
printf ("data.f: %f\ n", data .f);

TUTORIALS POINT
Simply Easy Learning Page101

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printt ("data.str : %s \'n", data .str);

return 0;

When the above code is compiled and executed, it produces the following result:

data.i : 1917853763
data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that values of i and f members of union got corrupted because final value
assigned to the variable has occupied the memory location and this is the reason that the

value if str member is getting printed very well. Now let's look into the same e xample once
again where we will use one variable at a time which is the main purpose of having union:

#include <stdio.h>
#include <string.h>

union Data
L
int i;
float f;
char str [20];
I
int main()
{
union Data data ;
data .i = 10;
printf ("data.i : %d \'n", data.i);
data . f = 2205 ;
printf ("data.f : %f \'n", data.f);
strcpy (data .str , "C Programming");
printf ("data.str : %s \'n", data .str);
return 0;
}
When the above code is compiled and executed, it produces the following result:
data.i: 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a
time.

TUTORIALS POINT
Simply Easy Learning Page102

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Bit Fields

ppose your C program contains a number of TRUE/FALSE variables grouped in a
structure called status, as follows:

struct

{

unsigned int widthValidated ;
unsigned int heightValidated ;
} status ;

This structure requires 8 bytes of memory space but in actual we are going to store either
0 or 1 in each of the variables. The C programming language offers a better way to utilize
the memory space in such situation. If you are using such variables inside a structure then

you can define the width of a variabl e which tells the C compiler that you are going to use
only those number of bytes. For example , above structure can be re -written as follows:
struct
{
unsigned int widthValidated S
unsigned int heightValidated c1;
} status ;

Now, the above structure will require 4 bytes of memory space for status variable but only

2 bits will be used to store the values. If you will use up to 32 variables each one with a
width of 1 bit , then also status structure will use 4 bytes, but as soon as you will have 33
variables , then it will allocate next slot of the memory and it will start using 64 bytes. Let

us check the following example to understand the concept:

#include <stdio.h>
#include <string.h>

/* define simple structure */
struct
{
unsigned int widthValidated
unsigned int heightValidated ;
} statusl ;

/* define a structure with bit fields */

TUTORIALS POINT
Simply Easy Learning Page103

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

struct

{
unsigned int widthValidated I
unsigned int heightValidated I
} status2 ;

int main()

{
printf ("Memory size occupied by statusl:%d \n", sizeof (statusl));
printf ("Memory size occupied by status2 : %d \'n", sizeof (status2));
return 0O;
}
When the above code is compiled and executed, it produces the following result:

Memory size occupied by statusl : 8

Memory size occupied by status2 : 4

Bit Field Declaration

The declaration of a bit -field has the form inside a structure:

struct

{

type [member_name] : width ;

hi
Below the description of variable elements of a bit field:

Elements Description

tvoe An integer type that determines how the bit-field's value is interpreted. The type may
yp be int, signed int, unsigned int.

member_name The name of the bit-field.

The number of bits in the bit-field. The width must be less than or equal to the bit

B width of the specified type.
The variables defined with a predefined width are called bit fields. A bit field can hold more
than a single bit for example if you need a variable to store a value from O to 7 only then
you can define a bit field with a width of 3 bits as follows:

struct

{

unsigned int age : 3;
} Age;

The above structure definition instructs C compiler that age variable is going to use only 3
bits to store the value, if you will try to use more than 3 bits then it will not allow you to do
so. Letus try the following example:

TUTORIALS POINT
Simply Easy Learning Page104

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

#include <stdio.h>
#include <string.h>
struct

{

unsigned int
} Age;

int main()

age :

printf ("Sizeof(Age) : %d

{
Age. age = 4;
printf ("Age.age : %d
Age. age = 7;
printf ("Age.age : %d
Age. age = 8;
printf ("Age.age : %d
return 0;

}

When the above code is compiled it will compile with warning and when executed, it
produces the following result:

Sizeof(Age) : 4
Age.age : 4
Age.age: 7
Age.age : 0

\n"

\n"

\n"

l

\n", sizeof (Age));
Age. age);

Age. age);

Age. age);

TUTORIALS POINT
Simply Easy Learning

Pagel05

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Typedef

he C programming language provides a keyword called typedef , which you can use
to give a type a new name. Following is an example to define a term BYTE for one -byte
numbers:

typedef unsigned char BYTE

After this type definitions, the identifier BYTE can be used as an abbreviation for the
type unsigned char, for example:

BYTE bl , b2;

By convention, uppercase letters are used for these definitions to remind the user that the
type name is really a symbolic abbreviation, but you can use lowercase, as follows:

typedef unsigned char byte ;

You can use typedef to give a name to user defined data type as well. For example you can
use typedef with structure to define a new data type and then use that data type to define
structur e variables directly as follows:

#include <stdio.h>
#include <string.h>

typedef struct Books

char title [50];
char author [50];
char subject [1007];
int book_id ;

} Book;

int main()

Book book;

strcpy (book. title , "C Programming");

strcpy (book . author , "Nuha Al);

strcpy (book. subject , "C Programming Tutorial);

TUTORIALS POINT

Simply Easy Learning Page106

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

book . book_id = 6495407 ;

printf ("Book title : %s \'n", book. title);
printf ("Book author : %s \'n", book. author);
printf ("Book subject : %s n", book. subject);
printf ("Book book_id : %d \'n", book. book id);
return O;
}
When the above code is compiled and executed, it produces the following result:

Book title : C Programming
Book author : Nuha Ali
Book subject : C Programming Tutorial

Book book_id : 6495407

typedef vs #define

The #define is a C -directive which is also used to define the aliases for various data types
similar to typedef but with three differences:

il The typedef is limited to giving symbolic names to types only where as #define can be
used to define alias for values as well, like you can define 1 as ONE etc.

il The typedef interpretation is performed by the compiler where as #define statements
are processed by the pre-processor.

