Stationary State in 1Dimension Periodic Potential
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Fig. 7.1: Left: Small units repro-
duced periodically to form a crystal.
This particular figure depicts NaCl (ta-
ble salt), with the larger spheres being
Cl~ ions and the smaller spheres be-
ing Nat ions. Right: The macroscopic
morphology of a crystal often will re-
flect the underlying microscopic struc-
ture. These are large crystals of salt
(also known as halite). Photograph by
Piotr Wlodarczyk, used by kind per-
mission.
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Supplement 4-C Periodic Potentials

Metals generally have a crystalline structure; that is, the ions are arranged in a way that
exhibits a spatial periodicity. In our one-dimensional discussion of this topic, we will see
that this periodicity has two effects on the motion of the free electrons in the metal. One is

that for a perfect laftice—that 1s, for ions spaced equally—the electron propagates with-
out reflection; the other is that there are restrictions on the energies allowed for the elec-
trons; that is, there are allowed and forbidden energy “bands.”

We begin with a discussion ol the consequences ol periect periodicity.
The periodicity will be built into the potential, for which we require that

Vix + a) = V(x) (4C-1)
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Away from the points x = na, the solution will be that of the free-particle equation—that
is, some linear combination of sin kx and cos kx (we deal with real functions for simplic-
ity). Let us assume that in the region R, defined by (n — 1) a = x = na, we have

(x) = A, sin k(x — na) + B, cos k(x —na) 1 2mE

and in the region R, defined by na = x = (n + 1) a we have

W(x) =A,,, sin klx — (n + 1)a] + B,,, cos k[x — (n + 1) a] I
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Hamiltonian under a displacement x — x + a can be treated formally as follows. Let D,
be an operator whose rule of operation is that

D, f(x) = flx + a) (4C-5)
The invariance implies that
[H,D,] =0 (4C-6)
We can find the eigenvalues of this operator by noting that
D (x) = Agp(x) (4C-7)
together with
D_,D,f(x) = D,D_, f(x) = f(x) (4C-8)
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implies that A,A_, = 1. This then implies that A, must be of the form ¢“. Here ¢ must be
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Away from the points x = na, the solution will be that of the free-particle equation—that
is, some linear combination of sin kx and cos kx (we deal with real functions for simplic-
ity). Let us assume that in the region R, defined by (n — 1) a = x = na, we have

Y(x) = A, sin k(x — na) + B, cos k(x —na) [ (4C-22) ke = #

and in the region R, ., defined by na < x < (n + 1) a we have

P(x) = A, sin k[x — (n + 1)a] + B,., cos k[x — (n + 1)a] 1l 4C-23)
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P(x) = A, sin k(x — na) + B, cos k(x — na) (4C-22)
and in the region R, defined by na = x = (n + 1) a we have

P(x) =A,, sin k[x —(n+ 1)a] + B,., cos k[x — (n + 1) a] (4C-23)

Continuity of the wave function jmplies that (x = na) W Zh
—A,+, sin ka + B,,, cos ka = B, (4C-24)
dul _ J’d d du
dx J, dx e dx dx
= f dx? [V(x) — E]u(x) =0 (4-12)

We note, for future reference, that if the potential contains a term like A&(x — a), then in-
tegration of the equation froma — €to a + & gives

ate
du) _(du) _2m —
( dx)aﬂ, ( dx)a-e e [ dx A8(x — a) u(x)

(4-13)
- %Au(a)
and|the discontinuity condition (4—68)|here reads
KAn4y coS ka + kB,,, sin ka — kA, =B, (4C-25)
A little manipulation yields
A,.,=A, cos ka + (g cos ka — sin ka) B,
B,., = (g sin ka + cos ka) B, + A, sin ka (4C-26)

where g = A/ka.



Continuity of the wave function implies that (x = na)
—A,+ sin ka + B,;, cos ka =B, (4C-24)
and the discontinuity condition (4-68) here reads

KAy, cos ka + kB, sin ka — kA, =2 B, (4C-25)

A little manipulation yields %ﬁﬁ ¢

A, ., =A, cos ka + (g cos ka — sin ka) B,
B,., = (g sin ka + cos ka) B, + A, sin ka (4C-26)

where g = A/ka.

