

國立臺灣師範大學物理研究所

在Si/Ge 超晶格中的折疊聲學聲子之研究 Raman Study of Folded Acoustic Phonons in Si/Ge Superlattices

指導教授: 賈至達 博士 研究生: 陳炳 日期: 91年8月15日

Resonance Raman (有 Life Time)

實驗裝置圖(Macro)

超晶格的結構圖

MBE 樣品的 TEM 圖

生長方式:MBE (分子束磊晶法)

MBE樣品的生長條件

編號	N105	N106	N107
週期數(N)	5	3	5
週 期(d)	52.2 nm	53.8 nm	55.4 nm
Si層厚度 (d ₁)	50.0 nm	50.0 nm	50.0 nm
Ge層厚度 (d ₂)	2.2 nm	3.8 nm	5.4 nm
生長溫度:	Ge:260 Si:450		

Y. L. Soo, G.Kioseoglou, S. Huang, S. Kim, and Y. H. Kao, Y. H. Peng and H. H. Cheng, Applied Phys. Letters 78, 23(2001)

N105 的拉曼光譜

各溫度下的拉曼光譜

縱向折疊聲子的形成

S.

Rytov 的色散關係

$$\cos(qd) = \cos\left(\frac{\omega d_1}{v_1}\right) \cos\left(\frac{\omega d_2}{v_2}\right)$$
$$-\frac{1}{2}\left(K + \frac{1}{K}\right) \sin\left(\frac{\omega d_1}{v_1}\right) \sin\left(\frac{\omega d_2}{v_2}\right)$$
$$q : 散射的波向量 : 聲子的角頻率$$
$$q = \frac{4\pi n_{SL}(\lambda)}{\lambda} \left[1 - \frac{1}{4(n_{SL}(\lambda))^2}\right]$$
介質的平均折射率
$$n_{SL}^2 = \left(n_1^2 d_1 + n_2^2 d_2\right)/d \quad K =$$
M. Rytov, Akust. Zh. 2, 71(1956) [Sov. Phys.-Acous. 2, 67(1956)]. 2V2/ 1V1

折疊聲子 - Rytov 理論

= $|V_{SL}(q+2 m/d)|$ m=0, ± 1, ± 2,...

雙重線的分裂值

 $=2 V_{SL} \cdot q$ 超晶格中的聲速 V_{SL} 為

$$V_{SL} = d \left[\frac{d_1^2}{V_1^2} + \frac{d_2^2}{V_2^2} + (K + \frac{1}{K}) \frac{d_1 d_2}{V_1 V_2} \right]^{-1/2}$$

N105分裂的雙重線

N105折疊聲子之擬合

	Folded	l Acoustic	Phonon Ir	n Si/Ge sup	berlattice	N105 (30	0K)
LA	(nm)	nSi	nGe	dSi(nm)	dGe(nm)	VLSi(m/s)	V _L Ge(m/s)
	514.532	4.23	4.56	49.65	2.12	8433	4914
縱	Nsl	Si	Ge	К	K+1/K	VsL(m/s)	$q(m^{-1})$
波	4.24	2330	5323	1.331	2.082	8171.929	19164866
	-			-			
m	→理論	Shift 理論	Shift 實驗	- 理論	Shift 理論	Shift 實驗	
		(cm ⁻¹)	(cm⁻¹)	- 埕 冊	(cm ⁻¹)	(cm ⁻¹)	
0	1.566E+11	0.8		1.5661E+11	0.8		
1	1.148E+12	6.1		8.3527E+11	4.4		
2	2.14E+12	11.4	11.1	1.8271E+12	9.7	9.1	
3	3.132E+12	16.6	16.4	2.819E+12	15.0	14.5	
4	4.124E+12	21.9	21.7	3.8109E+12	20.2	19.8	
5	5.116E+12	27.2	27.2	4.8028E+12	25.5	25.3	
6	6.108E+12	32.4	32.6	5.7947E+12	30.8	30.7	
7	7.1E+12	37.7	37.8	6.7866E+12	36.0	36.0	
8	8.092E+12	43.0	43.1	7.7784E+12	41.3	41.4	
9	9.084E+12	48.2	48.2	8.7703E+12	46.6	46.6	
10	1.008E+13	53.5	53.6	9.7622E+12	51.8	52.1	
11	1.107E+13	58.8	58.9	1.0754E+13	57.1	57.4	
12	1.206E+13	64.0	64.0	1.1746E+13	62.4	62.5	
13	1.305E+13	69.3	69.2	1.2738E+13	67.6	67.9	
14	1.404E+13	74.6	74.4	1.373E+13	72.9	72.9	
15	1.503E+13	79.8		1.4722E+	78.2	77.8	