Following is a simplest usage of #de fine:

#include <stdio.h>

#define TRUE 1
#define FALSE O

int main()

{
printf ("Value of TRUE : %d \n", TRUE;
printf ("Value of FALSE : %d \'n", FALSE);
return O;
}
When the above code is compiled and executed, it produces the following result:

Value of TRUE : 1
Value of FALSE : 0

TUTORIALS POINT
Simply Easy Learning Page107

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Input & Output

hen we are saying Input that means to feed some data into program. This can

be given in the form of file or from command line. C programming language provides a set
of built -in functions to read given input and feed it to the program as per requirement.

When we are saying Output that means to display some data on screen, printer or in any
file. C programming language provides a set of built -in functions to output the data on the
computer scre en as well as you can save that data in text or binary files.

The Standard Files

C programming language treats all the devices as files. So devices such as the display are
addressed in the same way as files and following three file are automatically opened when
a program executes to provide access to the keyboard and screen.

Standard File File Pointer Device
Standard input stdin Keyboard
Standard output stdout Screen
Standard error stderr Your screen
The file points are the means to access the file for reading and writing purpose. This section

will explain you how to read values from the screen and how to print the result on the
screen.

The getchar() & putchar() functions

The int getchar(void) function reads the next available character from the screen and
returns it as an integer. This function reads only single character at a time. You can use

this method in the loop in case you want to read more than one characters from the

screen.

The int putchar(int ¢) function puts the passed character on the scree n and returns the
same character. This function puts only single character at a time. You can use this method

TUTORIALS POINT
Simply Easy Learning Page108

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

in the loop in case you want to display more than one character on the screen. Check the
following example:

#include <stdio.h>
int main()

int c;

printf ("Enter a value :");
c = getchar ();

printt ("\ nYou entered: ");
putchar (c);

return O;

When the above code is compiled and executed, it waits for you to input some text when
you enter a text and press enter then program proceeds and reads only a single character
and displays it as follows:

$./a.out

Enter a value : this is test
You entered: t

The gets() & puts() functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF.

The int puts(const char *s) function writes the string s and a trailing newline to stdout

#include <stdio.h>
int main()

{
char str [100];
printf ("Enter a value :");
str = gets (str);
printt ("\ nYou entered: ");
puts (str);
return O;

}

When the above code is compiled and executed, it waits for you to input some text when
you enter a text and press enter then program proceeds and reads the complete line till
end and displays it as follow s:

$./a.out

Enter a value : this is test

TUTORIALS POINT
Simply Easy Learning Page109

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

You entered: This is test

The scanf() and printf() functions

The int scanf(const char *format, ...) function reads input from the standard input
stream stdin and scans that input according to format provided.
The int printf(const char *format, ...) function writes output to the standard output

stream stdout and produces output according to a format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f , etc., to
print or read strin gs, integer, character or float respectively. There are many other
formatting options available which can be used based on requirements. For a complete

detail you can refer to a man page for these function. For now let us proceed with a simple

example whic h makes things clear:

#include <stdio.h>
int main()

{
char str [100];
int i;
printf ("Enter a value :");
scanf ("%s %d", str , &);
printf ("\ nYou entered: %s, %d " , str, i);
return 0;

}

When the above code is compiled and executed, it waits for you to input some text when

you enter a text and press enter then program proceeds and reads the input and displays it
as follows:

$./a.out
Enter a value : seven 7
You entered: seven 7

Here, it should be noted that scanf() expect input in the same format as you provided %s

and %d, which means you have to provide valid input like "string integer", if you provide

"string string" or "integer integer" then it will be assumed as wrong input. Secon d, while
reading a string scanf() stops reading as soon as it encounters a space so "this is test" are

three strings for scanf().

TUTORIALS POINT
Simply Easy Learning Page110

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

File I/O

ast chapter explained about standard input and output devices handled by C

programming language. This chapter we will see how C programmers can create, open,
close text or binary files for their data storage.

A file represents a sequence of bytes, does not matter if it is a text file or binary file. C
programming language provides access on high level func tions as well as low level (OS
level) calls to handle file on your storage devices. This chapter will take you through
important calls for the file management.

Opening Files

You can use the fopen() function to create a new file or to open an existing file , this call
will initialize an object of the type FILE, which contains all the information necessary to
control the stream. Following is the prototype of this function call:

FILE *fopen (const char * filename , const char * mode);

Here, filename is string literal , which you will use to name your file and access mode can
have one of the following values:

Mode Description

r Opens an existing text file for reading purpose.

