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References 4

I. INTRODUCTION TO TOPOLOGY

The topological property of an object is the property
that is invariant under continuous deformation of that
object. For example, on a desk there is a rubber band
and a nailed thumbtack. The thumbtack can be inside or
outside of the rubber band. Without lifting the rubber
band from the desk or breaking it, it is impossible to
deform one state to the other. So these two states have
different topologies.

If a physical system has a topological property. Then
it would be robust against small changes in physical con-
dition. The most famous example is the quantum Hall
system (more details in a later chapter). Because of its
inherent topology, its quantum Hall conductance can be
universal, independent of the samples of choice, the lab-
oratories or the times of measurement.
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FIG. 1 (a) An osculating circle for a particular point on a
curve. Similar concept can be extended to a 2D curved sur-
face: a patch of the surface near a particular point can be
approximated by a quadratic surface. (b) The inner side of
a torus is similar to the surface of a saddle and has negative
curvature. The outer side of the torus has positive curvature.

A. Intrinsic curvature and extrinsic curvature

The discussion here is brief, and only a pedagogical
picture is provided. For more of the technical details,
one can read, for example, Schutz, 1982, or Kreyszig,
1968.
Consider a smooth two-dimensional (2D) surface. Near

a point p, the surface can be approximated by a quadratic
surface. The closet quadratic surface being the one that
matches this patch of surface to the second-order Tay-
lor expansion in a given coordinate (see Fig. 1(a)). It
is known that a quadratic surface can be one of three
types: an ellipsoid, a paraboloid, or a hyperboloid.
These three types of surface all have two principal di-
rections with maximum or minimum curvature. Along
these two directions, we have two principle curvatures
k1 = 1/r1, k2 = 1/r2 (up to a sign), where r1, r2 are radii
of osculating circles along the principle directions.
The Gaussian curvature at p is defined to be the

product of k1, k2,

G =
1

r1

1

r2
. (1.1)

For example, on the inner side of a torus, the two princi-
pal directions curve toward opposite directions (like the
surface of a saddle, see Fig. 1(b)). Therefore, the Gaus-
sian curvature G is negative. On the outer side of the
torus, G is positive.
An important property of the Gaussian curvature is

that it cannot be changed by bending the surface. It
can be changed only by stretching or squeezing. Bend-
ing cannot alter the shortest distance between two points
on the surface, while stretching/squeezing can. Also, for
a creature living on the 2D surface, it is possible for it
to determine the Gaussian curvature by measuring the
distances and angles (see next subsection) on the sur-
face. Therefore, the Gaussian curvature is an intrinsic
curvature.
In addition, the mean curvature H is defined to be

the sum of k1, k2,

H =
1

r1
+

1

r2
. (1.2)

For a cylinder, the radius r1 for a straight line along a
ridge is infinite, so G = 0, but H ̸= 0. Note that a
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FIG. 2 (a) Parallel transport of a vector from 1 to 2. It offers
a way to compare v1 and v2 on a curved surface. (b) A vector
is parallel transported around a closed path. The final vector
could point to a different direction from the initial vector.

flat sheet of paper has mean curvature H = 0. But if
you bend the paper, then H is no longer zero. That is,
the mean curvature can be changed simply by the act
of bending. Therefore it is an extrinsic curvature. A
cylindrical surface looks curved from a creature outside
the surface in 3D space, but not to a creature living on
the surface.

B. Parallel transport and anholonomy angle

We now try to define the Gaussian curvature without
leaving the surface. This can be achieved with the an-
holonomy angle, which we now explain.

On a flat plane, one can easily compare two vectors
lying on the plane to see if they are parallel to each other.
For a curved surface, however, the comparison is not so
evident. The tangent vectors at point p belong to the
tangent plane Tp of point p. These tangent planes have
different orientations at different points and the concept
of parallelism seems to be lost for a 2D creature living on
the surface.

Nonetheless, one can still have parallelism by following
the rule of parallel transport (Levi-Civita, 1917): To
compare the vectors at point 1 and point 2, first draw a
geodesic (the shortest curve) between two points. Start-
ing from point 1, carry the vector in such a way that it
makes a fixed angle with the tangent vector along the a
geodesic (see Fig. 2(a)) till it reaches point 2. You can
then compare it with the vector already at point 2 to see
if they are “parallel”.