N105的折疊聲學聲子

Raman Shift (cm⁻¹)

論

結

✤用 Rytov 光彈性理論擬合超晶格的 晶層厚度,在週期數甚少時,仍可 得到不錯的結果。

折疊聲子的相對強度

由光彈性力學得到折疊聲子拉曼散射強度比為

$$\frac{I_m}{I_0} = \frac{(P_b - P_a)}{P_0^2} \frac{\sin^2(m\pi \frac{d_1}{d})}{\pi^2 m^2} \eta$$

$$\eta = \frac{\omega_m(n_m + 1)}{\omega_0(n_0 + 1)}$$

$$I:聲子強度$$

$$n:聲子強度$$

$$n:聲子數對溫度之波色因子$$

C. Colvard, T. A. Gant, and M. V. Klein, Phys. Rev. B 31, 2080(1985).

N107 折疊聲子的強度擬合

各樣品以476nm 雷射光做強度擬合結果

樣品編號	MBE生長條件 (d ₁ /d)	FAP強度擬合 (d ₁ /d)
N105	0.96	0.96
N106	0.93	0.93
N107	0.90	0.93

◆以光彈性力學擬合折疊聲學聲子的 強度時,在遠離共振能隙的位置, 大致上可以吻合得不錯。

鍺層的粗糙程度

Ge-Ge Peak 的 Raman Shift 呈週期性變化

M. A. Araujo Silva, E. Ribeiro, P. A. Schulz, F. Cerdeira, and J. C. Bean, Phys. Rev. B 53, 15871.(1995)

鍺層的厚度估算

M. A. Araujo Silva, E. Ribeiro, P. A. Schulz, F. Cerdeira, and J. C. Bean, Phys. Rev. B 53, 15871.(1995)

N107 Ge層厚度(514nm,300K)

各樣品的鍺層厚度擬合

樣品	MBE生長條件	TEM圖	拉曼FAP	粗糙度
N105	2.2	2.46	2.12	2.22
N106	3.8	3.78	3.78	3.83
N107	5.4	4.44	5.01	5.37

單位:nm

◆由Ge-Ge Peak 的散射頻率可估算超晶 格中的鍺層平均厚度,誤差<1%。</p>

連續性散射的強度

 $4N^2$

$$I_{(\omega)} \cong \sum_{q_Z} \frac{q_Z^2}{q_Z} \frac{\sin^2 \frac{aq_Z}{2}}{\left(\frac{aq_Z}{2}\right)^2} \times \left(n_q + 1\right) \cdot \delta\left(-1 - s - q_Z\right)$$

$$\times \left| \sum_{N} \left((\omega_l - \omega_g) + i \frac{\gamma_e + \gamma_h}{2} \right)^{-1} \left((\omega_g - \omega_s) + i \frac{\gamma_e + \gamma_h}{2} \right)^{-1} \left(\frac{4N^2}{4N^2 - \left(\frac{aq_Z}{2}\right)^2} \right)^{-1} \right|$$

/:入射光頻率 s:散射光頻率 :能帶頻率 *qz*:聲子頻率 nq: 聲子數對溫度的波色因子 *h*:電子、電洞散射訊號半高寬。 e.

V. F. Sapega, V. I. Belitsky, T. Ruf, H. D. Fuchs, M. Cardona, and K. Ploog, Phys. Rev. B, Vol. 46, 16005.(1992) G. Höhler, Karlsruhe, Phnon Raman Scattering in Semiconductors, Quantum Wells and Supperlattices, P. 69~74. (1998)

N107連續性散射(532nm,300K)

N106 各波長拉曼光譜

N106 FAP 的共振現象

N106 FAP 強度與波長

N106 Ge-Ge Peak 強度與波長

N106 螢光光譜(476nm,300k)

N106 螢光光譜(各波長,300K)

論

結

◆樣品N105~N107由Ge-Ge Peak 得知鍺 的共振帶在波長532nm(2.33eV)附 近。

◆各樣品之螢光效應,約發生在1.99eV 至2.35eV,分佈甚寬。

結

纲

N105的折疊聲學聲子

N105 連續性散射(514nm, 10K)

N105 的折疊聲子圖

N106 折疊聲子的強度擬合

N105 螢光光譜(476nm,300k)

N105 螢光光譜(各波長,300K)

Ge-Ge Peak與鍺層的厚度

Ge-Ge Peak 的 Raman Shift 隨鍺層增厚而增大

n: 鍺層厚度,以晶層厚度為單位.

N107 螢光光譜(476nm,300k)

Intensity

N107 螢光光譜(各波長,300K)