Opens a text file for writing, if it does not exist then a new file is created. Here your program will

w start writing content from the beginning of the file.

a Opens a text file for writing in appending mode, if it does not exist then a new file is created.
Here your program will start appending content in the existing file content.

r+ Opens a text file for reading and writing both.

_ Opens a text file for reading and writing both. It first truncate the file to zero length if it exists
otherwise create the file if it does not exist.

- Opens a text file for reading and writing both. It creates the file if it does not exist. The reading

will start from the beginning but writing can only be appended.

TUTORIALS POINT
Simply Easy Learning Pagel1l

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

If you are going to handle binary files then you will use below mentioned access modes
instead of the above mentioned:

“rb* , "wb", "ab", "r b+", "r +b", "wb+", "w+b", "ab+" , "atb"
Closing a File
To close a file, use the fclose() function. The prototype of this function is:

int fclose (FILE *fp);

The fclose() function returns zero on success, or EOF if there is an error in closing the file.
This function actually, flushes any data still pending in the buffer to the file, closes the file,

and releases any memory used for the file. The EOF is a constant defined in the header

file stdio.h.

There are various functions provide by C standard library to read and write a file character
by character or in the form of a fixed length string. Let us see few of the in the next
section.

Writing a File
Following is the simplest function to write individual characters to a stream:
int fputc (int c, FILE *fp);

The function fputc() writes the character value of the argument c to the output stream

referenced by fp. It returns the written character written on success otherwise EOF if there
is an error. You can use the following functions to write a null -ter minated string to a
stream:

int fputs (const char *s, FILE *fp);

The function fputs() writes the string s to the output stream referenced by fp. It returns a
non -negative value on success, otherwise EOF is returned in case of any error. You can
use int fp rintf(FILE *fp,const char *format, ...) function as well to write a string into a file.
Try the following example:

#include <stdio.h>

main ()

{
FILE *fp ;
fp = fopen ("/tmpl/test.txt" ;o wH);
fprintf (fp, "This is testing for fprintf... \n");
fputs ("This is testing for fputs... \n", fp);
fclose (fp);

}

TUTORIALS POINT
Simply Easy Learning Pagel12

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it creates a new file test.txt in /tmp
directory and writes two lines using two different functions. Let us read this file in next
section.

Reading a &l
Following is the simplest function to read a single character from a file:
int fgetc (FILE * fp);

The fgetc() function reads a character from the input file referenced by fp. The return value
is the character read, or in case of any error it returns EOF. The following functions allow
you to read a string from a stream:

char *fgets (char *buf, int n, FILE *fp);

The functions fgets() reads up ton - 1 characters from the input stream referenced by fp.
It copies the read string into the buffer buf, appe nding a null character to terminate the
string.

If this function encounters a newline character ' \n' or the end of the file EOF before they
have read the maximum number of characters, then it returns only the characters read up

to that point including new line character. You can also use int fscanf(FILE *fp, const char
*format, ...) function to read strings from a file but it stops reading after the first space
character encounters.

#include <stdio.h>

main ()
{
FILE *fp ;
char buff [100];
fp = fopen ("/tmpl/test.txt" ;)
fscanf (fp, "%s", buff);
printt ("1:%s \n", buff);

fgets (buff , 255, (FILE*) fp);
printf ("2: %s \n", buff);

fgets (buff , 255, (FILE*) fp);

printf ("3:%s \n", buff);
fclose (fp);

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

1:This

2: is testing for fprintf...

TUTORIALS POINT
Simply Easy Learning Pagel13

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

3: This is testing for fputs...

Let's see a little more detail about what happened here. First fscanf() method read
just This because after that it encountered a space, second call is for

fgets() which read the
remaining line till it encountered end of line. Finally last call fgets() read second line
completely.

Binary I/O Functions

There are following two functions , which can be used for binary input and output:

size t fread (void *ptr , size t size_of _elements
size_t number_of elements

, FILE *a_file);
size t fwrite (const void *ptr , size t

size_of_elements
size_t number_of elements

, FILE *a_file);

Both of these functions should be used to read or write blocks of memories - usually arrays
or structures.

TUTORIALS POINT

Simply Easy Learning Pagell4

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Preprocessors

he C Preprocessor is not part of the compiler, but is a separate step in the

compilation process. In simplistic terms, a C Preprocessor is just a text substitution tool
and they instruct compiler to do required pre -processing before actual compilation. We'll
refer to the C Preprocessor as the CPP.

All preprocessor comma nds begin with a pound symbol (#). It must be the first nonblank
character, and for readability, a preprocessor directive should begin in first column.
Following section lists down all important preprocessor directives:

Directive Description

#define Substitutes a preprocessor macro

#include Inserts a particular header from another file
#undef Undefines a preprocessor macro

#ifdef Returns true if this macro is defined

#ifndef Returns true if this macro is not defined

#if Tests if a compile time condition is true
#else The alternative for #if

#elif #else an #if in one statement

#endif Ends preprocessor conditional

#error Prints error message on stderr

#pragma Issues special commands to the compiler, using a standardized method

Preprocessorgxamples

Analyze following examples to understand various directives.

#define MAX_ARRAY_LENGTHO

TUTORIALS POINT
Simply Easy Learning Pagel15

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with 20.
Use #define for constants to increase readability.

#include <stdio.h>
#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries and add the text to the
current source file. The next line tells CPP to get myheader.h from the local directory and
add the content to the current source file.

