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Fermi Surface

Y(x,y,z)~ sin (n%n x) sin (n%n y) sin (n%n Z) ~ sin(k,.x) sin(kyy) sin(k,z)

T T

n -
ky = 7T ky = 7 k, =N RSk ([ > A0 EE YR

HETSBEIIRRFAE—EEKA | LEKE R EmEmATER - B e KE |

Fermi Surface




2.2
A7 SMEE « NEE TR - AR F=
BERBETEESE + dE RINIRE » (REREBERL AT S « B dnBRAR Y -
SR PRSI AL ©  4nn? - dn

HLAEFRTR » BEERFg (E) > THAIRNREEZE density of states.

BN AR gE E B2 ARREHVRE EIRANGREL > PR I 2 B R EHERY LR -

h2m? h°m? h’m3 /3 \3 2 1
)V

2 = — RS = 3 = — 3
om2”™ T omzs X T 1om N =gmR




Degeneracy Pressure

If the electron gas is compressed, the electrons are pushed closer to each other, and this
decreases the de Broglie wavelength and, equivalently, increases the kinetic energy. Thus
the compression is resisted, and the pressure resisting the compression is called the degen-
eracy pressure. It is given by
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The use of a degenerate electron gas model for a metal gives the correct order of magni-
tude for the bulk modulus B. For example, for copper we have n, = 8.47 X 10% elec-
trons/m’, so that B = 6.4 X 10'° N/m?. The experimental value is 14 X 10'® N/m?.
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out as in Flg 4.1. We see 1n the figure that only electrons within an
energy range of roughly kT of the Fermi surface can be excited—in

general they are excited above the Fermi surface by an energy of about
kpT. Thus we can approximately write

7

We can then derive the heat capacity
C =0F /0T = ~kpg(Er)kpTV

which then using Eq. 4.11 we can rewrite as

(E)E) e

The first term 1n brackets 1s just the classical result for the heat capacity
of a gas, but the final factor T//TF is tiny (0.01 or smaller!). This is
the above promised linear T term in the heat capacity of electrons (see
Fig. 2.5), which is far smaller than one would get for a classical gas.




More Electrons in Metals:
Sommerfeld (Free
Electron) Theory

In 1925 Pauli discovered the exclusion principle, that no two electrons
may be in the exact same state. In 1926, Fermi and Dirac separately
derived what we now call Fermi-Dirac statistics.! Upon learning about
these developments, Sommerfeld? realized that Drude’s theory of metals
could easily be generalized to incorporate Fermi statistics, which is what
we shall presently do.

4.1 Basic Fermi—Dirac Statistics

Given a system of free? electrons with chemical potential? 1 the proba-
bility of an eigenstate of energy E being occupied® is given by the Fermi
factor (See Fig. 4.1)

np(B(E — 1)) = —

= FE=a T (4.1)

At low temperature the Fermi function becomes a step function (states
below the chemical potential are filled, those above the chemical po-
tential are empty), whereas at higher temperatures the step function
becomes more smeared out.

We will consider the electrons to be in a box of size V.= L? and,
as with our discussion in Section 2.2.1, it is easiest to imagine that

41In case you did not properly learn about chemical potential in your statistical physics
course, it can be defined via Eq. 4.1, by saying that p is whatever constant needs to
be inserted into this equation to make it true. It can also be defined as an appropriate
thermodynamical derivative such as p = 8U/ON |y, s with U the total energy and N
the number of particles or p = 8G/ON|r,p, with G the Gibbs potential. However,
such a definition can be tricky if one worries about the discreteness of the particle
number—since N must be an integer, the derivative may not be well defined. As a
result the definition in terms of Eq. 4.1 is frequently best (i.e., we are treating p as
a Lagrange multiplier).

5When we say that there are a particular set of N orbitals occupied by electrons, we
really mean that the overall wavefunction of the system is an antisymmetric function
which can be expressed as a Slater determinant of N single electron wavefunctions.
‘We will never need to actually write out such Slater determinant wavefunctions except
in Section 23.3, which is somewhat more advanced material.

