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I. BERRY CURVATURE OF BLOCH STATES

We now combine what we have learned in chapters 1
and 2 to investigate the Berry curvature of Bloch states.

A. Basics
Recall that in a crystal, the cell-periodic part wu,x(r)
of the Bloch state 1,k = e’ u,i satisfies
Hye(r)uni(r) = enrctink(r), (1.1)

where
Hy(r) =

1
= %(p + 7ik)? + Vi (r).

e KT H (r)er (1.2)
(1.3)

The Bloch momentum plays the role of the slowly varying
parameter, so the Berry connection for band-n is

. 0
A (k) = i{unic] - funk). (1.4)
The Berry curvature is
F.(k) = Vi xAy(k) (1.5)

If the crystal has space inversion symmetry, then

Unk(r) = Up—k(—T) = ik (r), (1.7)
L ANK) = ¢<un,k\%\un,k> — AL (k) (1.8)
Fn(k) = Vix[-A,(-k)]=F,(-k) (19)
If there is time reversal transformation, then
Unk(r) = e (r)[= tn ()] = ke (r), (1.10)
LA = i) (111)
= _i<un7klgik|unfk> = An(_k>
Fn(k) = Vi x An(_k) = _Fn(_k) (112>

Therefore, if a crystal has both symmetries (and if the
energy level is not degenerate), then F, (k) = 0 for all
k, and one does not need to worry about the Berry cur-
vature. Note: One-dimensional system is an exception.
There can be Berry phase even if the system has both
symmetries.

If the Berry curvature does exist, then it could influ-
ence the electron transport. For example, under an elec-
tric field E, the velocity of an electron in Bloch state ),k
is

1 0ey
Ok | Cp B (k).

Vel =5k Th

(1.13)

This expression is valid if the electric field is weak so
that inter-band transitions can be ignored. That is, an
electron stays in the same energy band. This is called
one-band approximation, which is the same as the
adiabatic approximation.

Pf: Choose a time-dependent gauge for the electric field,
E =-0A/0t, A = —Et, then the Hamiltonian becomes,

- Bk — eEt)?
HEO:(I)+ o — eEt)

+Vi(r) = Hywy,  (1.14)

2m

where k(t) = kg — eEt/h. For a weak field, to the zeroth
order adiabatic approximation, one only needs to replace
[Unk) With |unie)), and

Hy(t)|tUnk(t)) = Enk()|Unk(s))- (1.15)
To the first-order (see Prob. 1),
(1) Ui <un/k| ot |Uni)
[u, ) = [unk) — ik Z , (1.16)

' (#n) Enk — En’k
in which all of the k’s are k(t)’s.

<unk|u£tllz) = 1, an electron stays at the same energy level
to this order.

To the first order, the velocity

Note that since

valk) = W02 (1.17)
= () p”“ﬂ ) )
= w2, (1.19)

hok



Substitute Egs. (1.16) into (1.19), one will get

OHy

aflk 6unk
Unk| AL | Un’ Up!
Y << k| Gt [tnnie) (Unnie| =5 >_c.c_>_
n’(#n)

Enk — En'k

vp(k) =

Before proceeding further, some identities are required.
First, starting from

<unk|un’k> = 671”'7 (121)
take the derivative 9/0k to get
OMpx O
(T Tunie) = —{unxl =5, =)- (1.22)
Second, from the equation,
<unk|gk|un'k> = EnkénnH (123)
take the derivative 9/0k to get
f{ Gunk
<unk‘ |un k> - (Enk _En’k)< ok ‘un’k>
6€nk
/ 1.24

With the help of Egs. (1.22) and (1.24), the velocity
can be written as,

v (k)
- Oenk . Otk Otk Otpk | Otk
= hok _Z<< ok | o >_< ot ok >>(1'25>
af':nk g
= S _kxF,. (1.26)
Since k = —(e/h)E, the second term is (e/h)E x F,,.
QED.

The velocity that depends on the Berry curvature is
perpendicular to the direction of the applied E field. It
first appeared in the study of anomalous Hall effect
in Karplus and Luttinger, 1954, although not in the lan-
guage of Berry curvature. This velocity proportional to
the Berry curvature is sometimes called anomalous ve-
locity.

Under the one-band approximation, Eq. (1.26) remains
valid in the presence of a magnetic field B, but its deriva-
tion is not as easy. The semiclassical equations of
motion for an electron in band-n are,

P= 0%k _kxF,
hk = —eE — er x B.