#undef FILE_SIZ E
#define FILE_SIZE 42

This tells the CPP to undefine existing FILE_SIZE and define it as 42.

#ifndef MESSAGE
#define MESSAGE'You wish!"
#endif

This tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG
[* Your debuggin g statements here */
#endif

This tells the CPP to do the process the statements enclosed if DEBUG is defined. This is
useful if you pass the -DDEBUG flag to gcc compiler at the time of compilation. This will
define DEBUG, so you can turn debugging on and o ff on the fly during compilation.

Predefined Macros

ANSI C defines a number of macros. Although each one is available for your use in
programming, the predefined macros should not be directly modified.

Macro Description

_ DATE_ The current date as a character literal in "MMM DD YYYY" format
__TIME__ The current time as a character literal in "HH:MM:SS" format
__FILE__ This contains the current filename as a string literal.

__LINE__ This contains the current line number as a decimal constant.
__STDC__ Defined as 1 when the compiler complies with the ANSI standard.

Let's try the following example:

#include <stdio.h>

main ()

TUTORIALS POINT
Simply Easy Learning Pagel16

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

printf ("File :%s \n", _ FILE__);
printf ("Date :%s \n", _ DATE__);
printf ("Time :%s \n", _ TIME__);
printf ("Line:%d \n", _ LINE__);
printf ("ANSI :%d \n", _ STDC__);

When the above code in a file test.c is compiled and executed, it produces the following
result:

File :test.c

Date :Jun 2 2012
Time :03:36:24
Line :8

ANSI :1

Preprocessor Operators

The C preprocessor offers following operators to help you in creating macros:

Macro Continuation\{

A macro usually must be contained on a single line. The macro continuation operator is
used to continue a macro that is too long for a single line. For example:

#define message_for (a, b) \
printf (#a"and " #b ": We love you! \'n")

Stringize (#)

The stringize or number -sign operator (#), when used within a macro definition, converts
a macro parameter into a string constant. This operator may be used only in a macro that
has a specified argument or parameter list. For example:

#include <stdio.h>

#define message_for (a, b) \

printf (#a "and" #b": We love you! \'n")
int main (void)
{

message_for (Carole , Debra);

return 0;
}

When the above code is compiled and executed, it produces the following result:

TUTORIALS POINT
Simply Easy Learning Pagel17

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Carole and Debra: We love you!

Token Pasting (##)

The token -pasting operator (##) within a macro definition combines two arguments. It
permits two separate tokens in the macro definition to be joined into a single token. For
example:

#include <stdio.h>
#define tokenpaster (n) printf ("token" #n" = %d", token##n)

int main (void)

{
int token34 = 40;
tokenpaster (34);
return 0;

}

When the above code is compiled and executed, it produces the following result:

token34 = 40

How it happened , because this example results in the following actual output from the
preprocessor:

printf ("token34 = %d" , token34);

This example shows the concatenation of token##n into token34 and here we have used
both stringize and token -pasting.

The defined() Operator

The preprocessor defined operator is used in constant expressions to determine if an
identifier is defined using #define . If the specified identifier is defined, the value is true

(non -zero). If the symbol is not defined, the value is false (zero). The defined operator is
specifie d as follows:

#include <stdio.h>

#if ldefined (MESSAGE)
#define MESSAGE'You wish!"
#endif

int main (void)

{
printf ("Here is the message: %s \'n", MESSAGE
return 0;

TUTORIALS POINT
Simply Easy Learning Pagel18

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When the above code is compiled and executed, it produces the following

Here is the message: You wish!

Parameterized Macros

result:

One of the powerful functions of the CPP is the ability to simulate functions using
parameterized macros. For example, we might have some code to square a number as

follows:

int square (int x) {
return x * x;

We can rewrite above code using a macro as follows:

#define square (x) ((x)

* (%))

Macros with arguments must be defined using the

used. The argument list is enclosed in parentheses and must

#define directive before they can be

immediately follow the macro

name. Spaces are not allowed between and macro name and open parenthesis. For

example:

#include <stdio.h>

#define MAXX,y) ((x) > (y) ? (x) : (y)

int main (void)
printf ("Max between 20 and 10 is %d \n", MAX10, 20));
return 0;

When the above code is compiled and executed, it produces the following result:

Max between 20 and 10 is 20

TUTORIALS POINT
Simply Easy Learning

Pagell9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Header Files

header file is a file with extension .h which contains C function declarations and

macro definitions and to be shared between several source files. There are two types of
header files: the files that the programmer writes and the files that come with your
compiler.

You request the use of a header file in your program by including it, with the C
preprocessing directive #include like you have seen inclusion of stdio.h header file . which
comes along with your compiler.

Including a header file is equal to copying the content of the header file but we do not do it
because it will be very much error -prone and it is not a good idea to copy the content of
header file in the source files, specially if we have multiple source file comprising our
program.

A simple practice in C or C++ programs is that we keep all the constants, macros, system
wide global variables, and fu nction prototypes in header files and include that header file
wherever it is required.

Include Syntax

Both user and system header files are included using the preprocessing directive #include.
It has following two forms:

#include <file>

This form is used for system header files. It searches for a file named file in a standard list
of system directories. You can prepend directories to this list with the -1 option while
compiling your source code.