1 Fermi-Dirac statistics were actually
derived first by Pascual Jordan in
1925. Unfortunately, the referee of the
manuscript, Max Born, misplaced it
and it never got published. Many peo-
ple believe that were it not for the fact
that Jordan later joined the Nazi party,
he might have won the Nobel Prize
along with Born and Walther Bothe.

2Sommerfeld never won a Nobel Prize,
although he was nominated for it 81
times—more than any other physicist.
He was also a research advisor for more
Nobel laureates than anyone else in his-
tory, including Heisenberg, Pauli, De-
bye, Bethe, Pauling, and Rabi.

3Here “free” means that they do not in-
teract with each other, with the back-
ground crystal lattice, with impurities,
or with anything else for that matter.

05 0 15
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Fig. 4.1 The Fermi distribution for
kpT <« Ep. The dashed line marks the
chemical potential p, which is approxi-
mately Ep. At T = 0 the distribution
is a step, but for finite T it gets smeared
over a range of energies of width a few
times kpT'.



6As mentioned in Section 2.2.1, any
properties of the bulk of the solid
should be independent of the type of
boundary conditions we choose. If you
have doubts, you can try repeating all
the calculations using hard wall bound-
ary conditions, and you will find all the
same results (It is more messy, but not
too much harder!).

7Yes, Fermi got his name attached to
many things. To help spread the credit
around I've called this section “Basic
Fermi-Dirac Statistics” instead of just
“Basic Fermi Statistics”.

the box has periodic boundary conditions.® The plane wavefunctions
are of the form e®T where due to the boundary conditions k must
take value (27/L)(n1,n2,n3) with n; integers. These plane waves have
corresponding energies

B h2|k|2

2m

e(K) (4.2)

with m the electron mass. Thus the total number of electrons in the

system is given by

N =23 np(B(e(9 ~ 1) = 25 [ Ak ne(A(e9 —p) (43
k

where the prefactor of 2 accounts for the two possible spin states for
each possible wavevector k. In fact, in a metal, N will usually be given
to us, and this equation will define the chemical potential as a function
of temperature.

We now define a useful concept:

Definition 4.1 The Fermi energy, Er is the chemical potential at
temperature T = 0.

This is also sometimes called the Fermi level. The states that are filled at
T = 0 are sometimes called the Fermi sea. Frequently one also defines
a Fermi temperature Tp = Ep/kp, and also the Fermi wavevector kp
defined via B2
Ep=—F

(4.4)

2m

and correspondingly a Fermi momentum pp = hkp and a Fermi velocity”

vp = hkp/m, (4.5)

Aside: Frequently people think of the Fermi energy as the energy of the most
energetic occupied electron state in system. While this is correct in the case where
you are filling a continuum of states, it can also lead you to errors in cases where
the energy eigenstates are discrete (see the related footnote 4 of this chapter),
or more specifically when there is a gap between the most energetic occupied
electron state in the system, and the least energetic unoccupied electron state.
More correctly the Fermi energy, i.e., the chemical potential at 7' = 0, will be half-
way between the most energetic occupied electron state, and the least energetic
unoccupied electron state (see Exercise 4.6).

Let us now calculate the Fermi energy in a (three-dimensional) metal
with N electrons in it. At 7' = 0 the Fermi function (Eq. 4.1) becomes
a step function (which we write as ©. lLe., O(z) = 1 for z > 0 and
©(z) = 0 for z < 0), so that Eq. 4.3 becomes

B 174 B v |k|<kp
N = QW/dk O(Ep — e(k)) = QW/ dk.



The final integral here is just an integral over a ball of radius kp. Thus
the integral gives us the volume of this ball (47/3 times the cube of the
radius) yielding
\%4 4

N = QW (gwk;q’,—) (4.6)
In other words, at 7' = 0 the electrons simply fill a ball in k-space of
radius kp. The surface of this ball, a sphere (the “Fermi sphere”) of
radius kr is known as the Fermi surface—a term more generally defined
as the surface dividing filled from unfilled states at zero temperature.

