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Motivations

• To unite the internal symmetry and Poincare symmetry in a nontrivial way, however,

there is a NO-GO theorem of Coleman and Mandula:

The only symmetries that commute with the S-matrix are the Ponicare symmetry and

the ordinary internal symmetries.

This no-go theorem is by-passed by allowing anit-commuting generators and graded

algebra.

This leads to susy— a fermionic symmetry!

Rem: With susy, the states with the same quantum number but different spins are

grouped in the same multiplet.

Rem: In non-relativistic case, different spin states can be grouped in the same multiplet

of a bosonic symmetry, e.g. SU(6) flavor-spin symmetry for heavy hadrons.



• Solve the hierarchy problem:

In Standard Model, the 1-loop mass of the Higgs is plagued by quadratic divergence as

following:

δm2
H = − g2

16π2
Λ2 .

where Λ is a huge fundamental scale, it needs fine tuning to make δm2
H to be O(Tev)2.

Susy ensures the quadratic divergences of the bosonic loops are exactly cancelled by the

fermionic ones. The loop correction yields only harmless log divergence. This is also

true for soft-broken susy.

This solves the hierarchy problem!

Exercise: Calculate the 1-loop diagrams and check the above statement.
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• Extended susy gauge theories can be exactly solvable non-perturbatively.

The beta function of the gauge coupling g is

β(g) = − g3

16π2
b0 , b0 ≡

11

3
C2(G)−

∑

r

(
2Nf (r) +Ns(r)

3
)C2(r)

where C2(r) is the quadratic Casimir of representation r; for r = G denotes the adjoint

repres. Nf (r)(Ns(r)) is the number of species of fermions(scalars) in that repres. r.

Rem: for N = 1 SU(Nc) Susy QCD(SQCD) with Nf flavors, b0 = 3C2(G)− 1
2Nf .

Rem: for N = 4 Susy Yang-Mills(SYM), Nf = 4, Ns = 3 so that b0 = 0. It is shown

that this theory is UV finite.

Rem: Montonen-Olive conjectured that N=4 SYM has the S-duality, that is the theory

of photon with coupling g2 to light electron is equivalent to the one of “dual” photon

with coupling 4π/g2 to light monopole.

Rem: Seiberg-Witten(1994) showed that the N = 2 SQCD is exactly solvabe.
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Historical Remarks

Susy was first constructed by P. Ramond in an attempt to obtain Dirac fermion in string

theory in 1971 though it is the 2-d. worldsheet susy. At the same yearGol’fand and Likhtman

wrote down the 4-d. susy algebras, also Gol’fand lost his job after publishing their paper.

Three years later, Wess and Zumino successfully constructed the 4-d. N=1 susy scalar and

gauge field theories, the scalar one is now known as the Wess-Zumino model. At the same

year, Salam and Strathdee introduce the concept of the superspace.

Ref: hep-ph/0101209 by Likhtman.
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Spinor Convention

Use the Irreps of SL(2, C) ≃ SO(1, 3):

ψα : (
1

2
, 0) = left-handed 2-component Weyl spinor

ψ̄α̇ = (ψα)∗ : (0,
1

2
) = right-handed 2-component Weyl spinor

Also

ψ̄α̇ ≡ (ψα)
†

, ψα = (ψ̄α̇)∗ .

Rising and lowering the spinor indices by Levi-Civita symbols

ǫαβ = ǫȧβ̇ =





0 −1

1 0



 , ǫαβ = ǫȧβ̇ =





0 1

−1 0



 .
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Also we define

σm = (I, ~σ) = σ̄m , s̄m = (I,−~σ) = σm

and

σ̄mα̇β = ǫα̇γ̇eβδσm
δγ̇ , σm

αβ̇
= ǫδ̇β̇ǫγασ̄

mδ̇γ .

Spinor summing convention:

ψχ = ψαχα = −ψαχα = χαψα = χψ ,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ .

Also,

(χψ)
†

= χ̄ψ̄ , (χσmψ)
†

= ψσmχ .

Useful relation:

ψαψβ = −1

2
ǫαβψψ , ψαψβ =

1

2
ǫαβψψ ,

ψ̄α̇ψβ̇ =
1

2
ǫȧβ̇ψ̄ψ̄ , ψ̄α̇ψ̄β̇ = −1

2
ǫα̇β̇ψ̄ψ̄ .
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Susy Algebras

The susy transformations are generated by the susy charge operator QA
α , A = 1, ..., N ,

together with Poincare algebra they form a graded susy algebra as following:

{QA
α , Q̄β̇B} = 2σm

αβ̇
Pmδ

A
B ,

[QA
α , Pm] = [Q̄A

α̇ , Pm] = 0 ,

[QA
α ,Mmn] = σβ

mnαQ
A
β , [Q̄A

α̇ ,Mmn] = σ̄β̇
mnα̇Q̄

A
β̇

{QA
α , Q

B
β } = ǫαβZ

AB , {Q̄A
α̇ , Q̄

B
β̇
} = ǫα̇β̇(ZAB)∗ .

where Q̄A
α̇ ≡ (QA

α )†, and ZAB are called the central charges which commutes with everyone

else.

Rem: In the above, we have omitted the part for the SU(N) R-symmetry which rotates

N different susy charges. Therefore, R-symmetry does not commute with susy charges but

commute with the Hamiltonian.
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Irreps. of Susy

Susy Casimir: For N = 1, they are P 2 = PmP
m and C2 = CmnC

mn with

Cmn = WmPn −WnPm , Wm =
1

2
ǫmnpqP

nMpq − 1

4
Q̄α̇σ̄

α̇β̇
m Qβ

where Wm is the generalization of the Pauli-Lubanski vector in Poincare algebra.

Exercise: Show they are indeed Casimir invariants of N = 1 susy algebra.

