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Abstract

We study the connection between topological order and degeneracy of the entanglement spec-

trum by explicitly solving the two-dimensional dimerized quantum Heisenberg model in the form

of tensor product state ansatz. By evaluating the topological entanglement entropy, we identify

a new phase with topological order in this model, in which the entanglement spectrum is doubly

degenerate. Degeneracy of the entanglement spectrum is robust against various types of perturba-

tions, in accordance with our expectation for topological order. Our results support the connection

among topological order, long range entanglement and the dominant degenerate singular values of

entanglement spectrum. In the context of tensor product state ansatz, the numerical evaluation of

entanglement spectrum costs far less computation power than the one for topological entanglement

entropy. Our results provide a more viable way to numerically identify the topological order for

the generic frustrated systems.
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I. INTRODUCTION

Investigation of topological orders for spin models is under intensive study in the recent

years, partly due to its relation to the ground state of high Tc superconductor, the so called

spin liquid phase [1], and partly because of the enlightenment of quantum information to

characterize the ground states by quantum entanglement [2]. These studies lead to new clas-

sification schemes [3–7] of the quantum phases beyond the usual Landau-Ginzburg-Wilson

paradigm. The new quantum phases such as the spin liquids are called the topological

phases and cannot be characterized by a local order parameter. Instead, it could be char-

acterized by the ground state degeneracy, quasiparticle statistics, existence of edge states,

topological entanglement entropy [12, 13], and entanglement spectrum [14]. The latter twos

are motivated by the quantum information on the entangled nature of ground state [9]. One

typical example for all the above characteristics of topological ordered state is the fractional

quantum Hall states [14–16].

For one-dimensional (1D) spin chain the quantum fluctuation could be more significant

than in the higher dimensions to melt the system into liquid, and thus becoming topological.

The simplest example of the “topological phase” is the Haldane phase. The term with the

quotation remark is to mean that the topological nature of the ground state is protected by

some symmetry of the spin chain [6, 7]. Once the symmetry is broken, the ground state wave

function is equivalent to the trivial product state up to some local unitary transformation [32]

by removing the short range entanglement (SRE), i.e., entanglement between the neighboring

sites. In contrast, the long range entanglement (LRE) is the entanglement among the distant

sites, and causes the topological order of the nontrivial ground state, which is not equivalent

to the product state by the local unitary transformation.

On the other hand, for two-dimensional (2D) spin systems the topological phase is usually

expected to exist in the frustrated systems since the large ground state degeneracy of the

system is highly quantum and cannot have simple classical order. However, suffering from

the lack of the reliable numerical tools in solving the 2D frustrated spin systems, only very

few topological phases have been identified, such as the toric code model [10, 11]. The
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connection between the topological order and the quantum entanglement is less understood

than in the 1D cases.

Despite of the recent progress in [3–7] on the general scheme of classifying the topological

orders caused by the LRE, it is still not easy in practical to dynamically determine if exists

a topological phase. It is then desirable to find a more numerical viable characterization

for the topological order. Since the topological order is believed to be linked to the LRE,

we think the degeneracy pattern of the entanglement spectrum can be such an index. The

intuitive picture is that the entanglement spectrum is the singular (Schmidt) values of the

bi-partition of the whole system [7, 8], so the dominant degenerate singular values implies

that the wave function is close to the maximally entangled state (GHZ state). In this case,

the two parts of the system is coherently long-range entangled.

Moreover, the entanglement spectrum is very easy to evaluate numerically in the ansatz

of matrix product states (MPS) or tensor product states (TPS). Indeed, the connection

between entanglement spectrum and topological order is established for the MPS numerically

[7], however, for the TPS in 2D system it is not clear.

The main motivation of this paper is to establish such an connection in 2D among topolog-

ical order, long range entanglement and degenerate entanglement spectrum by numerically

studying a particular frustrated 2D spin model with its ground state in the form of the TPS

ansatz. In the meantime we explore the properties of the entanglement spectrum under

various types of the local unitary transformations to test its robustness, which is also the

characteristics of the topological order.

The model we will study is the staggered dimer spin 1/2 model on the square lattice,

and will be referred as the J-J’ model form now on. It is an interesting 2D spin model

with various issues about quantum phase transition. For the antiferromagnetic J ′-bond

regime, i.e., J ′/J > 0, this model has been studied by using the perturbation theory [17],

exact diagonalization (ED) [19], the coupled cluster method (CCM) [19], iPEPS [20] and

quantum Monte Carlo [21, 22]. In this regime, there exists a quantum phase transition by

tuning J ′ with a critical point at J ′/J ≈ 2.51 [17], separating the classical Néel ordered

phase and a finite-gap disordered phase [21, 22].