Aps1 = €*A, (4C-28)
Bn+l = eiann

When this is inserted into the (4C-26), that is, into the conditions that the wave equation
obeys the Schrodinger equation with the delta function potential, we get

A, (""" — cos ka) = B,(g cos ka — sin ka)

. 4C-29
B,(e""" — (g sinka + cos ka)) = A, sin ka ( )

This leads to the condition
(€1 — cos ka)(€"" — (g sin ka + cos ka)) = sin ka(g cos ka — sin ka) (4C-30)

This may be rewritten in the form

249 — 2(cos ka + %sin ka)e® + 1 =0 (4C-31)

This quadratic equation can be solved, and both real and imaginary parts lead to the
condition
A sin ka

cos qa = cos ka + > ka (4C-32)
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Figure 4C-1 Plot of cos x + (A/2)(sin x/x) as a function of x. The horizontal lines represent the
bounds = 1. The regions of x for which the curve lines outside the strip are forbidden.
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(a) In an insulator at absolute zero, (c) A conductor has a partially
there are no electrons in the filled conduction band.
conduction band. 2
A A

s Empty ) Partially filled

conduction band conduction band
E21 Large energy gap > 5eV Energy gap E,
Filled valence Filled valence
band band
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(a) No electric field Ions in the lattice
of the metal

The electron has frequent collisions with
ions, but it undergoes no net displacement.
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Electrons in Metals: Drude
Theory

J.J. Thomson’s 1896 discovery of the electron (“corpuscles of charge”
that could be pulled out of metal) raised the question of how these charge
carriers might move within the metal. In 1900 Paul Drude? realized that
he could apply Boltzmann’s kinetic theory of gases to understanding
electron motion within metals. This theory was remarkably successtul,
providing a first understanding of metallic conduction.?

Having studied the kinetic theory of gases in previous courses, Drude
theory should be very easy to understand. We will make three assump-
tions about the motion of electrons

(1) Electrons have a scattering® time 7. The probability of scattering
within a time interval dt is dt/r.

(2) Once a scattering event occurs, we assume the electron returns to
momentum p = 0.

(3) In between scattering events, the electrons, which are charge —e
particles, respond to the externally applied electric field E and
magnetic field B.

The first two of these assumptions are exactly those made in the kinetic
theory of gases.® The third assumption is just a logical generalization
to account for the fact that, unlike gas molecules, electrons are charged
and must therefore respond to electromagnetic fields.




(a) No electric field Ions in the lattice
of the metal

The electron has frequent collisions with é
ions, but it undergoes no net displacement. A

|

AR AINIES - e E T A EHFLAZHY |

B EERS TSRS T T AR Rl B |

{HE—(EE AR LR - FIRUB AT | it/ EER -
e E—(EES - e B HETAERE— T e 2 —(E i |

BPHERUBEA AT | UREEE -
HMTA] AR T PEEiE 2R |



(a) No electric field
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lons in the lattice . (b) With an electric field Parabolic trajectories (b)
of the metal in the electric field

E
The electron has frequent collisions with @ @

ions, but it undergoes no net displacement.
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& Net displacement

A net displacement in the direction
opposite to E is superimposed on the
random thermal motion.
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TABLE 25. ﬂ Resistivities at Room Temperature (20°C)

Substance

p (2 m)

Substance

Conductors
Metals

Silver

Copper

Gold

Aluminum

Tungsten

Steel

Lead

Mercury

Manganin (Cu 84%, Mn 12%, Ni 4%)
Constantan (Cu 60%, Ni 40%)
Nichrome

© 2016 Pearson Education, Inc.

1.47 X 1078
1.72 X 1078
244 x 1078
275 X 1078
5.25 X 1078
20 X 1078
22 x 1078
95 X 1078
44 X 1078
49 x 1078
100 x 1078

Semiconductors
Pure carbon (graphite)

Pure germanium

Pure silicon
Insulators

Amber

Glass

Lucite

Mica

Quartz (fused)

Sulfur

Teflon

Wood
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Let us then calculate n = —1/(eRp) for various metals and divide
it by the density of atoms ngtomic (see Table 3.1). This should give us
the number of free electrons per atom. Later on we will see that it is

Table 3.1 Comparison of the valence of
various atoms to the valence predicted
from the measured Hall coefficient.

Material 1 Valence
—€ RH Natomic
Li 8 1
Na 1.2 1
K 1.1 1
Cu 1.5 1
Be -0.2* 2
Mg -0.4 2
Ca 1.5 2

Tequently not so hard to estimate the number of electrons in a system.
A short description is that electrons bound in the core shells of the atoms
are never free to travel throughout the crystal, whereas the electrons in
the outer shell may be free (we will discuss in Chapter 16 when these
plectrons are free and when they are not). The number of electrons in
the outermost shell is known as the valence of the atom.