Massive states: In the rest frame Pn = (m, 0), and C2 = 2m4JiJ
i = 2m4j(j + 1) with

[Ji, Jj ] = iǫijkJk. So, an irrep. state is labelled by |m, j〉. Moreover,

{Qα, Q̄β̇} = 2m





1 0

0 1



 ⇐⇒ {a1,2, a
†

1,2} = 1

a la‘ Q1,2 ≡
√

2m a1,2, Q̄1̇,2̇ =
√

2m a
†

1,2.
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The Clifford vacuum state is defined by |Ω〉 = Q1Q2|m, j〉 so that Q1|Ω〉 = Q2|Ω〉 = 0,

and the full massive susy irreps. is:

|Ω〉 , a†

1,2|Ω〉 , a
†

1a2
†|Ω〉 .

There are 4(2j+1) states in the massive irreps of spin j3, j3− 1
2 , j+

1
2 , j3 since Ji = Si(Spin)

w.r.t. |Ω〉 and [S3, a
†

1] = −a†

1, [S3, a
†

2] = −a†

2 .

Massless states: In the lightcone frame Pm = (E, 0, 0, E), C2 = 0 and

{Q1, Q̄1̇} = 4E , {Q2, Q̄2̇} = 0.

Therefore, we can set Q2 = Q̄2̇ = 0 so that the full N = 1 massless susy irreps. is:

|Ωλ〉 of helicity λ , Q̄1̇|Ωλ〉 of helicity λ+
1

2
,

also, paired with its CPT conjugate(with λ, λ− 1
2)to have 4 states in total.
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N > 1, the massless states: There are 2N states in the susy irreps. which take the form:

a
†

A1
· · · a†

An
|Ω〉

with CN
n degeneracy. The helicity in the irreps. are λ,λ + 1

2 ,c . . . ,λ + N
2 . This is not the

CPT eigenstate except for λ = −N/4.

Exercise: Work out the N = 2, N = 4 and N = 8 massless susy irreps.

e.g. N = 2 susy vector multiplet: Ω0 ⊕ Ω−1 yields N = 2 SYM.

e.g. N = 2 susy hypermultiplet: Ω−1
2

yields susy quark multiplet.

e.g. N = 4 vector multiplet: Ω−1 yields N = 4 SYM with 1 gauge bosons, 3 complex

scalars and 4 Dirac fermions.

e.g. N = 8 gravity multiplet: Ω−2 yields N=8 gravity multiplet.

Rem: The maximal number of susy is N = 8 to avoid the spin higher than 3 massless CPT

eigenstate.
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Susy in higher spacetime dimensions

The dimension of Dirac spinor in d spacetime dimensions is

dγ =







2d/2 d even,

2(d−1)/2 d odd.

This is the minimum number of susy, let’s refer this to N = (1)dγ
. More generally, N =

(p)p∗δγ
.

In 4k + 2 dimension, (γ5)
2 = I so that the CPT conjugate spinors have the same chi-

rality and we can have independent chiral and anti-chiral susy generators. Moreover,

in 8k + 2, the Weyl spinor can be Majorana(real) so that the minimum number of susy is

half of dγ . Therefore,

• d = 6, N = (p, q)(p+q)∗dγ
.

• d = 2, 10, N = (p, q)(p+q)∗dγ/2. E.g. for d = 10, N = (1, 1)32 for IIA superstring,

N = (2, 0)32 for IIB superstring.
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11-d. SUGRA:

The dimension of the maximal susy is 32, this implies that the maximal spacetime dimension

for maximal susy is d = 11, that is, N = (1)dγ=32. The only susy massless irreps. is the

gravity multiplet which contains the component fields

• eAM , the veilbein, 44 of SO(9).

• ψa
M , a = 1, · · · , 32, the gravitino, 128 of SO(9).

• AMNP , 3rd rank anti-symmetric tensor, 84 of SO(9).

The lagrangian is very simple

− 1

κ2
eR− 1

2
eψ̄Me

M
A e

N
B e

P
Cγ

[AγBγC]DNψP −
1

48
e∂[MANPQ]∂

[MANPQ]

This is the low energy limit of the ultimate M -theory, from which superstring theories can

be obtained by Kaluza-Klein reduction, e.g.

The IIA SUGRA(low energy limit of IIA string) can be obtained by KK reduction of 11-d.

SUGRA: g11,11 is the 10-d. dilaton and AMN,11 give 10-d. BMN . The other components

of AMNP give the RR-fields.

12



Type I SUGRA: The pure N = (1, 0)16 SUGRA is gravitationally anomalous, however, one

can couple to N = (1, 0) SYM to cancel the anomaly with the particular choice of gauge

group:

E8 × E8, SO(32), [U(1)]248, [U(1)]496.

The first two choices are the field theory limit of the E8 × E8 and the SO(32) heterotic

strings.

Rem: The lower dim. maximal SYM can be obtained from KK-reduction of the 10-d.

N = (1, 0)16 SYM, and the isometry of the compactified space becomes the R-symmetry

of the lower dim. SYM. e.g. N = (4)16 in 4-d. with SU(4) ≃ SO(6) R-symmetry.

Rem: The E8 × E8 SUGRA-SYM can be obtained by KK-reduction of 11-d. SUGRA on

the 1-d. orbifold. Each E8 SYM lives on the domain wall at the orbifold point to cancel

the gravitational anomaly. This is known as the Horava-Witten model—a prototype of the

brane world scenario.
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With Central Charges

For simplicity, we only consider N =even cases. We first bring the antisymmetric matrix

ZAB into block-diagonal form with each block has the form ZLǫ
ab, with ǫab = iσ2 and the

eigenvalues ZL, L = 1, ..., N
2 so that

{QaL
α , QbM

β } = ǫαβǫ
abδLMZM

Then we define N pairs of annihilation operators

aL
α = Q1L

α + ǫαβQ̄γ̇2Lσ̄
0γ̇β , bLα = Q1L

α − ǫαβQ̄γ̇2Lσ̄
0γ̇β

and their corresponding creation operators by taking the hermitian conjugate..