In this paper we are more interested in the regime of the ferromagnetic J ′-bond, i.e.,

J ′/J < 0 because the plaquettes are now frustrated. The quantum Monte Carlo method

cannot be used for the frustrated system because of the sign problem. Instead, some mean-
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field based approximation methods such as the renormalized spin wave theory (RSWT) [18],

exact diagonalization [19] and coupled cluster method (CCM) [19] are used to study this

regime. These studies found a phase transition at J ′/J = −1/3 separating the Néel phase

from a helical phase for classical spins, and the maximal frustration occurs around J ′ ≈ 1

region. However, due the frustrations we suspect that a quantum spin liquid phase with

topological order may appear around the region of maximal frustration. We indeed find this

is the case from our study.

The paper is organized as follows. In the next section we describe the methods of the infi-

nite time evolving block decimation(iTEBD) [26] and the the tensor-network renormalization

group (TRG) [27, 28], which are used to solve the J-J’ model, obtain the entanglement spec-

trum and topological entanglement entropy, and perform the quantum state renormalization.

We also briefly review the above concepts. In section 3 we present the phase diagram of the

J-J’ model by evaluating the order parameter, entanglement entropy, dimer strength and

the ground state energy. In section 4 we evaluate the topological entanglement entropy for

the J-J’ model and a toric code like state to characterize the topological phase. In section 5

we focus on various properties of the entanglement spectrum and its degeneracy to establish

its connection with the topological order. Finally, we conclude our paper in section 6.

II. THE MODEL AND THE METHOD

The model we study in this paper is the staggered dimer model on square lattice, also

known as the J-J’ model. It is a quantum Heisenberg antiferromagnetic model with two

kinds of nearest-neighbor exchange couplings, and its Hamiltonian is

H = J
∑
<ij>

~Si · ~Sj + J ′
∑
<ij>′

~Si · ~Sj , (1)

where the summations over < ij > and < ij >′ represent sums over the nearest-neighbor

bonds as shown in Fig.1. Each square lattice consists of three J bonds (the thin ones) and

one J ′ bond (the thick one). We fix the J bonds to be antiferromagnetic, i.e., J > 0, and

consider −∞ < J ′/J <∞ as the parameter of this model.
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FIG. 1: The J-J’ model on the 2D square lattice with two different nearest neighboring bond

couplings J and J’ (thin and thick, respectively). The red dash square is a 2× 2 unit cell.

A. Solving the model with iTEBD and TRG

We will use the iTEBD algorithm [26] to find the translationally invariant ground state

of the system in the form of the tensor product state ansatz

|ψ〉 =
∑

s1,1,s1,2,...,sN,N

tT r[A[1,1](s1,1)A
[1,2](s1,2) . . . A

[N,N ](sN,N)]|s1,1, s1,2, . . . , sN,N〉 (2)

where si,j labels the physical spin of dimension ds at site (i, j) for i, j = 1, . . . , N ,

A
[i,j]
r,d,l,u(si,j)’s are rank-five tensors with the bond indices r, d, l, u = 1, · · · , χ, and tT r is

to sum over all indices of tensors. We call χ the bond dimension and ds the physical di-

mension. This ansatz captures the area law nature of the ground state’s entanglement and

yields a faithful representation for the ground states of many 2D spin systems.

The basic idea of iTEBD method is to evolve the system along the imaginary time in

a very small time step so that the time evolution operator can be expanded as a sequence

of two-site unitary operations through the Suzuki-Trotter decompositions. For long enough

time evolution, the system will go to the ground state we are solving for. We further assume

translational invariance of the ground state ansatz (2), then we only need to update 4 tensors

as shown in Fig. 1 inside a unit cell for each time step.

Based on the solved ground state from iTEBD, we can calculate some quantities to char-
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acterize the phase diagrams. For the symmetry breaking phase we can evaluate the order

parameters which are the vacuum expectation value (vev) of some physical operators. How-

ever, when we insert a physical operator at some particular site such that the translational

invariance is lost, one needs some efficient method to contract the exponentially large num-

ber of bounds. Here we will adopt the TRG method [27, 28] to do that. The basic idea of

TRG is to renormalize the tensors of the TPS by keeping the relevant entanglement when

coarse graining. In this way, we can reduce the size of the system while retaining the es-

sential quantum correlations of the original ground state. Finally the whole system will be

reduced to a unit cell with the renormalized tensor, we can then evaluate the vev’s faithfully

enough within the renormalized unit cell.