#include "file"

This form is used for header files of your ow n program. It searches for a file named file in
the directory containing the current file. You can prepend directories to this list with the -
option while compiling your source code.

TUTORIALS POINT
Simply Easy Learning Page120

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Include Operation

The #include directive works by directing the C prepr ocessor to scan the specified file as
input before continuing with the rest of the current source file. The output from the
preprocessor contains the output already generated, followed by the output resulting from

the included file, followed by the output that comes from the text after
the #include directive. For example, if you have a header file header.h as follows:

char *test (void);
and a main program called program.c that uses the header file, like this:

int Xx;
#include "header.h"

int main (void)

{
}

puts (test ());

the compiler will see the same token stream as it would if program.c read
it x;
char *test (void);

int main (void)

{
}

OnceOnly Headers

puts (test ());

If a header file happens to be included twice, the compiler will process its contents twice
and will result an error. The standard way to prevent this is to enclose the entire real
contents of the file in a conditional, like this:

#ifndef ~HEADER_FILE

#define HEADER_FILE

the entire header file file

#endif

This construct is commonly known as a wrapper #ifndef . When the header is included

again, the conditional will be false, because HEADER_FILE is defined. The preprocessor will
skip over the entire contents of the file, and the compiler will not see it twice.

TUTORIALS POINT
Simply Easy Learning Page121

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Computedncludes

Sometimes it is necessary to select one of several different header files to be included into
your program. They might specify configuration parameters to be used on different sorts of
operating systems, for instance. You could do this with a seri es of conditionals as follows:

#if SYSTEM_1

include "system_1.h"
#elif SYSTEM_2

include "system_2.h"
#elif SYSTEM_3

#endif
But as it grows, it becomes tedious, instead the preprocessor offers the ability to use a

macro for the header name. This is called a computed include. Instead of writing a header
name as the direct argument of #include, you simply put a macro name there instead:

#define SYSTEM_H"system_1.h"
#include SYSTEM_H
SYSTEM_H will be expanded, and the preprocessor will look for system 1.h as if

the #include had been written that way originally. SYSTEM H could be defined by your
Makefile with a -D option.

TUTORIALS POINT
Simply Easy Learning Page122

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Type Casting

ype casting is a way to convert a variable from one data type to another data type.

For example , if you want to store a long value into a simple integer then you can type cast
long to int. You can convert values from one type to another explicitly using the cast
operator as follows:

(type_name) expression

Consider the following example where the cast operator causes the division of one integer
variable by another to be performed as a floating -point operation:

#include <stdio.h>
main ()

int sum = 17, count = 5;
double mean,

mean = (double) sum / count ;
printf ("Value of mean : %f\n", mean);

When the above code is compiled and executed, it produces the following result:

Value of mean : 3.400000

It should be noted here that the cast operator has precedence over division, so the value
of sum is first converted to type double and finally it gets divided by count yielding a
double value.

Type conversions can be implicit which is performed by the compiler automatically, or it
can be specified explicitly through the use of the cast operator. It is considered good
programming practic e to use the cast operator whenever type conversions are necessary.

TUTORIALS POINT
Simply Easy Learning Page123

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Integer Promotion

The Integer promotion is the process by which values of integer type "smaller"

than int or unsigned int are converted either to int or unsigned int . Consider an

example of addinga character inan int :

#include <stdio.h>

main ()
int i = 17;
char ¢ = 'c' ; /*asciivalueis 99 */
int sum;
sum = i + c;
printf ("Value of sum : %d \'n", sum);
}
When the above code is compiled and executed, it produces the following result:

Value of sum : 116

Here, value of sum is coming as 116 because compiler is doing integer promotion and
converting the value of 'c' to ascii before performing actual addition operation.

Usual Arithmetic Conversion

The usual arithmetic conversions are implicitly performed to cast their values in a
common type. Compiler first performs integer promotion, if operands still have different
types then they are converted to the type that appears highest in the following hi erarchy:
long double
double
float

unsigned long long
long long
unsigned long
long

unsigned int

!

int

TUTORIALS POINT
Simply Easy Learning

Pagel24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The usual arithmetic conversions are not performed for the assignment operators, nor for
the logical operators && and ||. Let us take following example to understand the concept:

#include <stdio.h>

main ()
int it = 17;
char ¢ = 'c" ; /* asciivalueis 99 */
float sum;
sum = i + c;
printf ("Value of sum : %f \'n", sum);
}

When the above code is compiled and executed, it produces the following result:

Value of sum : 116.000000

Here, it is simple to understand that first ¢ gets converted to integer but because final
value is double, so usual arithmetic conversion applies and compiler convert i and c into

float and add them yielding a float result.

TUTORIALS POINT
Simply Easy Learning

Pagel25

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Error Handling

s such C programming does not provide direct support for error handling but

being a system programming language, it provides you access at lower level in the form of

return values. Most of the C or even Unix function calls return -1 or NULL in case of any
error and sets an error code errno is set which is global variable and indicates an error
occurred during any function call. You can find various error codes defined in <error.h>
header file.

So a C programmer can check the returned values and can take appropriate action
depending on the return value. As a good practice, developer should set errno to O at the

time of initialization of the program. A value of 0 indicates that there is no error in the
program.