Exercise: they satisfy the following anti-commutation relation:

{aL
α, (a

M
β )

†} = 2(2m+ ZM )σ0
αβ̇
δL
M ,

{bLα, (bMβ )
†} = 2(2m− ZM )σ0

αβ̇
δL
M ,
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The positive definiteness of the anti-commutation relation yields the BPS condition:

ZM ≤ 2m.

Especially, the BPS-saturated susy mutiplet(Z = 2m) have only half the number of the usual

massive multiplet, we call it short multiplet in contrast to the long multiplet for Z < 2m.

FACT: If disregarding the mass, for N = 2 SQCD, one has

Ωshort
0 = Ω−1

2
(massless hyper) , Ωshort

1
2

= Ω0 ⊕ Ω−1(massless vector) .

Rem: The BPS states are solitons(e.g. ’t Hoof-Polyakov’s monopoles or dyons in the N=2

case) whose mases are inversely proportional to the gauge coupling.

In the strong coupling limit, these BPS states become light and dynamical. Combining

with the above FACT implies the existence of the electromagnetic duality similar to the one

proposed by Montonen-Olive, or more precisely, the Seiberg-Witten duality.
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Superspace

The generalized coordinate on superspace is zM ≡ (xm, θα, θ̄α̇), where θ and θ̄ are Grass-

mann Lorentz spinor, i.e. they are anti-commuting to each others.

The general group element generated by the susy algebra can be denoted as

G(y, ξ, ξ̄) = ei[−ymPm+ξαQα+ξ̄α̇Q̄ȧ] ,

which generates a super-translation on an arbitrary coset element Ω(x, θ, θ̄):

G(y, ξ, ξ̄)Ω(x, θ, θ̄) = ei[−ymPm+ξQ+ξ̄Q̄]ei[−xmPm+θQ+θ̄Q̄]

= Ω(xm + ym − iξσmθ̄ + iθσmξ̄, θ + ξ, θ̄ + ξ̄) .

Therefore we can identify Pm, Q and Q̄ as superspace differential operators:

Pm = i∂m , Qα = ∂α − iσm
αβ̇
θ̄β̇∂m , Q̄α̇ = −∂̄α̇ − iθβσm

βα̇∂m .
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Superspace Covariant Derivatives

The supervielbein EA
M is given by the the Maurer-Cartan form

Ω−1dΩ = idzM (Em
MPm + Eα

MQα + Eα̇
M Q̄α̇) .

The supervielbein is non-trivial with nonzero torsion. Moreover, detEA
M = 1.

The superspace covariant derivatives are given by

Dα = ∂α + iσm
αβ̇
θ̄β̇∂m , D̄α̇ = −∂̄α̇ − iθβσm

βα̇∂m .

By construction, the susy covariant derivatives commutes with the susy generators, and

{Dα, D̄α̇} = −2iσm
αα̇∂m , {Dα, Dβ} = {D̄α̇, D̄β̇} = 0

signal the nonzero torsion.

Rem: D̄α̇θα = D̄α̇y
m = 0 where ym = xm + iθσmθ̄.
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Integration over Grassmann number

For a single Grassmann nmber θ,
∫

dθθ = 1 ,

∫

dθ = 0 , δ(θ) ≡ θ

For superspace coordinates,

d2θ = −1

4
dθαdθβǫαβ , d2θ̄ = −1

4
dθ̄α̇dθ̄β̇ǫ

α̇β̇ , d4θ ≡ d2θd2θ̄ .

Therefore,
∫

d2θ θθ = 1 ,

∫

d2θ̄ θ̄θ̄ = 1 ,

otherwise are zero.
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Superfields

A superfield living on the superspace can be expanding in terms of θ and θ̄ as following:

F(x, θ, θ̄) = f(x)+θψ(x)+θ̄χ̄(x)+θθm(x)+θ̄θ̄n(x)+θσmθ̄vm(x)+θθθ̄λ̄+θ̄θ̄θψ(x)+θθθ̄θ̄d(x) .

From δξF(x, θ, θ̄) = (ξQ + ξ̄Q̄)F(x, θ, θ̄) one can read the susy transformations on the

component fields.

Rem: δξd = i
2∂m[ψσmξ̄ + ξσmλ̄], a total derivative. This is in general not the case for

other component fields.

Chiral superfields: it is subjected to the constraint

D̄α̇Φ = 0 .

Solving this, we get

Φ(y, θ) = A(y) +
√

2θχ(y) + θθF (y) ,

= A(x) + iθσmθ̄∂mA(x) +
1

4
θθθ̄θ̄�A(x) +

√
2θχ(x)− i√

2
θθ∂mχ(x)σmθ̄ + θθF (x) .
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The susy transformation is

δξA =
√

2ξχ ,

δξχ = i
√

2σmξ̄∂mA+
√

2ξF ,

δξF = i
√

2ξ̄σ̄m∂mχ , a total derivative . (1)

Rem: Φ
†

is called an anti-chiral field and satisfies DαΦ
†

= 0.

Rem: Products and sums of the chiral superfields are also chiral superfields.

Vector superfields: it is constrained by

V
†

= V .

In components: f = f∗, χ̄ = φ∗, m = n∗, vm = v∗m, λ̄ = ψ∗, d = d∗.
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e.g. if Φ is a chiral field, then Φ + Φ
†

is a vector superfield.

In components:

Φ + Φ
†

= (A+A∗) +
√

2(θχ+ θ̄χ̄) + θθF + θ̄θ̄F ∗ + iθσmθ̄∂m(A− A∗)

+
i√
2
θθθ̄σ̄m∂mχ+

i√
2
θ̄θ̄θσm∂mχ̄+

1

4
θθθ̄θ̄�(A+A∗) .

Since the coefficient i∂m(A−A∗) of the θσmθ̄-component is a gradient, this motivates us

to define a susy gauge transformation:

V −→ V + Φ + Φ
†

.

This is the generalization of the gauge transformation

vm −→ vm + ∂mΛ , Λ = i(A−A∗) .