B. Order parameters for Néel and dimer phases

For the J-J’ model considered here, we will evaluate the Néel order parameter i.e., given

by M z
s = 1

M

∑N
i=1(−1)i〈ψg|Szi |ψg〉 to characterize the Néel ordered phase. We also evaluate

the spin-spin correlations and the dimerization [23–25]:

Dx = |〈~Si,j · ~Si+1,j〉 − 〈~Si+1,j · ~Si+2,j〉| (3)

and

Dy = |〈~Si,j · ~Si+1,j〉 − 〈~Si,j · ~Si,j+1〉| (4)

to characterize the dimmer strength of the disordered “dimer phase”. Note that the Hamil-

tonian of the model does not possess the dimerized order by construction. Besides, we also

use TRG to evaluate the ground-state energy per site as E
N

= 〈ψg|H|ψg〉/N .

C. Characterizing topological phase by topological entanglement entropy

On the other hand, it is more difficult to characterize the topological phase since there

is no symmetry breaking order parameter for it. On typical quantity for the 2D systems

is the topological entanglement entropy [12, 13]. It is the sub-leading constant term in the

entanglement entropy

SL = αL− γ +O(L−ν) , ν > 0 , (5)
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where L is the boundary size of the block for which the entanglement entropy is evaluated

by tracing out the degrees of freedom outside it.
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FIG. 2: Two schemes for evaluating the topological entanglement entropy. (Left) Kitaev-Preskill’s

scheme for the square block with even number of sites on each side. (Right) Levin-Wen’s scheme

for the square block with odd number of sites on each side.

Since the constant term γ is topological and universal, we can extract it by appropri-

ately subtracting the entanglement entropies of different blocks. There are two subtraction

schemes, one is proposed by Kitaev and Preskill [12], and the other is by Levin and Wen [13].

For the square lattice it is easier to implement the numerical evaluation of the entanglement

entropy for a square or rectangular block. In this case, we find that it is convenient to adopt

Kitaev-Preskill’s scheme as shown in the left of Fig. 2 for the square block with even number

of sites on each side of the square block. The extraction for the topological entanglement

entropy then goes as follows

SKPtopo = SA + SB + SC + SD − SAB − SBC − SCD − SAD + SABCD , (6)

where SAB.. denotes the von Neumann entropy of the density matrix ρAB... in the region

AB... ≡ A ∪B ∪ ....

As for the square block with odd number of sites on each side, it is convenient to adopt

Levin-Wen’s scheme as shown in the right of Fig. 2, and the extraction is

SLWtopo = SABCD − SABD − SACD + SA + SD . (7)
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In both cases, Stopo = −γ < 0, which is related to total quantum dimension D by γ = LogD

[12, 13].

D. Characterizing topological phase by degeneracy of entanglement spectrum

Another quantity in characterizing the topological phase is the degeneracy of the entan-

glement spectrum. It has been used to characterize the topological order for some quantum

Hall states [14], and recently to characterize some symmetry-protected topological ordered

Haldane phase in spin 1 chain [7]. In this paper, the entanglement spectrum is refereed to

the spectrum of the Schmidt values for the bi-partition of the whole system. By definition,

these Schmidt values are the eigenvalues of the reduced density matrix of either of the two

partitions. Basically, the degeneracy of the entanglement spectrum implies the spins at dif-

ferent sites are almost in the maximally entangled state, hence it implies that the ground

state has topological order. However, for general 2D spin system there is no consensus on

the power of entanglement spectrum in characterizing the topological order, see [8] for re-

cent study on this issue 1. Despite that, one may expect that it still works in 2D since

the topological order is closely related to the LRE characterized by the degeneracy of the

entanglement spectrum.

Moreover, it is very easy and straightforward to evaluate entanglement spectrum for TPS

by merging the tensors of neighboring sites and then doing singular value decomposition

(SVD). This can be done by just using iTEBD without further invoking TRG. It is then

easier than evaluating the order parameter, and definitely far more easier than evaluating

the topological entanglement entropy.

Besides, from entanglement spectrum one can straightforwardly evaluate the bipartite

entanglement measure per length as well as the single-site von Neumann entropy (1-tangle).

Both can be used to characterize the quantum critical point [29].

1 In [8], the entanglement spectrum of a bulk region is associated with a the boundary excitation spectrum.
Their numerical study revealed that the boundary Hamiltonians become non-local for the topologically
ordered states.
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E. Quantum state renormalization

Since the topological order is closely related to the LRE, which however, is usually con-

taminated by the SRE. In order to make the characteristic of the topological order more

explicit, one can implement the quantum state renormalization method [30–32], which can

remove the short range entanglement by performing local unitary transformation. The

successive quantum state renormalization will then flow the original state to a simpler fixed-

point state, which, however, has the same topological order of the original state. We can

then classify the topologically ordered phases by the TPS’s tensors of the fixed-point states.