For a closed loop on a curved surface, after parallel-
transporting a vector around the loop, the final vector
vf is usually different from the initial vector vi (see
Fig. 2(b)). The angle between these two vectors is called
the anholonomy angle (or defect angle) αA. One
can define the Gaussian curvature at point p as the ratio
between αA and the area A of an infinitesimal triangle
around p,

G = lim
A→0

αA

A
. (1.3)

For example, consider a sphere with radius r. It is
known that a spherical triangle on its surface has an area
A = r2(θ1+ θ2+ θ3−π) (Girard theorem). On the other
hand, if you carry a vector around the spherical triangle,
the defect angle would be αA = θ1 + θ2 + θ3 − π, where
θi are the angles of the triangle. This can be understood
in the following way: Suppose the sphere is the earth,
and you carry a pendulum walking around the triangular
loop. At the starting point, the pendulum swings along
the tangent vector of the path at this point. Since the
sides of the spherical triangle are geodesics, the vector
would be parallel transported, expect at the corners of
the triangle. Each corner contributes an angle θi − π
between two tangent vectors at the corner. Therefore,
when the pendulum comes back, the anholonomy angle

αA = (θ1 − π) + (θ2 − π) + (θ3 − π) mod 2π (1.4)

= θ1 + θ2 + θ3 − π. (1.5)

To calculate the Gaussian curvature at a point p on
the surface, combine these two results above and get

G = lim
A→0

αA

A
=

1

r2
. (1.6)

The larger the sphere, the smaller the curvature. Also,
obviously, it is the same everywhere on the surface.
You can apply the same procedure to find out the

Gaussian curvature of a cylinder. The result would be
zero, as expected.
So far we have mentioned two definitions of the Gaus-

sian curvature in Eq. (1.1) and Eq. (1.3). The third one
is defined below, and they can all be shown to be equiv-
alent. The third definition is as follows (Huang, 1978):
Suppose there is a small area A covering a point p on the
surface. The unit normal vector of A draws out another
area GA on the surface of a unit sphere S. This mapping
is known as the Gauss map. The Gaussian curvature
can be defined as,

G = lim
A→0

GA

A
. (1.7)

From this definition, it is not difficult to see that the
total curvature of a simple closed surface (with no holes)
is equal to the total solid angle of a unit sphere, which
is 4π. The total Gaussian curvature is closely related to
the topology of a surface. Before explaining this, let’s
introduce a topological number of a surface called the
Euler characteristic.

C. Euler characteristic

Consider a two-dimensional surface M (with or with-
out boundary). Divide it into a patchwork of cells as in
Fig. 3(a). Assume there are β0 vertices (aka 0-simplexes),
β1 edges (1-simplexes), and β2 faces (2-simplexes). Then
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FIG. 3 (a) A surface is divided into cells. (b) Division of a
sphere-like surface.

the Euler characteristic of this patchwork is defined
as,

χ(M) = β0 − β1 + β2. (1.8)

For example, for the sphere-like surface shown in
Fig. 3(b), we have

χ(S2) = 4− 6 + 4 = 2. (1.9)

This number does not depend on how the surface is be-
ing divided. Also, if M ′ is homeomorphic to (topolog-
ically the same as) M , then χ(M ′) = χ(M) (Poincaré-
Alexander theorem). Thus, χ(M) is a number that
characterizes the topology of M .
As an exercise, verify that the Euler characteristics of

a disk and a torus are 1 and 0 respectively. For a general
closed 2D surface M ,

χ(M) = 2(1− g), (1.10)

where g is the number of holes in the surface. For exam-
ple, for a torus, g = 1 and χ = 0; for a sphere, g = 0 and
χ = 2.

In general, for a surface M with dimension D, we can
divide it into a patchwork of cells, and define

χ(M) =

D∑
k=0

(−1)kβk, (1.11)

where βk is the number of k-simplexes.

D. Gauss-Bonnet theorem

There is a deep connection between the curvature,
which is a local property of a surface, and the topology,
which is a global property: Gauss-Bonnet theorem
tells us that the total Gaussian curvature of a closed 2D
surface M is 2πχ, or

1

2π

∫
M

d2a G = χ(M). (1.12)

That is, the total Gaussian curvature is a topological
invariant.

FIG. 4 Several examples of the index of a singularity in a
2D vector field. Note that if the arrows in the top-left figure
are reversed, the index is still +1 (this is so only in even
dimension). The figure is from Huang, 1978.