Note that the first 5 component fields of Φ+Φ
†

are unconstrained, then we can choose the

so called Wess-Zumino gauge such that

V (x, θ, θ̄) = −θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D .

Note that fixing WZ gauge does not fix the abelian gauge inv.
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The susy field strength is given by Wα and its hermitian conjugate:

Wα = −1

4
D̄D̄DαV , W̄α̇ = −1

DDD̄α̇V .

They are (anti-)chiral superfields since D3 = D̄3 = 0.

Exercise: Show (i) D̄ȧW̄
ȧ = DαWα . (ii) Wα is a susy-gauge invariant. (iii) in WZ gauge,

Wα = −iλα(y) + θαD(y)− i

2
(σmσ̄nθ)αFmn(y) + θθσm

αα̇∂mλ̄
α̇

where Fmn ≡ ∂mvn − ∂nvm.

Rem: The nonabelian generalization:

Wα = −1

4
D̄D̄e−VDαe

V

transform covariantly as

Wα −→ e−iΛWαe
iΛ

under the nonabelian susy gauge transformation

eV −→ e−iΛ
†

eV eiΛ

where Λ = ΛaT
a and Λa’s are chiral superfields.
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Supersmmetric Actions

A susy-invariant action can be written down from the fact that:

The susy transformation of the θθ component of a chiral superfield is total derivatives, so

is the the the θθθ̄θ̄ component of a vector superfield.

Susy action for a chiral superfield: The action

S =

∫

dx4

∫

d4θΦ
†

Φ +

∫

d4x[

∫

d2θP (Φ) + h.c.]

The function P is called superpotential.

In components:

Φ
†

Φ |θθθ̄θ̄=
1

4
A∗

�A+
1

4
�A∗A− 1

2
∂mA

∗∂mA+ F ∗F +
i

2
∂mχ̄σ̄

mχ− i

2
χ̄σ̄m∂mχ ,

P (Φ) |θθ=
∂P (A)

∂A
F − ∂2P (A)

∂A2
χχ .
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Integrating out the auxiliary field F , we get a scalar potential

V (A,A∗) = F ∗F = |∂P (A)

∂A
|2 ≥ 0 .

Rem: For P (Φ) = mΦ2 + gΦ3, it is called the Wess-Zumino model which is the most

general unitary, renormalizable 4-d. susy action for a single chiral superfield.

However, from the effective field theory point of view, the most general susy Lagrangian is

L =

∫

d4θK(Φi,Φj†) + [

∫

d2θP (Φi) + h.c.]

for arbitrary K and P .

The functionK is called the Kahler potential because the above susy action gives a nonlinear

sigma model with the kinetic term

gij∗∂mA
i∂mA∗j where gij∗ ≡

δ2K(Ai, A∗j)

δAiδA∗j

which is invariant under the Kahler transformation

K(Ai, A∗j) −→ K(Ai, A∗J) + Λ(Ai) + Λ
†

(A∗j) .
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N = 1 Susy Yang-Mills: Recall Wα is a chiral superfield, the SYM action is then

1

8π
Im[τ

∫

d4x

∫

d2θ trWαWα]

=
1

g2

∫

d4x tr[−1

4
FmnF

mn − iλσm∇mλ̄+
1

2
D2]− θY M

32π2

∫

d4x trFmnF̃mn

where the complex coupling τ :

τ =
θY M

2π
+

4πi

g2
.

Exercise: Derive the above.

Rem: Both the gauge field vm and the gaugino λ are in the adjoint repes.

N = 1 Susy QCD: For the charged matter, its chiral superfield transforms under the gauge

transformation as

Φ −→ e−ieΛΦ

so that the gauge invariant kinetic Lagrangian is
∫

d4θ Φ
†

eeV Φ .
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Rem: Note that the fermionic component of a chiral superfield is a chiral fermion, one needs

two chiral superfields to yield a Dirac fermion.

Exercise: Show that in components the above Lagrangian yields

−DmA
∗
iD

mAi − iχ̄iσ̄
mDmχ

i − i
√

2eλ̄(a)χ̄iT
(a)i
j Aj + i

√
2eA∗

jT
(a)j
i χiλ(a) − 1

2
e2D(a)2

where the so called D-term potential is given by

1

2
e2D(a)2 =

1

2
e2(A∗

jT
(a)j
i Ai)2 ≥ 0 .

In Summary: In the coupled SYM-WZ model, the scalar potentials given by

V (Ai, Ai∗) = VF + VD = |F |2 +
1

2
e2D2 ≥ 0.
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Spontaneous Susy Breaking

Recall {Qα, Q̄β̇} = 2σm
αβ̇
Pm, taking the trace, we get the Hamiltonian

H =
1

4
(Q1Q̄1 + Q̄1Q1 +Q2Q̄2 + Q̄2Q2)

so that the susy is spontaneously broken, i.e. Q|0〉 6= 0 if only if

〈0|H |0〉 = V 6= 0 .

This implies the existence of a massless Goldstone spinor (Goldstino), that is Q|0〉 ∵

[H,Q]|0〉 = 0.

This means that susy is spontaneouslt broken if the auxiliary fields either F or D obtain a

nonzero vacuum expectation value(vev). This leads to that

either 〈0|δξχ|0〉 =
√

2ξ〈0|F |0〉 6= 0 or 〈0|δξλ|0〉 = iξ〈0|D|0〉 6= 0 .
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F-term breaking:

A model by O’raifeartaigh with the following superpotential

P (Φi) = λΦ1Φ2 + gΦ3(Φ
2
2 −m2) .

Susy is spontaneously broken since there is no solution to

∂P

∂A1
=

∂P

∂A2
=

∂P

∂A3
= 0 .