The errno, perror() and strerror()

The C programming langu age provides perror() and strerror() functions which can be
used to display the text message associated with errno .

i The perror() function displays the string you pass to it, followed by a colon, a space, and
then the textual representation of the current errno value.

T The strerror() function, which returns a pointer to the textual representation of the
current errno value.

Let's try to simulate an error condition and try to open a file which does not exist. Here I'm

using both the functions to show the usa ge, but you can use one or more ways of printing
your errors. Second important point to note is that you should use stderr file stream to
output all the errors.

#include <stdio.h>
#include <errno.h>
#include <string.h>

extern int errno
int main ()

FILE * pf;
int errnum ;

)

TUTORIALS POINT
Simply Easy Learning Page126

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

pf = fopen ("unexist.txt" , 'rb");

if (pf == NULD
{
errnum = errno ;
fprintf (stderr , "Value of errno: %d \'n", errmo);
perror ("Error printed by perror");
fprintf (stderr , "Error opening file: %s \'n", strerror (errnum));
}
else
fclose (pf);
}
return O;
}
When the above code is compiled and executed, it produces the following result:
Value of errno: 2
Error printed by perror: No such file or directory
Error opening file: No such file or directory
It is a common problem that at the time of dividing any number, programmers do not
check if a divisor is zero and finally it creates a runtime error.
The code below fixes this by checking if the divisor is zero befor e dividing:
#include <stdio.h>
#include <stdlib.h>
main ()
{
int dividend = 20;
int divisor = (0F
int quotient ;
if (divisor == 0){
fprintf (stderr , "Division by zero! Exiting... \n");
exit (-1);
P o -
quotient = dividend / divisor ;
fprintf (stderr , "Value of quotient : %d \'n", quotient);
exit (0);
}
When the above code is compiled and executed, it produces the following result:
Division by zero! Exiting...
TUTORIALS POINT
Simply Easy Learning Pagel127

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Program EXxit Status

It is a common practice to exit with a value of
coming out after a successful operation. Here
as 0.

EXIT_SUCCESS in case of programming is
, EXIT_SUCCESS is a macro and it is defined

If you have an error condition in your program and you are coming out then you should

exit with a status EXIT_FAILURE which is defined as -1. So let's write above program as
follows:
#include <stdio.h>
#include <stdlib.h>
main ()
{
int dividend = 20;
int divisor = b
int quotient ;
if (divisor ==
fprintf (stderr , "Division by zero! Exiting... \n");
exit (EXIT_FAILURE);
}
quotient = dividend / divisor
fprintf (' stderr , "Value of quotient : %d \'n", quotient);

exit (EXIT_SUCCESS;

When the above code is compiled and executed, it produces the following result:

Value of quotient : 4

TUTORIALS POINT
Simply Easy Learning

Pagel28

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Recursion

ecursion is the process of repeating items in a self -similar way. Same applies in

programming languages as well where if a programming allows you to call a function inside
the same function that is called recursive call of the function as follows.

void recursion ()

{
recursion (); /* function calls itself */
}
int main ()
recursion ();
}
The C programming language supports recursion , i.e., a function to call itself. But while

using recursion, programmers need to be careful to define an exit condition from the
function, otherwise it will go in infinite loop.

Recursive function are very useful to solve many mathematical problems like to calcu late
factorial of a number, generating Fibonacci series, etc.

Number Factorial

Following is an example , which calculate s factorial for a given number using a recursive
function:

#include <stdio.h>

int factorial (unsigned int i)

if (I <= 1)
{
return 1;
}
return i * factorial (i - 1)

int main ()

TUTORIALS POINT
Simply Easy Learning Page129

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

{
int i = 15;
printf ("Factorial of %d is %d \'n", i, factorial (i));

return 0O;

When the above code is compiled and executed, it produces the following result:

Factorial of 15 is 2004310016

Fibonacci Series

, which generates Fibonacci series for a given number using a

Following is another example
recursive function:

#include <stdio.h>
int fibonaci (int i)
{
if (i == 0)
{
return 0;
}
if (i == 1)
return 1;
return fibonaci (i-1) + fibonaci (i-2);
}
int main ()
{
int i;
for (i =0; i < 10; i++)
printf ("%d\ t%n", fibonaci (i));
}
return 0;
}
When the above code is compiled and executed, it produces the following result:
o1 1 2 3 5 8 13 21 34

TUTORIALS POINT
Simply Easy Learning

Pagel30

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Variable Arguments

metime s, you may come across a situation , when you want to have a function ,

which can take variable number of arguments , i.e., parameters, instead of predefined
number of parameters. The C programming language provides a solution for this situation
and you are allowed to define a function which can accept variable number of parameters

based on your requirement. The following exam ple shows the definition of such a function.
int func (int , ...)
{
}
int main ()
{

func (1, 2, 3);
func (1, 2, 3, 4);

It should be noted that function func() has last argument as ellipses i.e. three dotes ()
and the one just before the ellipses is always an int which will represent total number
variable arguments passed. To use such functionality you need to make use

of stdarg.h header file which provides functions and macros to implement the functionality

of variable arguments and follow the following steps:

Define a function with last parameter as ellipses and the one just before the ellipses is
always an int which will represent number of arguments.