We now briefly describe the method as follows, and for more details see [31]. We first

form a positive double tensor T by merging two layers of tensors T and T † with the physical

indices contracted. Note that the resultant double tensor is constructed so that it is invariant

under the local unitary transformation, and then we can spectrally decompose it again back

into two tensors T̃ with physical indices. The spectral weights encode the relevance of the

entangled components. In this step we have removed the short range entanglement by the

local unitary transformation taking the tensor T into T̃ according to the significance of

the spectral weights. Next, we will coarse grain the lattice labelled by the tensor T̃ by

implementing one step of block decimation in the TRG method.

After repeating the above steps the original TPS will then flow into a fixed-point state

with all the SRE removed. If we perform quantum state renormalization while keeping the

symmetry or gauge symmetry of the lattice, the final fixed-point tensors can then be used

to classify the topological phases according to the symmetry structure.

III. NUMERICAL RESULTS FOR THE PHASE DIAGRAM OF J-J’ MODEL

In this section, we will present the numerical results for the phase diagrams of the J-J’

model of system size N = 28 × 28.

We first evaluate the vev of staggered magnetization M z
s in ground state as a function

of J ′/J by using the TRG method, and the result is shown in Fig. 2. In our calculation

we consider the bond dimension up to χ = 5 and keep Dcut ≥ χ2 to ensure the accuracy of

the TRG calculation. Here, Dcut is the cutoff on the bond dimension of the merging lattice

during the coarse graining in the TRG method. We find that the numerical results converge
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quickly already for χ = 4 and the numerical program works efficiently. Therefore, we will

take χ = 4 and keep Dcut = 24 in our numerical study in this paper.
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FIG. 3: Magnetization 〈M z
s 〉 v.s. J ′/J (Magnified the regime around J ′/J ' 2.56 in the right).

The ground state is in the TPS ansatz with bond dimension χ = 4 and Dcut = 24 for TRG in

taking the vev. It indicates a second-order phase transition from Néel to a disordered (dimerized)

phase at J ′/J ≈ 2.56, and another quantum critical point at J ′/J ≈ −0.54 separating the Néel

phase from a possible topological phase.

From Fig. 3, it is observed that 〈M z
s 〉 drops to zero both at J ′/J ≈ 2.56 and J ′/J ≈

−0.54. This indicates two quantum critical points at the corresponding critical values of

J ′/J . It was known that a second-order transition from a Néel-ordered phase to a finite-

gap disorder phase occurs at J ′/J ≈ 2.51, which is obtained from the unbiased quantum

Monte Carlo simulation [21, 22]. Our result instead finds a critical point at J ′/J ≈ 2.56.

The discrepancy could be due to the not large enough χ used in our numerical calculation.

Furthermore, we fit the critical exponent β for the magnetization, i.e., Ms = A|J ′ − J ′c|β.

Our result is β ' 0.37691, which is close to the exponents of the 3D classical Heisenberg

(O(3)) model, i.e., β ' 0.3639± 0.0035 2.

2 By increasing χ one may improve the above the results to be close to the results by the quantum Monte
Carlo method, though it may require far large computational power. In this work, we are more interested
in the identification of the topological phase, and will be satisfied by the above accuracy for the O(3)
phase transition.
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FIG. 4: 〈M z
s 〉 vs J ′/J for different bond dimensions, the χ’s. Larger χ yields a critical behavior

more like a second order phase transition, other than the first order one. For χ = 5 it indicates a

second order phase transition at J ′/J ' −0.54.

The other critical point at J ′/J ≈ −0.54 is frustrated since J ′ < 0 and J > 0, and

there is possibility for the existence of topologically ordered phase due to the underlying

degeneracy of the frustrated ground state. In Fig. 4 we show how the critical behavior in

this regime changes when we change the bond dimension. Our result showing 〈M z
s 〉 = 0 for

J ′/J < −0.54 is consistent with this expectation for a topologically ordered phase.

Since the system is frustrated in the regime of J ′/J < 0, our method based on TPS

and TRG will be more reliable than the others. Despite that, we still compare with the

results from the other methods. It was shown that classically there is a second order phase

transition from the Néel phase to a helical phase at J ′/J ' −1/3 based on renormalized spin

wave theory (RSWT) [18] or exact diagonalization (ED) [19]. Furthermore, it was claimed

in [19] that the critical point shifts to J ′/J ' −1.35 by using the coupled cluster method

(CCM) to take the quantum fluctuations into account. However, we do not see such a shift

in our results. Instead, we evaluate the ground state energy by TRG method and find the

value is very close to the one obtained by the method of RSWT for a helical phase, especially

in the Néel (classical) regime. The result is shown in Fig. 5. We see that for J ′/J < −0.5

the agreement in energy between ours and RSTW’s starts to deviate, and our translationally
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invariant ground state is energetically more favored than the non-translationally invariant

helical state. Similar deviation occurs for J ′/J > 2, this again reflects the relevance of

quantum effect when the system is away from the classical Néel ordered regime.
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FIG. 5: Compare the ground state energy per site obtained from our TRG method and the RSWT.

