Introduction of *µm***- and** *nm***-sized Semiconductor Raman scattering**

奈米、微米半導體拉曼散射簡介

國立台灣師範大學物理系

Introduction Semiconductor Raman Scattering Example: Strain and Concentrations Raman Scattering of Nano-Sized Semiconductor (Dot, Wire and Layers) Summary

What is Raman?

Sir Chandrasekhara Venkata Raman
 1930 Nobel Price Winner

Mie Scattering: Particles, Rayleigh Scattering: Particles $(10^{-2} \sim 10^{-3})I_i$ Brillouin Scattering: Acoustic Phonon $(10^{-6} \sim 10^{-9})I_i$ Raman Scattering: Optical Phonon $(10^{-6} \sim 10^{-9})I_i$

Raman Lineshapes:

Gaussian
Lorentzian
Fano
Asymmetry
???

Raman Shift Linewidth

SiGe Alloy Dot on Si(001)

Strain in Embeded Layer

物

MBE Grown Relaxed SiGe alloy

LT-Si 500 °C (#323)

LT-Si 550 °C (#320)

LT-Si 600 °C(#319)

LT-Si 400 °C (#321)

Physics of NTNU

LT-Si 450 °C (#322)

L-W Lei et.al. ICPS 2002

Strain & Ge Content of Alloy

Raman Shift of $Si_{1-x}Ge_x$ Alloy for x < 0.4:

$$\omega_{siSi} = 520.5 - 62x - 815\varepsilon$$
$$\omega_{siGe} = 400.5 + 14.2x - 575\varepsilon$$
$$\omega_{GeGe} = 282.5 + 16x - 385\varepsilon$$

$$\varepsilon = \delta l/l$$

J. Groenen, et.al. Appl. Phys. Lett. (1997)

	457nm		488nm		514nm	
sample	x	(%)	x	(%)	x	(%)
# 319	0. 3	-2.1	0. 3	-1.9	0.3	-0.04
(LT600°c)	±0.03	±0.06	±0.03	±0.06	±0.02	±0.003
# 320	<mark>0.3</mark>	-2.3	0. 3	-2.1	0.3	-0.7
(LT550°c)	±0.03	±0.06	±0.02	±0.03	±0.02	±0.003
# 323	0. 3	-1.6	0.3	-1.4	0. 3	-1.6
(LT500°c)	±0.03	±0.06	±0.02	±0.03	±0.02	±0.003
# 322	0. 3	-0.7	0. 3	-1.4	0. 3	-3.1
(LT450°c)	±0.03	±0.06	±0.03	±0.06	±0.03	±0.006
# 321	0. 3	-2.3	0. 3	-1.6	0. 3	-2.1
(LT400°c)	±0.03	±0.06	±0.03	±0.06	±0.02	±0.003
# 332	0.3	-1.6	0.3	-1.4	0. 3	-2.6
(LT350°c)	±0.03	±0.06	±0.03	±0.06	±0.03	±0.006

Results: $x = 0.30, \Sigma = -0.16\%$

Spectra excited by various Energies

10

Absorption Coefficient

物

GeSi/Si Micro-Horns

Si cap	2nm				
Ge0.1 Si 0.9	25nm				
Ge0.4 Si0.6	20nm				
Si buffer	100nm				
Si substrate					

Fig.1 sample before etching

Micro-Horn Images

Sample 725

Sample 725

Raman Spectra:

10

Strain & 1/D

$$\omega_{Si-Si} = 520.5 - 62x - 815\varepsilon - C \cdot \frac{1}{D}$$

Spherical Si Quantum Dots

(a)

(b)

Y-C Liao, *et.al.*, Appl. Phys. Lett. 77, 4328 (2000). C-W Lin, *et.al.*, J. of Appl. Phys. 91, 1525 (2002).

