無應力矽鍺合金層的光學特性

Optical Properties of Relaxed SiGe Alloy

指導老師:賈至達博士

研究生: 賴莉雯

中華民國 九十一年 六月

摘要

• Si_{1-x}Ge_x合金的成份及應力分析 •擬合臨界能量 E_1 和 E_1 + _1(E_0) •擬合樣品厚度並算吸收係數 •溫度對聲子的效應

LT-Si 600 °C(# 319)

LT-Si 500 °C (#323)

LT-Si 400 °C (#321)

LT-Si 550 °C (#320)

LT-Si 450 °C (#322)

:LT-Si層的範圍

•本TEM圖由台大凝態中心 鄭鴻祥老師提供

拉曼散射光譜圖

Intensity(a.u.)

成份及應力的分析

•對於
$$x < 0.4的Si_{1.}$$

 $_{x}Ge_{x}$:
 $\omega_{SiSi} = 520.5 - 62x - 815\varepsilon$ (1)
 $\omega_{SiGe} = 400.5 + 14.2x - 575\varepsilon$ (2)
 $\omega_{GeGe} = 282.5 + 16x - 385\varepsilon$ (3)
 $\varepsilon = \delta l/l = (\delta l/l)(1/0.0417)$

(¹J. Groenen, R. Carles, S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, H. Wawra and G. Wagner, Appl. Phys. Lett. **71**, 3856 (1997))

成份及應力的分析

•利用 $\omega_{SiSi} = 503 cm^{-1}$, $\omega_{SiGe} = 405 cm^{-1}$ 計算 x 和 (%)

 \Rightarrow Si_{1-x}Ge_x \Rightarrow : x = 0.29±0.03

= - 0.04 - 3.1 % 幾乎是fully-relaxed

•利用 $\omega_{SiSi} = 513 cm^{-1}$, x = 0.29計算 (%)

= - 30.8% (負代表壓縮)

 ω_{siGe} = 412cm⁻¹

 ω_{GeGe} = 292cm⁻¹

➡ LT500°c(#323)的合金層受有局部的應力作用

Intensity(a.u.)

(2D E A games and A A Studge Dhug Day D**27**0.05 (10.02))

擬合臨界能量(CP)

$$\frac{d^{2}\widetilde{\varepsilon}}{d\omega^{2}} = \sum_{i=1}^{3} n(n-1)A_{i}e^{i\phi_{i}}(\hbar\omega - E_{i} + i\Gamma_{i})^{n-2}$$
(4)

 $\mathbf{E}^i : E_1, E_1 + \Delta_1, E_0'$ Γ_i :broadening parameters $\hbar \omega$:the photon energy ϕ_i :the phase angles A_i :amplitudesn :best fits with n= -1

(³ C. Pickering, R. T. Carline, D. J. Robbins, W. Y. Leong, S. J. Barnett, A. D. Pitt and A. G. Cullis, J. Appl. Phys. **73**, 239 (1993))

利用 $d^2 \varepsilon / d\omega^2$ 求CP

	# 319	# 320	# 322	# 321	# 332
	LT600	LT550	LT450	LT400	LT350
E ₁ (ev)	2.99	2.94	3.02	2.99	2.96
	± 0.05	± 0.01	±0.03	±0.01	±0.01
$E_1 + _1(e_1)$	v) 3.08	3.03	3.10	3.09	3.09
	±0.07	±0.09	±0.04	±0.02	±0.05
1 (ev)	0.09	0.09	0.08	0.10	0.13
	應力變大	、,本實馬	僉 ₁ < 0.	15ev表7	、受應力作

∃月

#323樣品Fano效應

#323樣品Fano效應

#323樣品Fano效應

$$I \propto \frac{(q + \varepsilon)^2}{1 + \varepsilon^2}$$

(5)

$$\varepsilon = \frac{E - E_R}{\frac{1}{2}\Gamma}$$

參數:q = 0.96 半高寬: = 0.31ev 共振能量: E_R = 3.18ev

(⁴D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983))

	# 319	# 320	# 323	# 322	# 321	# 332
	LT600	LT550	LT500	LT450	LT400	LT350
合金 厚度 (nm)	480.4 ±0.4	477.7 ±0.4	457.1 ±0.4	471.5 ±0.4	476.6 ±0.4	407.4 ±0.4

利用拉曼散射光譜圖求吸收係數

➡ 穿透深度:632nm>514nm>488nm>457nm

(⁵J. Humllcek, M. Garriga, M. I. Alonso and M. Cardona, J. Appl. Phys. **65**, 2827 (1989))

Intensity(a.u.)

•聲子振動模位置($\omega(T)$)和絕對溫度(T)的關 係: $\omega(T) = \omega_{\alpha} + \Delta^{(1)}(T) + \Delta^{(2)}(T)$ (9) $\Delta^{(1)}(T) = \omega_o \left| \exp \left[-3\gamma \int_0^T \alpha(T') dT' \right] - 1 \right|$ $\Delta^{(2)}(T) = A \left[1 + \frac{1}{(e^{x_1} - 1)} + \frac{1}{(e^{x_2} - 1)} \right] + B \left[1 + \frac{3}{(e^y - 1)} + \frac{3}{(e^y - 1)^2} \right]$ (⁶Hubert H. Burke and Irving P. Herman, Phys. Rev. B 48, 15016 (1993-γ : Gruneisen 參數 $x_1 = 0.35 \hbar \omega_o / k_B T$ $\alpha(T)$: 熱膨脹係數 $x_2 = 0.65 \hbar \omega_o / k_B T$ $y = \hbar \omega_o / 3k_B T$ A、B:參數(B可忽略)

聲子拉曼位移對溫度的關係

•利用 $\omega(T) = \omega_o + \Delta^{(1)}(T) + \Delta^{(2)}(T)$ 的擬合結果:

	Α	$\omega(T=0K)$
Si mode	-7.5±0.5	523.3±0.5
strained SiSi mode	-8.0±0.5	516.2±0.7
relaxed SiSi mode	-6.0±0.4	506.0±0.5

•取300k 800k作聲子位置對溫度的線性擬合:

	$d\omega/dT~\left(cm^{-1}/K ight)$
Si mode	-0.024 ± 0.002
Si mode(c-Si ⁷)	-0.0247
Si mode(c-Si ⁸)	-0.025
strained SiSi mode	-0.026±0.004
relaxed SiSi mode	-0.0186±4E-4

(⁷Hubert H. Burke and Irving P. Herman, Phys. Rev. B **48**, 15016 (1993-)) (⁸J. Olivare, P. Martin, A. Rodriguez, J. Sangrador, J. Jimenez, T. Rodriguez, Thin Solid

•用拉曼測量分析SiggGegg成份,並知 LT500 上層的合金有不均匀的應力 •從反射光譜擬合 E_1 和 E_1 + _得知合 金無應力作用,除#323有Fano效應 •得知溫度對聲子的效應

	457nm		488nm		514nm	
sample	x	(%)	X	(%)	X	(%)
# 319 (LT600°c)	0.29	-2.1	0.29	-1.9	0.29	-0.04
# 320 (LT550°c)	0.29	-2.3	0.2 9	-2.1	0.29	-0.7
# 323 (LT500°c)	0.29	-1.6	0.29	-1.4	0.29	-1.6
# 322 (LT450°c)	0.29	-0.7	0.29	-1.4	0.29	-3.1
# 321 (LT400°c)	0.29	-2.3	0.29	-1.6	0.29	-2.1
# 332 (LT350°c)	0.29	-1.6	0.29	-1.4	0.29	-2.6