Rem: This mechanism is not working for realistic model since it yields

STrM2 ≡
∑

j

(−1)2j(2j + 1)m2
j = 0

implying that one of the scalar masses is lower than the fermion mass while the other is

higher. One does not observe a light scalar sparticle.
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D-term breaking:

A model by Fayet-Iliopoulos. For U(1) gauge group, the D-term κ
∫

d4θV is uncharged and

thus gauge invariant. Adding this term to the SYM-WZ model with superpotential

P (Φ±) = mΦ+Φ−

where Φ± carry ±e U(1) charge.

The auxiliary fields are solved by

D = κ+
e

2
(A∗

+A+ −A∗
−A−) , F+ = mA∗

− , F− = mA∗
+ .

The susy is spontaneously broken since there is no solution of A± to D = F+ = F− = 0.

Rem: D-term breaking yields

STrM2 = −2ξaDaTrYa

where Ya are the generators of the additional U(1) in the gauge group. TrY 6= 0 iff the

U(1) has mixed anomaly(one gauge and two gravity vertices.)

This implies that the D-term breaking could work in the realistic model if there is an

anomalous U(1). However, this is not the case for Minimal Susy SM(MSSM).
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Nonrenormalization of Superpotential

Wilsonian effective Lagranigian: Consider a renormalizable Lagrangian L and impose the

momentum cutoff Λ in loop diagram, then for the Wilsonian effective Lagrangian LW we

have

S-matrix for the process below Λ from L(Φ) = S-matrix from LW (ΦΛ)

LW is local and usually contains infinite number of terms allowed by the symmetries of the

theory.

Rem: The Wilsonian effective Lagrangian is the same as the the 1-PI effective Lagrangian

if there is no interacting massless particles, otherwise, the latter will suffer the IR ambiguity

but the Wilsonian one is well-defined.

Statement of nonrenormalization theorem: As long as the cutoff preserves the susy and

gauge invariance, to all orders in perturbation theory, the superpotential is not renormalized

in form and coefficients, and the gauge coupling is 1-loop exact.

Rem: This implies that susy cannot be broken perturbatively but could be broken dynami-

cally by some strong gauge dynamics.
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There are two ways to prove the nonrenormalization theorem:

• Using the Feynman rule for the perturbation theory in Super-graphs. We will not

go to details. For further study on Super-graphs and their application, please check

Wess-Bagger or Superspace:1001 lessons in susy(hep-th/0108200).

• The power of holomorphy by Seiberg:

Consider the WZ model with tree-level Superpotential Ptree = mΦ2 + λΦ3 which is

holomorphic in Φ) and is invariant under U(1) × U(1)R perturbatively if we have the

following charge assignment: Φ(1, 1), m(−2, 0) and λ(−3,−1).

The constants m and λ effectively can be vev of some background fields which are

charged under U(1)× U(1)R.

By requiring holomorphy and the symmetries of the effective superpotential, we have

Peff = mΦ2f(
λΦ

m
) =

∞
∑

n=0

an
λnΦn+2

mn−1

where the second equality holds if λ is small.

Exercise: Check that for n ≥ 2, the term can not be 1PI so that its contribution should

not be included in effective action.
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Minimal Susy Standard Model

In reality susy is broken since we does not observe any susy particle at low energy. However,

before considering the realistic model including the susy breaking effect, we shall construct

first the minimal suspersymmetric generalization of Standard Model by

1. Generalize all the particles in the SM to the chiral/vector superfields by including their

super-partners. Let’s call them:

V a(8, 1, 0), V i(1, 3, 0), V (1, 1, 0),Q(3, 2, 1/6), Ū(3̄, 1,−2/3), D̄(3̄, 1, 1/3), L(1, 2,−1/2),

Ē(1, 1, 1) of SU(3)× SU(2)× U(1).

2. We need additional Higgs superfield for the Higgsino anomalies to cancel among them-

selves. Let’s call them:

HU (1, 2, 1/2) and HD(1, 2,−1/2).
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3. The Yukawa couplings and scalar potentials are defined by the following most general

gauge-invariant renormalizable superpotential

P = µHUHD + λUQŪHU + λDQD̄HD + λELĒHD

+ {LHU +QLD̄ + ŪD̄D̄ + LLĒ}

The terms in {· · · } will give dangerous dimension-four operators which violate the

baryon and lepton number and lead to the fast proton decay.

This is in contrast to the SM where the proton decay is produced by dimension-six

operators and thus is suppressed at low energy.

To remove these dangerous terms, we need to impose the R-parity conservation. The

R-parity leaves the SM fields but flip the sign of their super-partners. This leads to

– Susy particles are pair produced.

– The light susy particle (LSP) is stable and can be the candidate for dark matters.
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4. From the above R-parity preserving superpotential, one can derive the scalar potential.

To preserve the SU(3) gauge symmetry, we shall set

0 = 〈Q̃〉 = 〈˜̄u〉 = 〈 ˜̄d〉 .

Exercise: Compute the minimum of the potential and show that both electromagnetism

and electroweak symmetry are not broken, i.e. the minimum is at 0 = 〈L̃〉 = 〈˜̄e〉 =

〈hU 〉 = 〈hD〉.
Therefore this simplest version of MSSM cannot be realistic.

From the effective theory point of view we shall break the susy by adding some soft

breaking terms, namely, the irrelevant operators with dimension larger than four.

These soft susy-breaking terms are assumed to be generated dynamically in some

hidden sectors which do not coupled to MSSM directly, and then the susy-breaking

effect are transmitted indirectly to MSSM by some messenger sectors. These messen-

gers could be

– gravity—Susy breaking at planckian scale.

– gauge fields of strong dynamics outside MSSM—initiated by Seiberg et al (1994—).
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Soft Susy-breaking extension

Treating the MSSM as an effective theory, and the soft susy-breaking terms shall preserve

the gauge symmetry and breaks susy at a scale Ms.

It is then convenient to characterize the susy-breaking effect by a spurious chiral superfield

U = θθM2
s which contribute to the effective Lagrangian by the nonrenormalizable terms

suppressed by 1/M , e.g.

1

M2

∫

d4θΦ
†

ΦU
†

U +
1

M

∫

d2θWαWαU +
1

M

∫

d2θ[mΦ2 + gΦ3]U .