Using the fact that the density is defined as n = N/V we can rearrange
Eq. 4.6 to give

kp = (372n)!/3

and correspondingly

B h2(37r2n)2/3
n 2m .
Since we know roughly how many free electrons there are in a metal
(say, one per atom for monovalent metals such as sodium or copper), we
can estimate the Fermi energy, which, say for copper, turns out to be on
the order of 7 eV, corresponding to a Fermi temperature of about 80,000
K(!). This amazingly high energy scale is a result of Fermi statistics and
the very high density of electrons in metals. It is crucial to remember
that for all metals, Tr > T for any temperature anywhere near room
temperature. In fact metals melt (and even vaporize!) at temperatures
far far below their Fermi temperatures.

Similarly, one can calculate the Fermi velocity, which, for a typical
metal such as copper, may be as large as 1% the speed of light! Again,
this enormous velocity stems from the Pauli exclusion principle—all the
lower momentum states are simply filled, so if the density of electrons is
very high, the velocities will be very high as well.

With a Fermi energy that is so large, and therefore a Fermi sea that
is very deep, any (not insanely large) temperature can only make exci-
tations of electrons that are already very close to the Fermi surface (i.e.,
they can jump from just below the Fermi surface to just above with only
a small energy increase). The electrons deep within the Fermi sea, near
k = 0, cannot be moved by any reasonably low-energy perturbation
simply because there are no available unfilled states for them to move
into unless they absorb a very large amount of energy.

Ep (4.7)

4.2 Electronic Heat Capacity

We now turn to examine the heat capacity of electrons in a metal. Anal-
ogous to Eq. 4.3, the total energy of our system of electrons is given now
by

2V
g [ Akl ne(A(e(0 ~ 1)

~ i | ARk e (3(el) - 1)

Etotal =



where the chemical potential is defined as above by

/ dk np(B(e(k) — p)) = / ~ drk2dk np(B(e(k) —p)).

(2 )? (2 )?
(In both equations we have changed to spherical coordinates to obtain
a one-dimensional integral and a factor of 47k? out front.)
It is convenient to replace k in this equation by the energy e by using
Eq. 4.2 or equivalently
2em

F=\ 7=

dk = | 55 de

‘We can then rewrite these expressions as
B = V L de € g(e) np(Ble — 1)) (4.8)
N =V /o de g(€) nr(B(e — 1)) (4.9)

(2 o Ank2dk = o )34 (26"’) 5o de

(2m)3/2

Seirs €/2de (4.10)
7S

is the density of states per unit volume. The definition® of this quantity
is such that g(e)de is the total number of eigenstates (including both
spin states) with energies between € and € + de.

From Eq. 4.7 we can simply derive (2m)3/2 /A% = 3n2n/E3/, thus we
can simplify the density of states expression to

g9(e) = 23;; ( ];F)I/2 (4.11)

which is a fair bit simpler. Note that the density of states has dimensions
of a density (an inverse volume) divided by an energy. It is clear that
this is the dimensions it must have, given Eq. 4.9 for example.

Note that the expression Eq. 4.9 should be thought of as defining the
chemical potential given the number of electrons in the system and the
temperature. Once the chemical potential is fixed, then Eq. 4.8 gives
us the total kinetic energy of the system. Differentiating that quantity
would give us the heat capacity. Unfortunately there is no way to do
this analytically in all generality. However, we can use to our advantage
that T < T for any reasonable temperature, so that the Fermi factors
np are close to a step function. Such an expansion was first used by
Sommerfeld, but it is algebraically rather complicated® (see Ashcroft
and Mermin Chapter 2 to see how it is done in detail). However, it is




not hard to make an estimate of what such a calculation must give—
which we shall now do.

When T' = 0 the Fermi function is a step function and the chemical
potential is (by definition) the Fermi energy. For small T, the step
function is smeared out as we see in Fig. 4.1. Note, however, that in
this smearing, the number of states that are removed from below the
chemical potential is almost exactly the same as the number of states
that are added above the chemical potential.!® Thus, for small T, one
does not have to move the chemical potential much from the Fermi
energy in order to keep the number of particles fixed in Eq. 4.9. We
conclude that p ~ Ef for any low temperature. (In more detail we find
that u(T) = Er + O(T/TF)?, see Ashcroft and Mermin Chapter 2.)

