Introduction to topological insulator

Spin Hall effect: extrinsic mechanism

(Dyakonov and Perel, JETP 1971; J.E. Hirsch, PRL 1999.)

Due to SO interaction between electron and impurity

• Skew scattering (Smit, Physica 1955)

• Side jump (Berger, PRB 1970)

Local Kerr effect in strained n-type bulk InGaAs, 0.03% polarization Kato et al, Science 2004

Quantum spin Hall effect as two copies of QAHE

• Spin current is no longer quantized when we turn on the spin-orbit coupling. But the edge states remain robust.

Band inversion

Science 2014

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides (TMD)

1 H		硫族化物 chalcogens (X)														^{beam} 2 He		
ihiun 3	bergilium 4												boson 5	carbon 6	mhogen 7	cabbe a	flumine 9	nion 10
Li	Be						В	C	N	0	F	Ne						
G 9411 Sochum	nogradum		tr	00	oi	10.811	silicon	stosstons	sultar	18.936	20,180 argon							
Na	Mg		transition metals (IVI)												P	S	ČI	Ar
potassium 10	caidiam 20		acardum 24	tisnin 22	vasadura 23	disanium 2.4	1011331080 25	26	ostoli 27	18 Dost	cooper 20	zina 30	collun 21	00masam 32	212010	adenara SA	bromine 35	Rey to a
ĸ	Ca		Sc	Ťi	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
nubidum 27	raulinenia 00		yikkum 20	armeian AG	nititian A4	nofitdenza A2	bectmolian 42	rubenium	rfacthern	paladura AC	silver 47	codrium AQ	inclus 40	12.61 1in 50	antimony	belaritura E-2	iodine E2	Bedon E4
Rb	Sr		Ŷ	Žr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Čd	Î'n	Sn	Sb	Te	Ĩ	Xe
85,468 cossi.m	87.62 bodum		AB.506	91.224 hafnlum	300.000 mulatect	\$5.54 tungsilan	(196) In Uniorh	101.67 0.5mium	100.91 Md um	100.42 plaikum	107.87 gold	112.41 morowry	114.62 Bollum	159.71 kod	121.76 bilstrath	\$27.60 polosikem	126.90 05tatile	131.29 radon
55	56	57-70	71	72	73	74	75	76	n	78	79	80	81	82	83	84	85	86
Cs	Ва	*	Lu	Ht	la	W	Re	Os	Ir	Pt	Au	Hg	11	Pb	Ві	Po	At	Rn
132.91 1700CRJ	137.35 rocium	Sec.	ITATOLOLINA	178/82 NUMERICAL	180.95 6106.00	183,84 seaborg ium	186.21 bohrum	190.23 haseken	192.22 metaerium	105.60 804038.08	195.97 UNUTUR BITE	200.50 Unintsium	201.35	207.2 Uris seadors	206.35	300	230	[222]
87	88 D	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	RT	DD	Sg	Bh	HS	IVIT	Uun	uuu	UUD		uuq				
1000	669		K00	100.8	2.926	1009	1024	12053	10098	1621	12121	EFF.	8 D	1000				

		MX Stable as a monolayer																
1 1 1 1,0079		chalcogens (X)															X)	2 He
ihiun 3	4		boxa carbon mitropen congein Dantes m 5 6 7 8 9															nion 10
Li	Be		BCNOFN														Ne	
sodam 44	magnesum 42																	20,180 argon
Na	Ma																	Ar
22,990	24,306		AI 5I P 5 CI AI 30.022 20.031 10.074 132.056 15.453 13.044															30,948
potosskum 19	coldiam 20		atarstan 21	22	23	amoritum 24	25	26	27	28	29	2ha 30	solium 31	32	areanes 3.3	asientern 34	browine 35	HISTADE 36
K	Ca		Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
33,058 rubidum	40.078 sitorilum		44,566 yildum	47.957 shttp://an	50/942 rabbitum	militdeara	54.938 Declaration	55.845 inflientum	disclam disclam	58,693 palladium	63.546 sliver	65.39 cadriam	69.753 indian	72.61 Tin	74,982 antimony	78.96 Telkilum	20.944 kxiine	83.90 84500
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	ND	Mo	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le	I	Xe
40053JID	87.62 boilum		ALSOG MCCOURT	91,224 Turnium	308.08 miliatech	Sc.54 lungskin	norium	101.67 05mUm	102.91 MJUm	100.42 platinum	gold	112.41 morowy	thallum	kod	121.76 bismuth	polonium	126.90 05tatite	131.29 radon
55	56	57-70	11	72	73	74	75	76	n	78	79	80	81	82	83	84	85	88
CS	ва	*	Lu	HT	Ia	VV	Re	Us	Ir	Pt	Au	Hg	11	PD	ы	PO	At	Rn
132.01 fronclum	makum		ITATOR OLIM	autherford auth	dicearn	seaborgium	bohtum	hasekim	mentinenum	UNION BUR	196.97 UNUTUR NO.	ununbium	20128	ura aquadora	216.95	5004	233	[22]
87	88 D.	89-102	103	104 D.6	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	LLL	RT	DD	Sg	Bn	HS	IVIT	oun	uuu	UUD		uuq				

the six studied materials. The energy U is given per formula unit MX_2 for

Duerloo et al, Nat Comm 2014

10

Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal 1T'-WTe₂

Sanfeng Wu,¹*[†] Valla Fatemi,¹*[†] Quinn D. Gibson,² Kenji Watanabe,³ Takashi Taniguchi,³ Robert J. Cava,² Pablo Jarillo-Herrero¹[†]