For curiosity, we also calculate the dimerization Dx and Dy defined in (3) and (4) though

they are not the order parameters of our dimerized model. The results is shown in Fig. 6.

We see that Dx = Dy = 0 at J ′/J = 1 as expected, otherwise they are nonzero and reach

some constant values at the disordered (dimer) regime. To visualize the distribution of the

dimer strength, in Fig. 7 we explicitly show the values of the spin-spin correlation of the

neighboring sites for three different J ′/J values.

Beside using the order parameter such as 〈M z
s 〉 in this case to characterize the quantum

phase transitions, the entanglement measure can also do the job, see [29] for some examples.

Especially, for the TPS ansatz it is quite straightforward to evaluate the bipartite entangle-

ment per bond SαBP := −
∑

i λ
2
α,i log λ2

α,i, where α = J, J ′ labels the two different types of

the bonds, and the λα,i’s are the singular values obtained from the SVD of the site tensors

in performing the iTEBD. Similarly, one can also use TRG to obtain the one-site reduced

density matrix, and then evaluate the von Neumann entropy, i.e., 1-tangle denoted as S1.

The results are summarized in Fig. 8. Note that the derivatives of both S1 and SJ,J
′

BP are

discontinuous at two quantum critical points. Moreover, it shows that the classical Néel
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FIG. 6: Dimerization Dx and Dy vs. J ′/J .
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FIG. 7: Visualization of Spin-Spin correlation of neighboring sites for J ′/J = 3.2 (disordered dimer

phase), J ′/J = 1 (Néel phase) and J ′/J = −2(possibly topologically ordered phase).

regime has lower entanglement compared to the other two phases dictated by the significant

quantum effect. For the disordered dimer phase with J ′/J > 2.56 quite amount of the

quantum entanglement is due to the formation of the dimers, i.e., nearest-neighboring sites

form the maximally entangled states (Bell states). Once the dimer is formed, the sites on

the both ends of the dimer will not be correlated with the other sites, i.e., the monogamy

of the entanglement.
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FIG. 8: The entanglement measures SJ,J
′

BP and S1 v.s. J ′/J . The discontinuities in the derivative of

the entanglement measure occur right at the quantum critical points, and the classical Néel regime

has lower entanglement.

The local nature of SRE for the dimer phase is different from the LRE for the topological

phase in the regime J ′/J < −0.54. Later, we will see that the difference between these twos

will be reflected in the degeneracy of the entanglement spectrum.

IV. TOPOLOGICAL ENTANGLEMENT ENTROPY

In this section, we will evaluate the topological entanglement entropy based on TPS

ansatz. We will consider first the J-J’ model, and then a toric code like toy TPS state to

demonstrate the power of TRG method in identifying the topological phase.

A. J-J’ model

In order to make sure that the phase in the regime J ′/J < −0.54 is the topological phase,

we evaluate the topological entanglement entropy (i.e., −γ) according to the prescriptions

mentioned before. We also find that the entanglement entropy increases linearly with the

block boundary size, this gives a consistent check for our numerical codes.
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FIG. 9: Topological entanglement entropy vs. J ′/J for the 2 by 2 block (square), the 3 by 3 block

(circle) and the 4 by 4 block (triangle) for J-J’ model.

Our result is shown in Fig. 9. The one for 2 by 2 block is evaluated by Kitaev-Preskill’s

scheme, and the one for 3 by 3 block by Levin-Wen’s scheme. For larger blocks, it requires

far more power of computation in TRG for evaluating the block entanglement entropy. For

example, if we would like to evaluate the entanglement entropy for the 4 by 4 block, then

the number of entries for the reduced density matrix will be about 216/29 = 128 times of the

one for 3 by 3 block. That means it will take about 100 times of the computing time than

for the 3 by 3 block, and it is beyond our computational capacity. This is the disadvantage

when trying to identify the topological phase with the topological entanglement entropy

numerically. Despite that, we still spent months to evaluate the topological entanglement

entropy for the 4 by 4 block at J ′/J = −6,−8 as shown in Fig. 9. The values of these two

data points are quite consistent with the ones for the 3 by 3 block. More closely, for the 3

by 3 block γ = 0.6248 at J ′/J = −6 and γ = 0.6057 at J ′/J = −6, and for the 4 by 4 block

γ = 0.6276 at J ′/J = −6 and γ = 0.6111 at J ′/J = −6, respectively.