Thus we can focus on Eq. 4.8 with the assumption that p = Ep. At
T =0 let us call the kinetic energy!! of the system E(T = 0). At finite
temperature, instead of a step function in Eq. 4.8 the step is smeared
out as in Fig. 4.1. We see in the figure that only electrons within an
energy range of roughly kpT of the Fermi surface can be excited—in
general they are excited above the Fermi surface by an energy of about
kpT. Thus we can approximately write

E(T) = E(T =0)+ (7/2)[Va(EF)(kgT)](kpT) + .. ..

Here Vg(EF) is the density of states near the Fermi surface (recall g is
the density of states per unit volume), so the number of particles close
enough to the Fermi surface to be excited is Vg(Er)(kBT), and the
final factor of (kgT') is roughly the amount of energy that each one gets
excited by. Here 7 is some constant which we cannot get right by such
an approximate argument (but it can be derived more carefully, and it
turns out that ¥ = w2/3, see Ashcroft and Mermin).
We can then derive the heat capacity

C = 0E/OT = kpg(Er)kpTV

which then using Eq. 4.11 we can rewrite as

o= (2)(2)

The first term in brackets is just the classical result for the heat capacity
of a gas, but the final factor T/TF is tiny (0.01 or smaller!). This is
the above promised linear 7' term in the heat capacity of electrons (see
Fig. 2.5), which is far smaller than one would get for a classical gas.

This Sommerfeld prediction for the electronic (linear T') contribution
to the heat capacity of a metal is typically not too far from being correct
(see Table 4.1). A few metals, however, have specific heats that deviate
from this prediction by a factor of 10 or more. Note that there are
other measurements that indicate that these errors are associated with
the electron mass being somehow changed in the metal. We will discover
the reason for these deviations later when we study band theory (mainly
in Chapter 17).

(4.12)

10ince the Fermi function has a precise
symmetry around p given by np (8(E —
p) = 1—np(B(p — E)), this equiva-
lence of states removed from below the
chemical potential and states inserted
above would be an exact statement if
the density of states in Eq. 4.9 were in-
dependent of energy.

Uy fact E(T = 0) = (3/5)NEp,
which is not too hard to show. See Ex-
ercise 4.1.

Table 4.1 Low-temperature heat ca-
pacity coefficient for some metals. All
of these metals have heat capacities of
the form C = AT + oT3 at low tem-
perature. This table gives the mea-
sured experimental (exp) value and
the Sommerfeld theoretical (th) pre-
dictions for the coefficient + in units

of 10~4 J/(mol-K).

Material

Yexp “th
Lithium (Li) 18 7.4
Sodium (Na) 15 11
Potassium (K) 20 17
Copper (Cu) 7 5.0
Silver (Ag) 7 6.4
Beryllium (Be) 2 2.5
Bismuth (Bi) 1 50
Manganese (Mn) 170 5.2

The theoretical value is obtained by set-
ting the electron density equal to the
atomic density times the valence (num-
ber of free electrons per atom), then
calculating the Fermi temperature from
the density and using Eq. 4.12. Note
that Mn has multiple possible valence
states. In the theoretical calculation we
assume valence of one which gives the
largest possible predicted value of ~;p,.



(a) No electric field

The electron has frequent collisions with
ions, but it undergoes no net displacement.
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5Here we really mean the thermal av-
erage (p) when we write p. Since our
scattering is probabilistic, we should
view all quantities (such as the momen-
tum) as being an expectation over these
random events. A more detailed the-
ory would keep track of the entire dis-
tribution of momenta rather than just
the average momentum. Keeping track
of distributions in this way leads one
to the Boltzmann Transport Equation,
which we will not discuss.

7A related quantity is the mobility,
defined by v = pE, which is given
in Drude theory by p = er/m. We
will discuss mobility further in Section
17.1.1.