We see from Table 3.1 that for many metals this Drude theory analysis
keems to make sense—the “valence” of lithium, sodium, and potassium
Li, Na, and K) are all one, which agrees roughly with the measured
humber of electrons per atom. The effective valence of copper (Cu) is
hlso one, so it is not surprising either. However, something has clearly
rone seriously wrong for Be and Mg. In this case, the sign of the Hall
roefficient has come out incorrect. From this result, one might conclude

Here ngtomic 1s the density of atoms
in the metal and Ry is the measured
Hall coefficient. In Drude theory, the
middle column should give the number
of electrons per atom, i.e., the valence.
For monovalent atoms, the agreement
is fairly good. But for divalent atoms,
the sign can even come out wrong! The
* next to Be indicates that its Hall co-
efficient is anisotropic. Depending on
which angle you run the current you can
get either sign of the Hall coefficient!

that the charge carrier for beryllium and magnesium (Be and Mg) have
the opposite charge from that of the electron! We will see in Section
17.1.1 that this is indeed true and is a result of the so-called band struc-
ture of these materials. However, for many metals, simple Drude theory
gives quite reasonable results. We will see in Chapter 17 that Drude
theory 1s particularly good for desc ™~

e believe the 1ol fict wen. T~10"14s
n metals, using Eq. 3.2 we can then exirace a deLLBIi
pxpression for the conductivity. The Drude scattering fim

tune rom wne

cemperature.

JRFEHE~10""m

‘ors 6
ity Vrms~10°m/s

o be in the range of 7 ~ 10714 seconds for most mdtals E EEH«<~1O m
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One can gain substantial insight into the structure imposed on the electronic energy
levels by a periodic potential, if that potential is very weak. This approach might
once have been regarded as an instructive, but academic, exercise. We now know,
however, that in many cases this apparently unrealistic assumption gives results
surprisingly close to the mark. Modern theoretical and experimental studies of the
metals found in groups I, 11, III, and IV of the periodic table (i.e,, metals whose
atomic structure consists of s and p electrons outside of a closed-shell noble gas
configuration) indicate that the conduction electrons can be described as moving in
what amounts to an almost constant potential. These elements are often referred to
as “nearly free electron™ metals, because the starting point for their description is the

~ Sommerfeld Iree electron gas, modihed by the presence of a weak periodic potential.

In this chapter we shall examine some of the broad general features of band structure

from the almost free electron point of view. Applications to particular metals will
be examined in Chapter 15.

It is by no means obvious why the conduction bands of these metals should be

so free-electron-like. There are two fundamental reasons why the strong interactions

of the conduction electrons with each other and with the positive ions can have the
net effect of a very weak potential.

1. The electron-i0n interaction is strongest at small separations, but the conduction
electrons are forbidden (by the Pauli principle) from entering the immediate
neighborhood of the ions because this region is already occupied by the core
clectrons.

2. In the region in which the conduction electrons are allowed, their mobility
further diminishes the net potential any single electron experiences, for they

can screen the fields of positively charged ions, diminishing the total effective
potential.



Supplement 4-C Periodic Potentials

Metals generally have a crystalline structure; that is, the ions are arranged in a way that
exhibits a spatial periodicity. In our one-dimensional discussion of this topic, we will see
that this periodicity has two effects on the motion of the free electrons in the metal. One is

that for a perfect lattice—that is, for ions spaced equally—the electron propagates with-
out reflection; the other is that there are restrictions on the energies allowed for the elec-

trons; that is, there are allowed and forbidden energy “bands.”
We begin with a discussion of the consequences of perfect periodicity.
The periodicity will be built into the potential, for which we require that

Vix + a) = V(x) 4C-1)

Ion core t a
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(a) In an insulator at absolute zero, (c) A conductor has a partially

there are no electrons in the filled conduction band.

conduction band.

E E
A A
L Empty } Partially filled
conduction band conduction band
A
Eg:I Large energy gap > 5eV Energy gap E,
\% \/
Filled valence Filled valence
band band

© 2016 Pearson Education, Inc.

ARE T AR mAETT (fEConduction) - ARIAET WHYE T 1RE IS -
R EEETRE ERLAC B BRI HAAERE -

EEETIFEEHH - LR - ERNERE A LSS - BESs -



Insulator

Energy

k=—Tt/a k=+m/a

I RHBERT NIV EE T » SE R ACEIRAG »
SrRIEMTHIRmMREE - BEEI N —8ET -
i Lo B (B E B AR o fH Sy (EEE 1 Valance -
MBS RGBT A BE T A PR R [E S -



Ground State Current Flowing

2 "
3 E
__. __--__(5'.;.; ..... /h._
AV T
k=—m/a k=+m/a k=—m/a k=+m/a

FELTIRE A BT (A RAR T LB SR RS A -
S - TEHERTEE T ORI R G BRI k=S¢
LB RSB R & AN ER TR AR A EE -
FREVEBE LIRS PR T - (FAETE  MEET - AR s -