These terms introduce the following soft susy-breaking Lagrangian:

Lsb = Q̃∗m2
QQ̃+ ˜̄u∗m2

ū
˜̄u+ ˜̄d∗m2

d̄
˜̄d+ L̃∗m2

LL̃+ ˜̄e∗m2
ē
˜̄e+m2

HU
|hU |2 +m2

HD
|hD|2

+ mIλ
IλI + c.c.

+ µBhUhD + c.c.

+ hUQ̃AU ˜̄u+ hDQ̃AD
˜̄d+ hDLAL ˜̄e+ c.c. .

35



Counting the number of soft-braking parameters:

• 45 parameters of hermitian sparticle mass matrices m2
(Q,ū,d̄,L,ē)

.

• 2 parameters of real Higgs mass-squared m2
H(U,D)

.

• 6 parameters of complex gaugino masses mI .

• 2 parameters of complex Higgs mixing B.

• 54 parameters of complex tri-linear scalar coupling matrices AU,D,L.

After modulo some U(1) symmetries like PQ, R and lepton numbers, we still have more

than 100 additional parameters than the ones in SM. This make the theory far less predictive.

To make the model more predictive, we shall make some ansatz at high energy scale:

• All the scalar masses are the same, m2
0 —“universality” of scalar masses.

• All the gaugino masses are the same, M0— “GUT relation”.

• All the tri-linear couplings are proportional to theirs corresponding Yukawa couplings—

“proportionality”, i.e.

Ltri = A(hUQ̃YU ˜̄u+ hDQ̃YD
˜̄d+ hDLYL ˜̄e) + c.c.

where YU,D,L are the Yukawa coupling matrices.
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Some Phenomenology of MSSM

Rem: There are now only five additional parameters (m2
0,M0, A,B, µ) under the above

ansatz. Various phenomenology at low energy via RG running will constrain the phase

space of MSSM because the RG running will spoil the above alignments.

The RG running also provide a natural explanation of the negative Higgs mass: If assuming

universality at high scale, then the RG equation of the m2
HU

, m2
T and m2

t̃
shows that m2

HU

could change to the negative value.

Electroweak Symmetry breaking: The above RG argument provide a necessary but not suf-

ficient condition for inducing the EW SSB. Here we study more on the details of the Higgs

potential.

The Higgs doublet is

hU =





h+
U

h0
U



 , hD =





h0
D

h−D




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The Higgs potential is

VHiggs =
1

8
(g2 + g′2)(|ha

U |2 − |ha
D|2)2 +

1

2
g2|ha

uh
a∗
D |2

+ (µ2 +m2
HU

)|ha
U |2 + (µ2 +m2

HD
)|ha

D|2 + µB(ǫabh
a
Uh

b
D + c.c.) (2)

Taking the Higgs vev to be

〈hU 〉 =





0

vu



 , 〈hD〉 =





vd

0





and around this vacuum, there are fluctuations corresponding to

• two CP-even neutral scalars: H and h,

• two CP-odd neutral scalars: A and a Goldstone boson absorbed by Higgs mechanism,

• a pair of CP-even charged scalars: H±.

• a pair of CP-odd massless charged Goldstone bosons absorbed by Higgs mechanism.
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Define the parameters:

tanβ ≡ vu/vd , m2
Z =

1

2
(g2 + g

′2)(v2
1 + v2

2) , m2
W =

1

2
g2(v2

u + v2
d) ,

where mZ and mW are the masses of Z and W bosons respectively.

Exercise: Diagonalizing the Higgs mass matrix, you get

m2
A = 2|µ|2 +m2

HU
+m2

HD
,

m2
H =

1

2
[m2

A +m2
Z +

√

(m2
A −m2

Z)2 + 4m2
Am

2
Z sin2 2β ]

m2
h =

1

2
[m2

A +m2
Z −

√

(m2
A −m2

Z)2 + 4m2
Am

2
Z sin2 2β ]

m2
H± = m2

W +m2
A .

From the above, we find that the light Higgs is lighter than the pseudoscalar A and the

Z-boson. On the other hand, the heavy Higgs is heavier than A and Z-boson, also the

charged Higgs scalar is heavier than A and W-boson.
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µ problem: In the above we see that µ is about the same order of the Higgs particles which

is expected to be less than the O(Tev). However, the µHUHD term is supersymmetric,

and thus if µ is fundamental, it is expected to be order of some high energy scale, like GUT

scale. There is no natural explanation about the discrepancy, which is then known as the µ

problem.

FCNC suppression: In SM, the FCNC contribution to the K − K̄ mixing is suppressed by

the GIM mechanism and the factor (mc−mu)2

m2
W

.

In MSSM, there are additional contributions for K − K̄ mixing come from the gaugino-

squark loop. Either the universality is exact so that there is no flavor mixing of squarks, or

the off-diagonal term of the flavor-mixing matrix VdiV
∗
si is very tiny, otherwise, this loop will

contribute to a dangerous amount of order of (mc̃−mũ)2

m̃2 where m̃ is the typical s-particle

mass.

Gauge Couplings’s Unification: In GUT’s model, the gauge couplings are expected to unify at

the GUT scale, however, detailed RG running show the opposite. Instead, the RG runnings

of the susy GUT do unify the gauge couplings at GUT scale. This is considered as a

compelling reason for susy.
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Formalism of the gravity-mediated susy breaking: For the chiral matters with Kahler po-

tential K(Φi,Φ
†

i ) and superpotential W (Φi) coupled to N = 1, d = 4 SUGRA, the scalar

potential is known to be

V = eM
−2
p K [gij̄DiW (DjW )∗ − 3M−2

p |W |2]

where Mp is the planck scale and

gij̄ =
∂2K

∂Ai∂A∗
j

, DiW =
∂W

∂Ai
+M−2

p

∂K

∂Ai
W .

For detailed derivation, please study Wess-Bagger.