We consider an electron with momentum p at time ¢ and ask what
momentum it will have at time ¢t+dt. There are two terms in the answer.
There is a probability dt/7 that it will scatter to momentum zero. If it
does not scatter to momentum zero (with probability 1 —dt/7) it simply
accelerates as dictated by its usual equations of motion dp/dt = F.
Putting the two terms together we have

@a+ﬁ»:(1_§)@um4w@+0ﬁﬁ

or keeping terms only to linear order in dt then rearranging,®

a T
where here the force F on the electron is just the Lorentz force

F=—¢(E+vxB)

P _p_P (3.1)

One can think of the scattering term —p/7 as just a drag force on the
electron. Note that in the absence of any externally applied field the
solution to this differential equation is just an exponentially decaying
momentum

P(t) = Pinitiat € /™
which is what we should expect for particles that lose momentum by
scattering.

3.1 Electrons in Fields

3.1.1 Electrons in an Electric Field

Let us start by considering the case where the electric field is non-zero
but the magnetic field is zero. Our equation of motion is then

dp p

Y _eE-_ =

dt ¢ T.
In steady state, dp/dt = 0 so we have

mv =p = —eTE

WICH 772 Uhe Iass ol the electron and v 1ts velocity.
Now, if there is a density n of electrons in the metal each with charge
—e, and they are all moving at velocity v, then the electrical current is

given by )
e“tn
E
m

j=—env=

or in other words, the conductivity of the metal, defined via j = oE is

given by’
e’tn

g =

(3.2)

m .

By measuring the conductivity of the metal (assuming we know both
the charge and mass of the electron) we can determine the product of
the electron density and scattering time of the electron.
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Figure 5.2 The occupation of (a) the energy levels in an isolated carbon atom, and (b) the
energy bands in a diamond crystal. Notice that there is an energy range E, separating the
highest occupied states (in the valence band) from the lowest vacant states (in the
conduction band). This is a characteristic feature of all insulators.

Energy

Separation

Figure 5.3 The energy levels of the 25 and 2p states for a group of N carbon atoms as a
function of the separation of the atoms.
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At any rate, in the semiclassical picture, we can write a simple Drude
transport equation (really Newton’s equations!) for electrons in the
conduction band

m_dv/dt = —e(E+v xB)—m_v/T

with m; the electron effective mass. Here the first term on the right-
hand side is the Lorentz force on the electron, and the second term is a
drag force with an appropriate scattering time 7. The scattering time
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Similarly, we can write equations of motion for holes in the valence
band

= +ek

my dv/dt =e(E+v x B)—m; v/7

where m;, is the hole effective mass. Note again that here the charge on
the hole is positive. This should make sense—the electric field pulls on
an electron in a direction opposite to the direction that it pulls on the
absence of an electron!
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Valence
band
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5eV/K - 300K

n o 2.00x1072~9.22%x101°m

Semiconductor

DV Iy R JUMPING A BAND GAP

NOLLMOS

Consider a material with the band structure described above, with
its Fermi energy in the middle of the gap (Fig. 42.24). Find the
probability that a state at the bottom of the conduction band is
occupied at T = 300 K, and compare that with the probability at
T = 310K, for band gaps of (a) 0.200 eV: (b) 1.00 eV; (c) 5.00 eV.

SOLUTION

IDENTIFY and SET UP: The Fermi-Dirac distribution function gives
the probability that a state of energy E is occupied at temperature T.
Figure 42.24 shows that the state of interest at the bottom of the con-
duction band has an energy E = Eg + E,/2 that is greater than the
Fermi energy Eg, with E — Eg = ES/2. Figure 42.23 shows that

42.24 Band structure of a semiconductor. At absolute zero a
completely filled valence band is separated by a narrow energy
gap E; of 1 eV or so from a completely empty conduction band. At
ordinary temperatures, a number of electrons are excited to the
conduction band.

E

Conduction
band

R Enﬁrgy gap
4

Valence
band

Semiconductor

=
@@%
the higher the temperature, the larger the fraction of electrons with
energies greater than the Fermi energy.
EXECUTE: (a) When £, = 0.200 eV,
E-E E 0.100 eV e
kT 2T (8.617 x 1075 eV/K)(300K)

1
flE) = o = 0.0205
For T = 310K, the exponent is 3.74 and f(E) = 0.0231, a 13%
increase in probability for a temperature rise of 10 K.