Our result shows that γ is consistent with zero for the non-topological phases (Néel and

dimer phases). However, we find that γ is negative and unphysical in the topological phase

for 2 by 2 block. This could be due to the small boundary size effect from the next sub-

leading term of O(L−ν) with ν > 0. On the other hand, for the 3 by 3 block we expect the

small boundary size effect could be suppressed so that γ in the topological phase should be

positive. We find that this is indeed the case, and this is also confirmed by the two data
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points for the 4 by 4 block. In Fig. 9, there is a long crossover for γ as we vary J ′/J between

0 and −5. Then, γ approaches 0.6 around J ′/J = −5 and then remains at that value for

more negative J ′/J as expected from its topological nature. Naively, we expect a quantum

critical point separating topological and non-topological phase, and the crossover could be

due to the SRE in our TPS solution. We expect that it should be removed by suitable

quantum state renormalization.

Though our result is subjected to the errors from the small size effect and also from the

approximation in our numerical method of iTEBD and TRG, it does indicate a nonzero γ

and thus a topological phase in the regime with J ′/J < −0.54. We may expect the value of

γ will be improved if the above errors could be reduced.

B. Toric code like state

Due to the limitation of our computation power, it is hard to evaluate the topological

entanglement entropy to high precision by increasing the bond dimension χ in the TPS

ansatz for the J-J’ model. Instead, we now consider a toric code like TPS state proposed

in [31] with χ = 2. In this case we can evaluate the topological entanglement entropy more

precisely to characterize the topological order, and demonstrate the power of TRG method

on this issue. Later on, we will compare the topological entanglement entropy of this state

with the pattern of degenerate entanglement spectrum of the same state, and demonstrate

that the latter can be also used to characterize the topological order without invoking heavy

computation capacity.

This toy TPS state on the square lattice motivated by the toric code model is character-

ized by the TPS tensor on each vertex in Fig. 10 in the form of T ijklαβγδ with four physical

indices i, j, k, l = 0, 1 and four bond indices α, β, γ, δ = 0, 1 (i.e., bond dimension χ = 2).

Its entries are given by

T ijklijkl =

 gi+j+k+l , if i+ j + k + l = 0 mod 2 ,

0 , otherwise.
(8)

For g = 1, it reduces to the ground state of the toric code model with Z2 topological order.

For g = 0, it reduces to a trivial product state. Therefore, as we vary g, the state will go

through a phase transition, and in [31] it showed that the quantum critical point occurs at

gc ' 0.8 which separates the Z2 topological phase from the phase of product state.
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FIG. 10: The toric code is defined on a 2D square lattice. The red dot is a spin 1/2 particle located

on each link. After splitting every spin 1/2 into two, each vertex (black dot) on the lattice lives

a TPS tensor with four physical indices, and four bond indices. The (green) dashed line square is

a 2 by 2 block for which we evaluate the topological entanglement entropy for the toric code like

TPS state.
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FIG. 11: Topological entanglement entropy from Kitaev-Preskill’s scheme for the 2 by 2 block in

Fig. 10.

With the above TPS state, we then use the Kitaev-Preskill’s scheme to numerically

evaluate the topological entanglement entropy for 2 by 2 block indicated by the blue dash

line in Fig. 10. Since this state has only χ = 2 and thus requires not much computation

power to carry out the numerical calculation up to high precision. Again, we verify that the
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entanglement entropy obeys the area law. Our result is shown in Fig. 11, and it indicates a

crossover around gc ' 0.8 separating the trivial phase with γ = 0 and the topological phase

with γ = 1. We may observe a sharp jump at gc if we increase the block size, however, it is

then beyond our computation capacity.

V. DEGENERACY OF ENTANGLEMENT SPECTRUM AND TOPOLOGICAL

ORDER

In general, there are some ways of classifying the possible topological phases, however,

there is no specific method with consensus in identifying the topological phase of a particular

dynamical model. Topological entanglement entropy [12, 13] is usually thought to be good

index in characterizing the topological order, but it is difficult to evaluate numerically to

high precision due to the limitation of the computation capacity as discussed in the previous

section.

On the other hand, the degeneracy of the entanglement spectrum has recently imple-

mented to characterize the topological orders for some 2D quantum Hall states [14] and

some 1D symmetry protected topological phase [7]. Despite there is no rigorous proof on

its power of characterizing the 2D topological orders, the degeneracy of the entanglement

spectrum by itself indicates the existence of the LRE. Recently it is argued that the LRE

is the characteristics of the topological order from the point of view of the quantum infor-

mation [3–5, 7]. The tensor of the TPS encodes the information about the entanglement

for the bi-partitions of the system. The entanglement spectrum obtained from it weighs dif-

ferent components of quantum correlation between bi-partition regions in the ground state

wave function. Therefore, if there is a double degeneracy of the entanglement spectrum, it

means that the bi-partitions are almost in the maximally entangled states. It is the LRE

since it involves the the collective coherences of the spins on half of the space to be strongly

correlated with all the spins in the other half.