Science 2018

- "Plateau" exists only for ballistic transport
- Nothing is really quantized, except that there are "2" edge channels

Topology in QSHI (=2D TI) Moore and Balent, PRB 07 Consider lattice fermion with time reversal symmetry (TRS)

• Without B field, Chern number $C_1 = 0$

• Bloch states at *k*, -*k* are not independent, independent states live in EBZ.

- EBZ is a cylinder, not a closed torus.
- \therefore No obvious quantization.
- \rightarrow Solution: add caps to close the EBZ
- \bullet C1 of the closed surface may depend on caps

- \bullet C₁ mod 2 is independent of caps, thus is an intrinsic property of the EBZ
- 2 types of insulator, the "0-type", and the "1-type"

Z₂ topological number

For a 2D insulator with SIS

there is a simple way to determine the Z_2 integer (unfortunately, there is no simple explanation)

Time reversal operator

 $\Theta^2 = -1$ for fermions

- Kramer's degeneracy
- Time Reversal Invariant Momentum (TRIM)

If there is inversion symm,

19

then Bloch state at TRIM Γ_{i} has a definite parity

• Parity eigenvalue $\Pi \psi_{n\Lambda_i \alpha}(\mathbf{r}) = \zeta_{n\Lambda_i} \psi_{n\Lambda_i \alpha}(\mathbf{r})$ same for this pair $\zeta_{n\Lambda_i} = 1 \text{ or } -1$

The Z₂ topological number (Fu and Kane 2006)

• Cumulative parity at Γ_i

Band inversion and parity change

Edge state: QH insulator vs QSH insulator (aka 2D TI)

Edge states in 2D TI (Fu and Kane)

Non-trivial

- odd # of Dirac points
- odd # of crossings
- robust surface state

- even # of Dirac points
- even # of crossings
- fragile surface state

I. 3D Topological insulator

- A. Fermi circle of the surface state
- B. Weak topological indices
- C. Topological crystalline insulator and beyond

3 TI indices

Momentum space

Time-reversal invariant plane

Each has a Z_2 index

 $(-1)^{\nu} \equiv \delta_1 \delta_2 \delta_3 \delta_4 = z_0$ $(-1)^{\nu'} \equiv \delta_5 \delta_6 \delta_7 \delta_8 = z_+ \quad \text{etc}$ $\implies \text{Six } Z_2 \text{ indices: } (\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0, \mathbf{x}_+, \mathbf{y}_+, \mathbf{z}_+)$ However,

$$x_0 x_+ = y_0 y_+ = z_0 z_+ = \delta_1 \delta_2 \delta_3 \delta_4 \delta_5 \delta_6 \delta_7 \delta_8$$

2 independent relations

So only 4 independent Z₂ numbers

 $\delta_i \equiv \prod_{n \text{ filled}} \xi_{2n}(\Gamma_i)$

Band structure of Sb (Liu and Allen PRB95)

Weak TI index and defect

Two types of dislocation:

• Edge dislocation

Screw dislocation

Electronic state along 1D defect

- robust against disorder
- chiral quantum wire

Symmetry and Topology in Insulators

Symmetry

TI protected by crystalline symmetry, instead of TRS << SPT phase

PRL 106, 106802 (2011)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2011

Topological Crystalline Insulators

Liang Fu

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 5 October 2010; revised manuscript received 31 December 2010; published 8 March 2011)

The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal surfaces. These topological crystalline insulators are the counterpart of topological insulators in materials without spinorbit coupling. Their band structures are characterized by new topological invariants. We hope this work will enlarge the family of topological phases in band insulators and stimulate the search for them in real materials.

DOI: 10.1103/PhysRevLett.106.106802

PACS numbers: 73.20.-r, 73.43.-f

- Electron spin, SOC are no longer essential
- Can have even number of Dirac points
- The dispersion near a DP can be quadratic ... etc

nature Topological quantum chemistry

Barry Bradlyn¹*, L. Elcoro²*, Jennifer Cano¹*, M. G. Vergniory^{3,4,5}*, Zhijun Wang⁶*, C. Felser⁷, M. I. Aroyo² & B. Andrei Bernevig^{3,6,8,9}

Higher order TI (protected by crystal symm)

Fig from Kim et al, in Light: Science & Applications (2020)