Raman Study of Si Dots' Size

Thermal Evaporation Growth Si Dots

D.-Y. Chien, et.al., ICORS 2002

Size of Dots:

$$I(\omega) = \int_{0}^{1} \frac{d^{3}q |C(0,\bar{q})|^{2}}{[\omega - \omega(q)]^{2} + (\Gamma_{0}/2)^{2}}$$

 $\omega(q) = \left[A + B\cos(\pi q/2)\right]^{1/2}$

$$|C(0, \vec{q})|^2 \cong e^{-q^2 L^2 / 4}$$

Raman Spectra of GaN Wire

H-L Liu, et.al., Chem. Phys. Lett. 345, 245-251 (2001)

LO-Phonon and Plasma Coupling

CDF and IIF Mechanism

$$I(\omega) = \int_{0}^{q_{\max}} dq F(q) \cdot q^{2} S(\omega, q) \operatorname{Im}\left(\frac{-1}{\varepsilon(\omega, q)}\right)$$
$$S_{CDF}(q, \omega) \propto (1 - e^{-\hbar\omega/k_{B}T})^{-1} \cdot \left(\frac{(\omega_{LO}^{2} - \omega^{2})}{(\omega_{TO}^{2} - \omega^{2})}\right)^{2}$$

$$S_{IIF}(q,\omega) \propto (1-e^{-\hbar\omega/k_BT})^{-1}$$

$$F(q) = \left(\frac{4\pi}{q^2 + q_{FT}^2}\right)^2$$

Coupled Dilectric Constant:

$$\mathcal{E}(q,\omega) = \mathcal{E}_{\infty} + \chi_{Phonon} + \chi_{Linhard}(q,\omega)$$

$$\chi_{Phonon} = \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega_{TO}^2}{\omega_{TO}^2 - \omega^2 - i\omega\gamma}$$

Lattice-Vibration Contributions

$$\chi_{Linhard}(q,\omega) = \frac{(1-i\Gamma/\omega)[\chi^{0}(q,\omega+i\Gamma)]}{1+(i\Gamma/\omega)[\chi^{0}(q,\omega+i\Gamma)/\chi^{0}(q,0)]}$$

Plasma-Oscillation Contributions

Fitting Results

Heavy damping Γ =200 cm⁻¹ Impurity Desinty: ~2X10¹⁹ cm⁻³

Ge/Si MBE-Grown Superlattice

Folded LA Phonon

Thickness of Ge and Si laryer Rytov theory

$$\omega = V_{SL} \left(\frac{2\pi m}{d} \pm q \right)$$

C.-H. Lin, C.-T. Chia and H. H. Cheng, ICOR2002

Folded LA Intensity:

 $\eta = \frac{\omega_m(n_m+1)}{\omega_0(n_0+1)}$

s1n⁻(*mπ*

 $\pi^2 m^2$

 (P_b^1)

Layer Thickness

樣品21	Si厚度 (nm)	Ge厚度 (nm)	厚度比d ₁ /d	超晶格週期 <i>d</i> (nm)
TEM圖	15±2	3±2	0.83	18±4
光譜擬合	17.5±0.6	2.40±0.08	0.88	19.9±0.7
樣品22				
TEM圖	17±2	2±2	0.90	19±4
光譜擬合	15.8±0.5	2.30±0.08	0.90	18.1±0.6
樣品23				
TEM圖	20±2	2±2	0.91	22±4
光譜擬合	19.6±0.7	2.50±0.09	0.89	22.1±0.8

Continuous Emission:

Sample 22 300K 532nm Laser

Theory of Continuous Emission:

$$I_{(\omega)} \cong \sum_{q_Z} \frac{q_z^2}{q_z} \frac{\sin^2 \frac{aq_Z}{2}}{\left(\frac{aq_Z}{2}\right)^2} \times \left(n_q + 1\right) \left(\begin{array}{cc} l - s - q \end{array}\right)$$

$$\times \left| \sum_{N} \left(\Omega_N + i \frac{\gamma_e + \gamma_h}{2} \right)^{-1} \left(\Omega_N - \iota + \iota_s + i \frac{\gamma_e + \gamma_h}{2} \right)^{-1} \times \frac{4N^2}{4N^2 - \left(\frac{aq_Z}{2} \right)^2} \right|$$

2

Continuous Emission Fitting

Resonant Energy : 2.34 eV

Room Temperature Luminescence

Sample23 300K

Visible Lasers + Raman Spectrometers

Can completely resolve the Physics properties of semiconductor from Raman-Phonon Lineshapes.

Right energy laser Good-resolution spectrometer

研究生:德宇、意娟、佳供 大學生:明峰、俊儀、旻宏 國中老師:吳奇穎、高祺俊

目前有合作關係的伙伴

師大:鄭秀鳳、陸健榮、劉祥麟教授 清華:林諭男教授 台大:李嗣岑、鄭鴻祥、張玉明教授 新竹師院:林志明教授

即將會有合作關係的伙伴

國立台灣科技大學

