摻雜質鈮酸鋰光學特性研究

Optical Study of Doped LiNbO₃ Crystals

指導教授:賈至達教授 研究生:孫玫蘭

- 鈮酸鋰晶體結構與光學特性
- 掺鋅鈮酸鋰晶體中OH-振動吸收光譜
- 摻鋅鈮酸鋰晶體的拉曼光譜
- 摻鐵鈮酸鋰的能帶結構與光學性質
- 時間解析激發-探測電磁偏極子
- 結論

鈮酸鋰瞐體結構

摻雜質鈮酸鋰的製程

★長晶方法:柴式提拉法
 ★化學組成為[Li_{0.486}Nb_{0.514}O_{1.5}]

★摻Mg,Zn,Sc與In會減低光折
變效應(光損害)
★摻Fe,Ti,Cr會增加光折變效應

$$Li Nb O V_{oct} V_{Li} V_{Nb}$$

化學組成為 ([Li_{1-x}Nb_{x/5}V_{4x/5}]O₃) 或表示為Nb_{Li}⁴⁺+4V_{Li}¹⁻ → Nb⁵⁺取代Li¹⁺,產生 四個鋰空缺V_{Li}¹⁻ (1) $5Nb_{Li} + 4V_{Nb}$

G. Malovichko, V. Grachev, O. Schirmer, Appl. Phys. B 68 785 (1999)

10K 鈮酸鋰粉末拉曼光譜

聲子振動模275cm⁻¹、335 cm⁻¹ 1、585 cm⁻¹頻率相對變化

聲子振動模275cm⁻¹、335 cm⁻¹、585 cm⁻¹半高寬相對變化

室溫摻鋅鈮酸鋰晶體A₁(TO) 聲子振動模之拉曼光譜

雷射波長514.5nm, x(zz)y

Y. Repelin, F. Husson, F. Bennani and C. Proust, J. Phys Chem. Solids 60 819 (1999) 2 V. Caciuc, A. V. Postnikov and G. Borstel, Phys. Rev. B 61 8806 (2000)

A₁(TO)聲子振動模半高寬 (FWHM)的相對變化

雷射波長514.5nm, x(zz)y

A₁(TO)聲子振動模之拉曼 位移的相對變化

雷射波長632nm, x(zz)y

A₁(TO)聲子振動模半高寬 (FWHM)的相對變化

雷射波長632nm, x(zz)y

摻鋅雜質鈮酸鋰晶體 的OH-振動吸收光譜

摻鐵鈮酸鋰的吸收光譜

摻鐵鈮酸鋰的反射光譜

摻鐵雜質鈮酸鋰晶體能帶結構

時間解析激發-探測實驗裝置

激發光的差頻效應與相位匹配

Polariton 波向量q

$$q_{\perp} = 2\omega_{L} \sin(\theta/2)$$

$$q_{\parallel}^{a} = \{(\omega_{L} + \frac{\Omega}{2})[n_{o}^{2}(\omega_{L} + \frac{\Omega}{2}) - \sin^{2}(\theta/2)]^{1/2} - (\omega_{L} - \frac{\Omega}{2})[n_{e}^{2}(\omega_{L} - \frac{\Omega}{2}) - \sin^{2}(\theta/2)]^{1/2}\}$$

$$q_{\parallel}^{b} = \{(\omega_{L} - \frac{\Omega}{2})[n_{o}^{2}(\omega_{L} - \frac{\Omega}{2}) - \sin^{2}(\theta/2)]^{1/2} - (\omega_{L} + \frac{\Omega}{2})[n_{e}^{2}(\omega_{L} + \frac{\Omega}{2}) - \sin^{2}(\theta/2)]^{1/2}\}$$

 $q = \sqrt{q_\perp^2 + q_{\prime\prime}^2}$

O Albert M Duijser I C Loulergue and I Etchenare Ontical Society of America 13 29 (1996)

鈮酸鋰的色散關係

$$q^{2} - \frac{\omega_{p}^{2}}{c^{2}}\varepsilon_{el} - \sum_{i=1}^{2} \frac{\omega_{p}^{2}}{c^{2}} \frac{\varepsilon_{st,i}}{\omega_{T,i}^{2}} = 0$$

i	TO聲子頻率の _{T,i} (THz)	靜介電函數 <i>ɛ_{st,i}</i>
	4.55	22
2	7.1	0.8
3	7.87	5.5
4	9.63	2.2

1A. S. Barker, Jr., and R. Loudon, Physical Review 158 433 (1967)

<u>銀酸鋰的理論色散曲線</u> 與電磁偏極子的頻率

訊號強度與測量結果

★ 訊號強度

 $S(t) \propto \begin{bmatrix} A \exp(-t/\tau) + A_1 \exp(-t/\tau_1) \cos(\omega_1 t + \phi_1) + A_2 \exp(-t/\tau_2) \cos(\omega_2 t + \phi_2) \\ + A_3 \exp(-t/\tau_3) \cos(\omega_3 t + \phi_3) \end{bmatrix}^2$

* 訊號組成的頻率為: ω_1 、 ω_2 、 ω_3 、 $2\omega_1$ 、 $2\omega_2$ 、 $2\omega_3$ 、 $\omega_1+\omega_2$ 、 $\omega_1-\omega_2$ 、 $\omega_1+\omega_3$ 、 $\omega_1-\omega_3$ 、 $\omega_2+\omega_3$ 、 $\omega_2-\omega_3$

I C Loulergue and I Etchenare Physical Review B 52 15160 (1995)

時間解析探測光透射光譜圖

時間解析探測光透射FFT 光譜圖θ =2.4 °

時間解析探測光透射FFT 光譜圖θ =0.95°

FFT光譜隨激發光強度變化圖

FFT光譜隨激發光強度變化圖

不同θ角時的FFT光譜圖

擬和同調時間 (dephasing time)

(1) 摻鋅濃度低於 5.3 mol. %: 鋅原子取代 Li原子, Nb₁⁴⁺的總數目減少。 (2) 摻鋅濃度在5與 7.5 mol. % 之間: 鋅原子只取代 Li原子, Nb_{Li}⁴⁺ 幾乎不存在。 (3) 摻鋅濃度在 7.5 mol. % 以上: 鋅原子取代 Nb原 (4)鐵雜質濃度增加, $Fe^{2+} \rightarrow Nb^{5+}$ (導帶) 吸收峰強度 增加, 鈮酸鋰晶體更趨向金屬性。 (5)FFT譜線頻率為鈮酸鋰3個E(TO)聲子頻率的線 性組合,訊號強度正比於激發光強度。