Create a va_list type variable in the function definition. This type is defined in stdarg.h
header file.

Use int parameter and va_start macro to initialize the va_list variable to an argument
list. The macro va_start is defined in stdarg.h header file.

Use va_arg macro and va_list variable to access each item in argument list.

Use a macro va_end to clean up the memory assigned to va_list variable.

A=_ =4 =4 =4

Now let us follow the above steps and write down a simple function which can take variable
number of parameters and returns thei r average:

#include <stdio.h>

TUTORIALS POINT
Simply Easy Learning Page131

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

#include <stdarg.h>

double average (int num...)

{

va_list valist ;
double sum = 0.0 ;
int i;

[* initialize valist for num number of arguments */
va_start (valist , num);

/* access all the arguments assigned to valist */
for (i =0; i < num i++)
{

sum += va_arg (valist , int);

[* clean memory reserved for valist */
va_end (valist);

return sum/ num

}

int main ()

{
printf ("Average of 2, 3, 4, 5 = %f \'n", average (4, 2,3,4,5));
printf ("Average of 5, 10, 15 = %f \'n", average (3, 5,10, 15));

When the above code is compiled and executed, it produces the following result. It should

be noted that the function average() has been called twice and each time first argument
repres ents the total number of variable arguments being passed. Only ellipses will be used

to pass variable number of arguments.

Average of 2, 3, 4, 5 = 3.500000
Average of 5, 10, 15 = 10.000000

TUTORIALS POINT
Simply Easy Learning Page132

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAPTER

Memory Management

his chapter will explain dynamic memory management in C. The C programming

language provides several functions for memory allocation and management. These
functions can be found in the<stdlib.h> header file.

S.N. Function and Description

void *calloc(int num, int size);

1 This function allocates an array of num elements each of whose size in bytes will be size.
5 void free(void *address);
This function release a block of memory block specified by address.
3 void *malloc(int num);
This function allocates an array of num bytes and leave them initialized.
4 void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize .
Allocating Memory Dynamically

While doing programming, if you are aware about the size of an array, then it is easy and
you can define it as an array. For example to store a nhame of any person, it can go max
100 characters so you can define something as follows:

char name[100];

But now let us consider a situation where you have no idea about the length of the text you
need to store, for example you want to store a detailed description about a topic. Here we
need to define a pointer to character without defining how much memory is required and
later based on requirement we can allocate memory as shown in the below example:

#incl ude <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()

{

char name] 100];

TUTORIALS POINT
Simply Easy Learning

Pagel33

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

char *description ;

strcpy (name, "Zara Ali");
[* allocate memory dynamically */
description = malloc (200 * sizeof (char));
if (description == NULL)
{
fprintf (stderr , "Error - unable to allocate required

memory\ n");
else
{
strcpy (description , "Zara ali a DPS student in class 10th");

printf ("Name = %s \ n", name);
printf ("Description: %s \'n", description);

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

Same prog ram can be written using calloc() only thing you need to replace malloc with
calloc as follows:

calloc (200, si zeof (char));

So you have complete control and you can pass any size value while allocating memory
unlike arrays where once you defined the size can not be changed.

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory
allocated by your program but as a good practice when you are not in need of memory

anymore then you should release that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated memo ry block by calling

the functionrealloc(). Let us check the above program once again and make use of realloc()
and free() functions:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()

char name[100];
char *description ;

TUTORIALS POINT
Simply Easy Learning Pagel34

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

strcp y(name, "Zara Ali");

[* allocate memory dynamically */

description = malloc (30 * sizeof (char));
if (description == NULL)
fprintf (stderr , "Error - unable to allocate required
memory\ n");
}
else
{ .
strcpy (description , “"Zara ali a DPS student.”);
}
/* suppose you want to store bigger description */
description = realloc (description , 100 * sizeof (char));
if (description == NULL)
{
fprintf (stderr , "Error - unable to allocate required
memory\ n");
else
{ . .
strcat (description , "Sheisin class 10th");
}

printf ("Name = %s \ n", name);
printf ("Description: %s \'n", description);

[* release memory using free() function */
free (description);

When the above code is compile d and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student.She is in class 10th

You can try above example without re -allocating extra memory and strcat() function will
give an error due to lack of available memory in description.

TUTORIALS POINT
Simply Easy Learning Pagel135

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Command Line Arguments

t is possible to pass some values from the command line to your C programs when

they are executed. These values are called command line arguments and many times they
are important for your program specially when you want to control your program from
outside instead of hard coding those values inside the code.

The command line arguments are handled using main() function arguments

where argc refers to the number of arguments passed, and argv[] is a po inter array which
points to each argument passed to the program. Following is a simple example which

checks if there is any argument supplied from the command line and take action
accordingly:

#include <stdio.h>

int main(int argc, char *argv [)

{
if (argc == 2)
printf ("The argument supplied is %s \'n", argv [1]);
}
else if (argc > 2)
{
printt ("Too many arguments supplied. \n");
}
else
t
printf ("One argument expected. \n");
}
}
When the above code is compiled and executed with a single argument, it produces the

following result.

$./a.out testing

The argument supplied is testing

When the above code is compiled and executed with a two arguments, it produces the
following result.

TUTORIALS POINT
Simply Easy Learning Page136

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

$./a.out testingl testing2

Too many arguments supplied.