A. Some examples

Instead of providing the proof of the above picture, we give examples. A well-studied one

is the symmetry-protected Haldane phase, which is described by the Afflect-Kennedy-Lieb-
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Tasaki (AKLT) state. The AKLT state can be put into the form of the MPS represented by

the matrices {Ai} = {σz,
√

2σ+,−
√

2σ−}. By merging two matrices and then performing

SVD, we find that the singular values, i.e., the entanglement spectrum, are doubly degen-

erate. This is also proved in more rigorous way in [7]. Since the topological phase is robust

again small perturbations, we can consider the deformed AKLT Hamiltonian

H = J
∑
i

~Si · ~Si+1 + Uzz(S
z
i )2 . (9)

At the large Uzz, there is a trivial phase where all the spins are in the eigenstates of Sz .

We use the iTEBD method to solve the ground states in the MPS ansatz and then find the

entanglement spectrum. We find that the phase transition between Haldane phase and the

trivial phase is characterized by the degeneracy of the entanglement spectrum.

The relation between the degeneracy of the entanglement spectrum and the topological

order for the 2D spin system is less explored. Here we consider the simplest Z2 toric code

model [10], and the explicit TPS form of its ground state is represented by the tensor T ijklαβγδ,Z2

as discussed in the previous section. We can find the entanglement spectrum by merging

the tensors and then performing SVD. Again, we find it is 2-fold degenerate.

B. Topological order of J-J’ model by entanglement spectrum and its robustness

The entanglement spectrum for each bond in the J-J’ model from the TPS of our nu-

merical ground state solution is given in Fig. 12(a). Each small circle with a middle bar

represents a specific singular value of the entanglement spectrum. Note that both J- and

J ′-bond show the similar degeneracy pattern, so in the following we only show one of them.

We see that the singular values are doubly degenerate for the regime J ′/J > −0.54 in which

the Néel order also vanishes. Therefore, J ′/J = −0.54 should be the critical point separating

the topological and non-topological phases, along with the evidence of nonzero topological

entanglement entropy discussed previously.

Recall that the precision for the topological entanglement entropy and the sharp quan-

tum transition point is hard to achieve due to the limitation on the computation capacity.

However, with the same capacity we can obtain the degenerate entanglement spectrum quite

easily with a sharp quantum transition point. In contrast with the topological entanglement

entropy, this is the advantage to use the degenerate entanglement spectrum to characterize
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the topological order numerically with TPS ansatz.
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FIG. 12: (a) Entanglement spectrum per bond of the J-J’ model. (b) Entanglement spectrum of

the J-J’ model with the random perturbation.

Since the topological order should be robust against the local perturbations, the degen-

eracy of the entanglement spectrum should also does so if it can be used to characterize

the topological orders. We first add a random perturbation Hrand at each step of iTEBD,

where the random 2-body Hamiltonian Hrand is a real symmetric matrix with 10 indepen-

dent matrix elements given by the random numbers in the interval [0, 0.1J ]. The result is

shown in Fig. 12(b). We see that the entanglement spectrum is changed but the pattern of

its degeneracy remains intact. This demonstrates the robustness of the degeneracy of the

entanglement spectrum, and thus the robustness of the topological order.

To further check the robustness, we add a perturbation of the form h
∑

i,j S
z
i,j which

breaks the spin SO(3) symmetry and the time-reversal symmetry. For small h, the above

perturbation does not destroy the double degeneracy of the entanglement spectrum. Once

h is larger than the critical value 1.2, the double degeneracy will be lost. The results for

h = 0.1 and h = 1.2 are shown in Fig. 13(a) and (b), respectively. On the other hand, in Fig.

13(c) we show the result by adding a perturbation of the form t
∑

i,j(−1)j ~Si,j · ~Si,j+1 which

breaks the translational symmetry in the direction perpendicular to the dimers. Again, we

see that the perturbation with t = 0.1 cannot destroy the double degeneracy.

With above generic types of perturbation, we see that the degeneracy pattern of the
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FIG. 13: Entanglement spectrum per bond of the J-J’ model perturbed by h
∑

i,j S
z
i,j with (a)

h = 0.1, (b) h=1.2 (critical value), and (c) perturbed by t
∑

i,j(−1)j ~Si,j · ~Si,j+1 with t = 0.1.