(b) For E; = 1.00 eV, both exponents are five times as large as
in part (a), namely 19.3 and 18.7; the values of f(E) are 4.0 X 10‘9
and 7.4 x 1077, In this case the (low) probability nearly doubles
with a temperature rise of 10-K.

(c) For E; = 5.0 eV, the exponents are 96.7 and 93.6; the val-
ues of f{E) are 1.0 X 107 and 2.3 x 10~*'. The (extremely low)
probability increases by a factor of 23 for a 10-K temperature rise.

EVALUATE: This example illustrates two important points. First, the
probability of finding an electron in a state at the bottom of the con-
duction band is extremely sensitive to the width of the band gap. At
room temperature, the probability is about 2% for a 0.200-eV gap,
a few in a thousand million for a 1.00-eV gap, and essentially zero
for a 5.00-eV gap. (Pure diamond, with a 5.47-eV band gap, has es-
sentially no electrons in the conduction band and is an excellent
insulator.) Second, for any given band gap the probability depends
strongly on temperature, and even more strongly for large gaps than
for small ones.
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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor
range may Screenshot ward by increasing the impurity concentration, and the range can be ex-
tended downwara .0 merge eventually with the insulator range.



PP AR ERG S P2 |

{HE,;~1.0eVEEHk_ = Conductioniy &5 ¥ & 2

IR LSRR EERIT K |

{EFAT R DL R Doping SR8 111~ B Ae Y &

— -
Period | : 2
" He
3 4 5 (] 7 8 v 10
2 Li Be B N 0 F Ne

TR 3 [ [i5 [ [17 [is
3 N Mg Transition elements Al Si P S Cl Ar

19 [20 |21 [22 [ [25 [ 27 (28 29 [30 (31 [32 [3 [3¢ [35 [36
4

K Ca Se n Vv Cr | Mn
37 38 39 |40 |41 2 |4

e Co Ni Cu | Zn | Ga | Ge As Se Br Kr
45 |46 147 148 (49 |50 |51 52 53 54

Ao E|lx8 &

5 Rb Sr Y Zr Nb Mo Te u Rh Pd Ag Cd In Sn Sb Te I Xe
55 56 57 72 73 74 15 77 78 9 80 81 82 83 84 85 86
0% os | Ba|va | me| Ta| w| R |oOs| r | P Aw]|ng] T |po| Bi|Po| A|Rn
87 88 89 104 105 106 107 s e 1o "t 12
P Fr lRalacl relob| sel ol bs | Mol ps | Re
Co-valent Pt T
— N Valence
A Silicon Atom Bonds ! | - -
i e . ’ Shell (m)
Atomic number =714 \ /
R /
* _— *
- - - - -~ - -
PO TREN p d N ~_--%X_ - \
‘e <N / \K \K
17 Wy \
e @ KY) 0\ i\ | I\ I ’
W& X < < /
\aNg~-2, . // N /! /!
~ - . —_
\\_:// - . ,x’__w('\\\_.,

Silicon atom showing
4 electrons in its outer
valence shell (m)

Electrons

Silicon Crystal Lattice

'fl_fnls

I A B ki

(s) (s (50) (50)
(s0) (5) (s0) (5)
s & @ &
(s1) (s0) (s0) (50)
(50) (s) (5) (50)
(50) (8) (5) (50)
4;911e frgg\ electf&n -
) (5) (50) (50
() (50 (50) (50)

e
(8i) (si) (si) (Si)

(s1) (s0) (s0) ()



A

_

\%/
1
e

6

NCAVCANGY

N
\®)
1

1
e




o+ e
L€
o]

e + (€ e
;e,‘
o]