Now let’s assume K and W take the forms:

K =
∑

z
†

i zi +
∑

y
†

aya , W = Wz(zi) +Wy(ya)

where we have introduced 2 sets of fields, the hidden sector fields zi’s and the visible sector

fields ya’s.

Then, assume susy is broken in the hidden sector such that

〈F 〉 ≃ m3/2Mp
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and requires 〈V 〉 = 0 (vanishing cosmological constant) which leads to

〈W 〉 ≃ O(1) m3/2M
2
p .

wherem3/2 is the mass of the gravitino after susy breaking by the susy version of the Higgs effect

by which the Goldstino is absorbed as the longitudinal component of the massive gravitino.

If Wy = 0 and K = zizi + yaya, then the effective potential for y is

V (y) = eM
−2
p 〈K〉M−4

p |〈W 〉|2
∑

|ya|2 ≃ m2
3/2

∑

|ya|2 .

Obviously, the susy-breaking effect is transmitted from the hidden sector to the visible sector

by giving an universal soft mass as large as m3/2 to all the s-particles in the hidden sector.

Exercise: Show that a nontrivial Wy will give the B-term and the universal A-terms.

Rem: The SUGRA is not a renmormalizable theory, the need in determining K and W from

first principle invokes more fundamental theory such as the string theory. In this respect,

the gauge-mediating susy breaking effect is more straightforward, however, we will not go

into the details in this lecture.
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Some basics about N=2 SYM

The N = 2 SYM vector multiplet includes one vector superfield and one chiral superfield in

the adjoint repres. in the N = 1 language, and the renormalizable Lagrangian is

L =
1

8π
Im Tr[τ

∫

d2θWαW
α + 2

∫

d4θΦ
†

e−2V Φ]

=
1

g2
Tr[
−1

4
FmnF

mn + g2 θ

32π2
FmnF̃

mn + (DmA)
†

DmA− iλσmDmλ̄

−iχ̄σ̄mDmχ− i
√

2[λ, χ]A
† − i
√

2[λ̄, χ̄]]− V

where the form of the scalar potential is constrained by the N = 2 susy to be

V =
1

2g2
Tr[A

†

, A]2 .

Some of the basics of the theory are the following:

• Moduli space: Unlike the N = 1 SYM, the classical N = 2 SYM has a continuous

family of vacuum states by solving [A
†
, A] = 0 which implies that A takes value in the

Cartan subalgebra of the gauge group G. The vacua is called moduli space.43



For example, if G = SU(2), we can take A = 1
2aσ

3 and a a complex parameter labelling

the vacua, and the gauge inv. quantity parameterizing the vacua is u = 1
2a

2 = TrA2.

The above vev ofA breaks the SU(2) to U(1), this theory then belongs to the Coulomb phase

of the residual U(1), and has ’t Hooft-Polyakov monopoles/dyons as in the Georgi-Glashow

model.

The mass of the dyon of magnetic and electric quantum number (nm, ne) satisfies the

Bogomolnyi-Prasad-Sommerfeld(BPS) bound:

M ≥
√

2|Z| with Z = a (ne + i
4π

g2
nm) .

The mass formula has a symmetry under ne ↔ nm, 4π
g2 ↔ g2

4π , a↔ 4πa
g2 .

Is this strong/weak electromagnetic symmetry(or duality) also true quantum mechanically?

Olive and Montonen conjectured this is true for N = 4 SYM since it is an UV finite theory.

However, this can not be true for N = 2 SYM because the monopoles and electrons are in

the supermultiplet of different spins.

44



Central charge from susy transformations:

Exercise: The N = 2 SYM Lagrangian is invariant under the susy transformations which

include the usual susy transformation for the N = 1 vector multiplet and the chiral multiplet

with the modification:

δF = i
√

2ξ̄σ̄mDmχ− 2iT aAξ̄λ̄2 .

Since N = 2 means that the Lagrangian shall be invariant under another fermionic trans-

formation, this can be obtained by the replacement λ −→ χ, χ −→ −λ.

Exercise: Using the susy transformation to construct the supercurrents and then the super-

charges and their commutators, you will find that

{Q1α, Q2β} = ǫαβ a(ne + (4π/g2)nm)

where ne/m are dyon’s electric/magnetic charges given by

Qe = gne = − 1

ag

∫

d3x∂i(F
a0iAa) , Qm =

4π

g
nm = − 1

ag

∫

d3x∂i(F̃
a0iAa) .

Taking into the Witten’s effect for non-zero θ parameter, the central charge changes to

Z = a (ne + τclnm) , τcl ≡
θ

2π
+

4πi

g2
.
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Wilsonian effective action for N = 2 SYM:

One can start from a N = 2 superspace formulation by adding additional fermionic coordi-

nates to the N = 1 superspace, and construct the most general N = 2 SYM Lagrangian,

in the N = 1 language it is

1

4π
Im [

∫

d4θ
∂F
∂Φi

Φ
†

i +

∫

d2θ
1

2

∂2F
∂Φi∂Φj

WαiW j
α] .

F is called the prepotential, which relates the Kahler potential and the effective gauge

coupling.

For G = SU(2) with the large vev u, the Wilsonian effective Lagrangian for the single

N = 2 vector multiplet of the residual unbroken U(1) takes the form

Leff =
1

4π
Im[

∫

d4θ
∂F(A)

∂A
Ā+

∫

d2θ
1

2

∂2F(A)

∂A2
WαWα]

where A is the N = 1 chiral multiplet in the N = 2 vector multiplet.
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1. There is no N = 2 invariant superpotential can be added to the above Lagrangian

so that the vacuum degeneracy is not lifted by the quantum correction. However, the

quantum correction does change the geometry of the moduli space described by

ds2 = Im τ dadā , τ =
∂2F
∂a2

2. In the classical theory F(A) = 1
2τclA

2. Quantum mechanically we have

F = i
1

2π
A2 log

A2

Λ2
+

∞
∑

k=1

Fk (
Λ

A
)4kA2 .

where the first term is the tree-level plus 1-loop result and the rest are from the non-

perturbative instanton effect.