The degeneracy pattern of the entanglement spectrum is robust under the symmetry-breaking

perturbations.

entanglement is quite robust, this reflects the topological nature of the phase.

C. Remove short range entanglement

As described previously, quantum state renormalization consists of two steps: the first

step is to optimize the local unitary transformation to remove the SRE, and the second

step is to coarse grain the site tensors according to the TRG like method while keeping the

physical bonds. After successive steps of quantum state renormalization, the TPS will flow

to a fixed point with most of SRE being removed. Therefore, one would expect the fixed-

point TPS will be the representative of the universal class of topologically ordered states.

This quantum informational way of classifying the topological orders are recently proposed

in [3–5, 7, 31].

We then would like to study how the entanglement spectrum evolves under the quantum

state renormalization group (RG) flow procedure. Since we conjecture that the degeneracy

pattern of the entanglement spectrum encodes the LRE, we would expect it is robust under

the quantum state renormalization, which only removes the SRE. This is indeed the case for

the J-J’ model and the result is shown in Fig. 14. Moreover, we see that under the quantum

state RG flow, the number of the dominant singular values decreases in the topological
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phase. We can think of the extreme case that there is only one dominant doubly degenerate

singular value with all others being suppressed, then the whole lattice is in the GHZ state,

i.e., maximal LRE. So, the suppression of the singular values except the dominant ones

corresponds to the removal of the SRE under the quantum state RG flow, and the LRE will

be encoded in the degeneracy of the dominant singular values of the fixed-point TPS.
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FIG. 14: The entanglement spectrum of J-J’ model under quantum state RG flow. The number of

the RG steps is labelled accordingly.

Finally, to understand more about the entanglement spectrum under quantum state RG

flow, we consider the case for the toric code like TPS state (8) discussed before. To draw

a parallel comparison with the topological entanglement entropy presented in Fig. 11, we

evaluate the difference between the two largest singular values of the entanglement spectrum,

denoted as |λ1 − λ2|. The result is shown in Fig. 15.

From Fig. 15, we see that before quantum state renormalization, it seems there is no

degenerate entanglement spectrum except at g = 1. Moreover, the degeneracy at g = 1 is

2-fold, which may reflect the underlying Z2 symmetry apart from the LRE. This is in sharp

contrast to the crossover behavior of topological entanglement entropy around g ' 0.8 as

shown in Fig. 11. However, after one step of quantum state renormalization, we obtain

the crossover similar to the one for topological entanglement entropy. As we perform more

steps of quantum state renormalization, the crossover become sharper and sharper around

gc = 0.8. It finally approaches to a sharp quantum critical point separating the topological

phase (g > gc) from the non-topological one (g < gc). Similar behavior for some scale
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invariant quantity of the same state (8) under quantum state RG flow is also found in [31].
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FIG. 15: The difference between the two largest singular values of toric code like model as a

function of g under the renormalization flow.

Moreover, we can get some lesson as follows. Though the degeneracy of the entanglement

spectrum indicates the existence of the LRE, the reverse statement may not be true due

to the contamination of the SRE. However, the hidden LRE and the underlying symmetry

such as Z2 for the toric code ground state will emerge under the quantum state RG flow as

shown in Fig. 15.

VI. CONCLUSION

In this paper, we identify a new topological phase for the J-J’ model by explicitly cal-

culating the phase diagram of order parameters, topological entanglement entropy and the

degeneracy of the entanglement spectrum. This result demonstrates that the recent quan-

tum information inspired methods such as TPS, iTEBD and TRG are powerful enough in

tackling the frustrated spin systems and identifying the topological orders. Especially, we

demonstrate that the concepts of SRE and LRE introduced in [3, 4] are very useful in pro-

viding intuitive picture for the entangled nature of topological order. It is also helpful in

interpreting the numerical results based on TPS ansatz.
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We have also found an intriguing connection between the degeneracy of the entanglement

spectrum and topological order by explicitly solving the J-J’s model as a nontrivial example.

The topological order may not always reflect in the degeneracy of the entanglement spectrum

due to the disturbing SRE. However, as we show explicitly, we can remove SRE by quantum

state renormalization so that the degeneracy of the entanglement spectrum after quantum

state renormalization indicates the topological order. The implication of such a connection

is far-reaching in numerical identification of the topological phase in 2D systems since the

computation power of obtaining the entanglement spectrum is far less than the one of

evaluating the topological entanglement entropy.

Based on our observation, we believe that we can use the degeneracy of the entangle-

ment spectrum based on TPS ansatz to identify the topological phases of other interesting

frustrated 2D systems. We will report more works along this direction in the near future.
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