©4E e
(e

n-doped

SHARNET » B2 AR TR - SHEET - PR -

\I

/LJ\

BRNEETENEE R NRETER
i H a5 P ARG/ B — ik -

l

5

PRI AR AAE~0.1 eVEV NP GJR T HRAHAE - DURBERREG - I FI8 A ~30A -
B LR AR RE BN E ST M - BHETIERERERE~0.1 eV -

n-doping

p-doping
Empty Conduction Band Empty Conduction Band
A
E _Donml—mpurit@nsta(es Band Ga
Acceptor Impurity Eigenstates
Filled Valence Band Filled Valence Band

v
=

\ 4



Escape of the electron to large distances leaves the impurity atom with a net positive
charge; at finite separations the positive charge exerts an attractive force on the electron
and leads to the existence of a bound state for the electron. The ‘charged impurity plus
electron’ system is analogous to the ‘proton plus electron’ system and we can therefore
estimate the strength of this binding by adapting the standard result for the energy levels
of the hydrogen atom to allow for the fact that the electron is moving through a crystal
rather than a vacuum. Thus we use m, for the electron mass and assume that the crystal

has a dielectric constant (relative permittivity) € to obtain

m,e*

E"__iwiv-n 32 °
(5.10) 2e*h*n~(4me,)”
To estimate the spatial extent of the bound state wavefunctions we use the radii of the
corresponding orbits as given by the Bohr theory,

510" me

The effective mass of electrons in germanium is 0.2 electron masses and the dielectric
constant is 15.8. Using these values in Egs. (5.10) and (5.11) gives an estimate

E, = —(—=)x13.6eV~ —00leV
(512) me~

for the ground state binding energy of the extra electron and

- (”") x 053 A ~40A
m

(5.13)

for the radius of the corresponding orbit (-13.6 eV and 0.53 A are the corresponding
values for hydrogen). Thus the combination of small effective mass and large dielectric
constant gives very weak binding of the extra electron to the impurity and a very extended
wavefunction for the bound state. Since the bound state wavefunction extends over many

[4



(a) A donor (n-type) impurity atom has a fifth
valence electron that does not participate in
the covalent bonding and is very loosely bound.
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(b) Energy-band diagram for an n-type semi-

conductor at a low temperature. One donor

electron has been excited from the donor levels
into the conduction band.
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(@) An acceptor (p-type) impurity atom has only [2
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(b) Energy-band diagram for an n-type semi- n
conductor at a low temperature. One donor

electron has been excited from the donor levels

into the conduction band.
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(b) Energy-band diagram for a p-type semi-
conductor at a low temperature. One acceptor
level has accepted an electron from the valence
band, leaving a hole behind.
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n — p = (density of donors) — (density of acceptors).

This, along with the law of mass action, gives us two equations with two
unknowns which can be solved.?! In short, the result is that if we are
at a temperature where the undoped intrinsic carrier density is much
greater than the dopant density, then the dopants do not matter much,
and the chemical potential is roughly midgap as in Eq. 17.11 (this is
the intrinsic regime). On the other hand, if we are at a temperature
where the intrinsic undoped density i1s much smaller than the dopant
density, then we can think of this as a low-temperature situation where
the carrier concentration is mainly set by the dopant density (this is the

extrinsic regime). In the n-doped case, the bottom of the conduction
band gets filled with the density of electrons from the donors, and the
chemical potential gets shifted up towards the conduction band. Corre-
spondingly, in the p-doped case, holes fill the top of the valence band,

and the chemical potential gets shifted down towards the valence band.
Note that in this case of strong doping, the majority carrier concen-
tration i1s obtained just from the doping, whereas the minority carrier
concentration—which might be very small—is obtained via law of mass

action. The ability to add carriers of either charge to semiconductors
by doping 1s absolutely crucial to being able to construct semiconductor
devices, as we will see in the next chapter.
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Emitter Base Collector e When V, = 0, the current is very
\\ ! // small.
* When a potentia 1s applied
4 n P Wi potential V, is applied
Hole flow > between emitter and base, holes
travel from the emitter to the base.
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Metal-Oxide-Semiconductor Field Effect Transistor
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Figure 6.10 The structure of an n-channel MOSFET showing the source, gate and drain
region. The electrical contact to the gate is separated from the semiconductor by a thin layer
of insulator, typically silicon dioxide.

(a) T

(b)

Inversion layer

Figure 6.11 (a) When a positive voltageis applied to the gate the holesin the p-type
semiconductor are repelled from the surface, and the minority carrier conduction electrons
are attracted to the surface. (b) If the gate voltage exceeds the threshold value then an
inversion layer is created near the surface. In this layer the material behaves as an n-type
semiconductor and so provides a conducting channel between the source and the drain.
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