As we have mentioned, if the radius of a sphere is r,
then G = 1/r2. In this case, the Gauss-Bonnet theorem
is trivially satisfied,

1

2π

∫
M

d2a G =
1

2π

∫
M

r2dΩ
1

r2
=

4π

2π
= 2. (1.13)

What is amazing is that no matter how you squeeze and
stretch the sphere to redistribute the G’s, the total cur-
vature is always 4π.
For reference, for a 2D surface M with a boundary

∂M that is sectionally smooth (with corners), the Gauss-
Bonnet theorem is generalized as,∫

M

d2a G+

∫
∂M

dℓ κg +
∑
i

(π − θi) = 2πχ(M), (1.14)

in which κg is the geodesic curvature (see App. ??)
that measures the deviation from a geodesic curve, and
the third term is a sum of exterior angles at the cor-
ners. The generalization of the Gauss-Bonnet theorem
to higher dimension can be found in App. ??.

E. Hopf-Poincaré theorem

Given a zero (such as a source or a drain) of a vector
field, one can define an index according to the pattern
of the surrounding flow. First consider a flow on a 2D
surface: For a creature walking clockwise around the zero
once, if the vectors of the flow on the creature’s path
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FIG. 5 Assign a flow to the surface divided by cells. Dark,
grey, and white dots are sources, saddle points, and sinks.

rotate clockwise n-times, then the index is n. If they
rotate counter-clockwise n-times, then the index is −n.
For example, for the top-left figure in Fig. 4, the index is
1; for the top-right figure in Fig. 4, the index is −1.

On a D-dimensional manifold, the circular path sur-
rounding the zero is replaced by a sphere SD−1. The
vectors on the sphere would trace out another sphere
S′D−1, and the index is given by the winding number of
S′D−1 over SD−1.

Hopf-Poincaré theorem (1927) states that, for a
flow distributed on a closed manifold M , the total in-
dex of the vector field is equal to the Euler characteristic
of M . That is, ∑

i

ind(vi) = χ(M). (1.15)

For a 2D surface, this theorem can be explained as fol-
lows. This proof is based on Lect 12 of T. Tadashi’s
youtube lecture on Topology and Geometry:
First, divide the surface into cells with β0 vertices, β1

edges, and β2 faces (see Fig. 5). Second, place a source
at each vertex, a saddle point at the middle of each edge,
and a sink in the middle of each face. We then have a
continuous flow filling the surface. Since the indices of a
source, a saddle point, and a sink are +1,−1,+1 respec-
tively. We have∑

i

ind(vi) = (+1)β0 + (−1)β1 + (+1)β2, (1.16)

which is exactly the Euler characteristic defined in
Eq. (1.8). End of proof.

For example, the total index of a vector field on the
surface of a S2 is 2, according to this theorem. In Fig. 6,
we show 3 possible flow patterns, and their total indices
are indeed all equal to 2. You may try to see if it’s
possible to find a vector field that breaks this rule. In
general,

χ(Sn) = 1 + (−1)n. (1.17)

Whenever χ(M) = 0, the surface M is parallelizable (i.e.,
the hair, or vectors, on the surface could be “combed”).
Therefore, S1 and S3 are parallelizable.

(a) (b) (c)

FIG. 6 Three examples of possible flows on S2 surface. Ac-
cording to the Hopf-Poincaré theorem, the total index of the
vector field must be 2.

The Hopf-Poincaré theorem on S2 is sometimes called
the hairy ball theorem: it’s impossible to have a hairy
ball free of any vortex (assuming the hair lies on the
surface, of course). An alternative scenario is that, the
flow of wind on the surface of the earth must have at
least one location that has no wind at all.
Since the Euler characteristic of T 2 is zero, it’s possible

to have a smooth flow on T 2 without any vortex. For
example, a flow with all vectors point to the azimuthal
direction. On the other hand, if there is a vortex with
index 1 somewhere on the surface of a torus, then there
must be another vortex with index −1. In general, for
any dimension n,

χ(Tn) = 0. (1.18)

Such a fact is related to theNielsen-Ninomiya theo-
rem, aka fermion-doubling theorem: massless lattice
fermions always have to come up in pairs. This is valid in
any odd spatial dimension, and neither TR nor SI sym-
metry needs be presumed. The Weyl point of a fermion
is a source or a drain of the Berry flux. It is the zero
of the vector field of Berry connection. The Berry index
(topological charge) of this nodal point can be identified
as the index of the zero. (for more details, see Lect ??)
Finally, based on the Hopf-Poincaré theorem, one can

deduce that the Euler characteristic χ(M) of any (closed)
odd-dimensional manifold M is zero: After reversing
the direction of the vector field, v → −v, one has
ind(vi) → −ind(vi) for each i (in odd dimension!). Thus∑

i ind(vi) = 0 (see p.39 of Milnor, 1965).
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