When the above code is compiled and executed without passing any argument, it produces
the following result.

$./a.out

One argument expected

It should be noted that argv[0] holds the name of the program itself and argv[l] is a
point er to the first command line argument supplied, and *argv[n] is the last argument. If

no arguments are supplied, argc will be one, otherwise and if you pass one argument

then argc is set at 2.

You pass all the command line arguments separated by a space, b ut if argument itself has
a space then you can pass such arguments by putting them inside double quotes " or

single quotes ". Let us re -write above example once again where we will print program
name and we also pass a command line argument by putting in side double quotes:

#include <stdio.h>

int main(int argc, char *argv [)

{ printf ("Program name %s \n", argv [0]);
if (argc == 2)
: printf ("The argument supplied is %s \'n", argv [1]);
Llse if (argc > 2)
{ printf ("Too many arguments supplied. \n");
}else
{
printf ("One argument expected. \n");
} }

When the above code is compiled and executed with a single argument separated by space
but inside double quotes, it produces the following result.

$./a.out "te stingl testing2"

Progranm name ./a.out

The argument supplied is testingl testing2

TUTORIALS POINT
Simply Easy Learning Page137

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

	C Language Overview
	Facts about C
	Why to use C?
	C Programs

	C Environment Setup
	Text Editor
	The C Compiler
	Installation on UNIX/Linux
	Installation on Mac OS
	Installation on Windows

	C Program Structure
	C Hello World Example
	Compile & Execute C Program

	C Basic Syntax
	Tokens in C
	Semicolons ;
	Comments
	Identifiers
	Keywords
	Whitespace in C

	C Data Types
	Integer Types
	Floating-Point Types
	The void Type

	C Variables
	Variable Definition in C:
	Variable Declaration in C:
	Example
	Lvalues and Rvalues in C

	C Constants and Literals
	Integer literals
	Floating-point literals
	Character constants
	String literals
	Defining Constants
	The #define Preprocessor
	The const Keyword

	C Storage Classes
	The auto Storage Class
	The register Storage Class
	The static Storage Class
	The extern Storage Class

	C Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Misc Operators ↦ sizeof & ternary
	Operators Precedence in C

	Decision Making in C
	if statement
	Syntax
	Flow Diagram
	Example

	if...else statement
	Syntax
	Flow Diagram
	Example

	The if...else if...else Statement
	Syntax
	Example

	Nested if statements
	Syntax
	Example

	switch statement
	Syntax
	Flow Diagram
	Example

	Nested switch statements
	Syntax
	Example

	The ? : Operator

	C Loops
	while loop in C
	Syntax
	Flow Diagram
	Example

	for loop in C
	Syntax
	Flow Diagram
	Example

	do...while loop in C
	Syntax
	Flow Diagram
	Example

	nested loops in C
	Syntax
	Example

	break statement in C
	Syntax
	Flow Diagram
	Example

	continue statement in C
	Syntax
	Flow Diagram
	Example

	goto statement in C
	Syntax
	Flow Diagram
	Example

	The Infinite Loop

	C Functions
	Defining a Function
	Example

	Function Declarations
	Calling a Function
	Function Arguments
	Function call by value
	Function call by reference

	C Scope Rules
	Local Variables
	Global Variables
	Formal Parameters
	Initializing Local and Global Variables

	C Arrays
	Declaring Arrays
	Initializing Arrays
	Accessing Array Elements
	Multi-dimensional Arrays
	Two-Dimensional Arrays
	Initializing Two-Dimensional Arrays
	Accessing Two-Dimensional Array Elements
	Passing Arrays as Function Arguments
	Way-1
	Way-2

	Way-3
	Example

	Return array from function
	Pointer to an Array

	C Pointers
	What Are Pointers?
	How to use Pointers?
	NULL Pointers in C
	Pointer arithmetic
	Incrementing a Pointer
	Decrementing a Pointer
	Pointer Comparisons
	Array of pointers
	Pointer to Pointer
	Passing pointers to functions
	Return pointer from functions

	C Strings
	C Structures
	Defining a Structure
	Accessing Structure Members
	Structures as Function Arguments
	Pointers to Structures

	C Unions
	Defining a Union
	Accessing Union Members

	Bit Fields
	Bit Field Declaration

	Typedef
	typedef vs #define

	Input & Output
	The Standard Files
	The getchar() & putchar() functions
	The gets() & puts() functions
	The scanf() and printf() functions

	File I/O
	Opening Files
	Closing a File
	Writing a File
	Reading a File
	Binary I/O Functions

	Preprocessors
	Preprocessors Examples
	Predefined Macros
	Preprocessor Operators
	Macro Continuation (\)
	Stringize (#)
	Token Pasting (##)
	The defined() Operator

	Parameterized Macros

	Header Files
	Include Syntax
	Include Operation
	Once-Only Headers
	Computed Includes

	Type Casting
	Integer Promotion
	Usual Arithmetic Conversion

	Error Handling
	The errno, perror() and strerror()
	Divide by zero errors
	Program Exit Status

	Recursion
	Number Factorial
	Fibonacci Series

	Variable Arguments
	Memory Management
	Allocating Memory Dynamically
	Resizing and Releasing Memory

	Command Line Arguments