The theory is completely solved if F can be determined completely. This was done

surprisingly by Seiberg and Witten by exploiting the isometry and monodromy of the

quantum moduli space.

3. The above form for the metric on the moduli space is not covariant, and is not globally

well-defined since τ is a multivalued function of a. We shall use a more symmetric

parametrization.
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To extract the isometry of the metric, we define

aD =
∂F
∂a

so that

ds2 = Im daDdā = − i
2
(
daD

du

dā

du
− da

du

dāD

du
)

where u = TrA2 is a local coordinate on the moduli space M. If we arrange (aD, a) as a

column vector v, then the isometry ofM is

v −→Mv + c

where M is a 2× 2 matrix of SL(2, R) and c is a constant vector.

4. Seiberg and Witten proposed that the BPS spectrum is modified by the quantum cor-

rection so that the central charge becomes

Z = a ne + aD nm

on which the subgroup SL(2, Z) of the SL(2, R) isometry is manifest as the electro-

magnetic duality as expected.
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Seiberg-Witten duality

The SL(2, Z) group is generated by the generators

Tn =





1 n

0 b



 , and S =





0 1

− 0





We shall ask what is the physics for these transformation.

• Tn : aD −→ aD + n a. This gives τ = ∂aD

∂a −→ τ + n or θeff −→ θeff + 2nπ.

• S generates the S-duality by τ ←→ −1
τ , and A←→ AD.

This can be seen by

a. First introducing a Lagrangian multiplier V α
D to implement the Bianchi identity Im DαW =

0 and adding the following term to
∫

d4xLeff : (Exercise)

1

4π
Im

∫

d4xd4θVDDW =
1

4π
Re

∫

d4xd4θiDVDW = − 1

4π
Im

∫

d4xd2θWDW .
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b. Performing the Gaussian integration over W , we get an equivalent Lagrangian

1

8π
Im

∫

d2θ
−1

τ (A)
W 2

D .

c. Now also transforming A to AD by S transformation:




AD

hD(AD)



 =





0 1

1 0









A

h(A)





in the kinetic term

Im

∫

d4θ h(A)Ā

which is then transformed to

Im

∫

d4θ hD(AD)ĀD.

Moreover, using h′(A) = τ (a), then

− 1

τ (A)
= − 1

h′(A)
= h′(AD) = τD(AD) .
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Finally, the meaning of the constant vector c in the isometry v −→Mv+c can be classified

as following:

In the BPS spectrum of low energy N = 2 SYM, the dyon carries the electric charges which

comes from the massive charged N = 2 vector multiplets. Moreover, pairing the two N = 1

chiral multiplets M and M̃ we get a hypermultiplet which couples to the gauge field with

a N = 2 susy-inv. superpotential √
2neAMM̃ .

The dyon mass is then under duality transformation of
√

2nea which CANNOT allow a

shift by c for its symmetry origin, so we need to set c = 0.

However, if one has additional massive charged hypermultiplet, such a shift can arise and

play important role.

Rem: Under v −→ Mv + c, we need to transform the vector w = (nm, ne) by wM−1 in

order for the BPS spectrum to be SL(2, Z) invariant for c = 0. If c 6= 0, there is no way to

make the spectrum invariant from any compensating mtransformation of ne or nm.
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Monodromies of the Moduli Space

1. Singularity at Infinity: For large u, the theory is weakly coupled so that

aD =
∂F
∂a
≃ 2ia

π
ln(a/Λ) +

ia

π

and under a circuit of u-plane at large u, one has lnu −→ lnu + 2πi and ln a −→
ln a+ πi so that

aD −→ −aD + 2a , a −→ −a .
Thus, there is a nontrivial monodromy at infinity at u-plane

M∞ = PT−2
1 =





−1 2

0 −1



 , P is the element -1 ofSL(2, Z)

2. Singularity at strong coupling: One is looking for the singularity at u = u0 such that

aD(u0) = 0 .

This implies that the monopole becomes massless and dynamical such that the local

symmetry is enhanced.
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Exercise: More quantitatively, using the 1-loop beta function, near where aD = 0, the

(weak) magnetic coupling is

τD ≃ −
i

π
ln aD

where the coefficient in front of logarithm is because monopole belongs to the spin 1/2 susy

multiplet.

Using aD ≃ c0(u− u0) and τD = dhD/daD, then we have

a(τ ) = −hD(a) ≃ −a0 +
i

π
aD ln aD ≃ a0 +

i

π
c0(u− u0) ln(c− c0) .

Then we can read off the monodromy by circling u0 and the result is

M1 = ST 2
1 S

−1 =





1 0

−2 1



 .

Moreover, from the fact that anomalous U(1)R symmetry breaks to Z8 symmetry which acts

as a Z2 symmetry on u, there should be another singularity at u = −u0 with monodromy

denoted by M−1. Since the monodromies satisfy the relation: M1M−1 = M∞, we can

determine

M−1 = (T1S)T 2
1 (T1S)−1 =





−1 2

−2 3



 .
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Like M1 arises from the vanishing mass of a monopole with w = (1, 0) ≡ w1 such that

w1M1 = w1, one find that M−1 arises from the vanishing mass of a dyon with charge

(−1, 1). In fact one can carry out the monodromy at infinity many times to get the dyons

of different charges producing the singularities at u = ±u0.

Seiberg and Witten use the convention u0 = 1 and use some nontrivial mathematics by

knowing these monodromies, they get the solutions:

a(u) =

√
2

π

∫ 1

−1
dx

√

u− x
1− x2

, aD(u) =

√
2

π

∫ u

1
dx

√

u− x
1− x2

which are the integral representation of the two hypergeometric functions by solving the

Schrodinger equation with potential as the meromorphic function having poles at ±1 and

∞, namely, the Picard-Fuchs equation.

In this sense, the quantum susy gauge theory is exactly solved.
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