(1.27)

in which €7} = e,x — m, (k) - B is the energy shifted by
magnetic moment my (k) (Chang and Niu, 1996; Sun-
daram and Niu, 1999).
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FIG. 1 The dependence of Hall resistivity (in red) on mag-
netic field shows quantized plateaus at p.y, = h/(ie®), where
¢ is an integer. The resistivity at plateaus can be determined
with very high precision. Thus, in 1990, h/e? is defined to be
25.812807 kf2.

B. Quantum Hall effect

The anomalous velocity plays a key role in the theory of
Quantum Hall effect (QHE) and Quantum anoma-
lous Hall effect (QAHE). We discuss the former in this
section, and the latter in next chapter. For an early his-
tory regarding the discovery of the classical Hall effect,
see Leadstone, 1979.

Consider a 2D electron gas (2DEG) lying on the z-y
plane, such as the 2DEG in MOSFET, semiconductor
heterojunction, graphene, or other 2D materials. Un-
der a strong magnetic field BZ, the Landau levels of the
2DEG usually have non-zero Chern numbers. With a
Berry curvature F, along z-direction, the current den-
sity along z-direction is,

Iy = —%Z F(Ente)Vna (k) (1.28)
8 n
- -5 S e hgkk (1.29)
nk
— 7ZL2 Zf 5nk nz ya (130)

where L? is the area of the 2DEG, and f(c,x) is the
Fermi-Dirac distribution function. The first term is the
current density in equilibrium, which is obviously zero.
The second term contributes to the Hall current.

Note that the magnetic field B in Eq. (1.27) does not
appear in this calculation, since it is responsible for the

generation of the Landau levels and has been accounted
for.

At temperature T = 0, if N energy bands (Landau
sub-bands, to be precise) are filled, then the Hall con-



ductivity is,

e’ 1
Opy = —gﬁZFm(k)

(;ﬂ /B Zd%Fm(k)). (132)

The integral over the Brillouin zone inside the parenthesis
is an integer (see Eq. (1.45)). It is a topological quantity
(Thouless et al., 1982) called the first Chern number,

(1.31)

Il

|
=X
] =

1
C(”) [
! 2

d’kF,.(k) € Z.
T JBZ

(1.33)

Therefore, an insulator with N filled bands would have

a quantized quantum Hall conductance (25:1 Cfn))eQ/h
(Fig. 1), independent of the details of energy bands.

Some remarks:

1, In a quantum Hall system, the strong magnetic
field would break the lattice translation symmetry of
the Hamiltonian. Nonetheless, if the magnetic flux per
unit cell is a rational fraction of the flux quantum,
® = (p/q)®y, then it is possible to define a magnetic
translation symmetry, such that the Bloch theory can
still be applied. That is, to be precise, the physical quan-
tities in Eq. (1.32) need be interpreted as magnetic Bloch
momentum k, magnetic Bloch band e,x, and magnetic
Brillouin zone (see Sec. VIII of Xiao et al., 2010).

2. The Hall conductance in Eq. (1.32) can also be ob-
tained from linear response theory, which can be gener-
alized to include electron interaction and disorder. It can
be shown that, despite these complications, the Hall con-
ductance remains quantized, as long as the energy gap re-
mains open (Hastings and Michalakis, 2015; Michalakis,
2020; Niu et al., 1985).

C. Gauge choice of Bloch state

Before discussing the gauge choice of Bloch state, let
us look back at a simpler example: the spin-1/2 system
in ??7. Recall that there are two types of basis:
|72, £) in Eq. (?7?), which have the ¢-ambiguity at § = m;
|f, £) = eT®|A, +), which have the ¢-ambiguity at 0 =
0.

The Berry connection of the first basis is

1 1—-cosf
AY(B)=F-——"T"-¢,. 1.34
=(B) 2B simg ° (1.34)
It is singular along the axis of 8 = = (see Fig. 2(a)),

because of the ¢-ambiguity mentioned above. However,

the Berry curvature F4 = :F% %
0=m.
On the other band, the Berry connection for the second

basis is

is well behaved along

1 1+cosf .
A{(B) = tos G (1.35)

sin 6

FIG. 2 (a) Gauge-N has a string of singularity along —z-axis.
(b) An atlas with two patches of gauge is singularity-free.

It is singular along the axis of # = 0. Both AY and A%
have the same Berry curvature F.

In Fig. 2(a), we see a loop Cy near the north pole, and
a loop C3 near the south pole. The area inside C; is
designated as S;; the area outside is S;. Similarly the
area inside Cs is Sa, outside is Ss. It is not difficult to
see that,

f dz.AN:/ d’a-Fy# [ d’a-Fi. (1.36)
Co Sz Sa

The LHS approaches 27 as C5 shrinks to zero; while the
last integral approaches 0. The inequalities arise because
the Stokes theorem fails if A is singular in the domain of
surface integration. That is, to ensure the validity of the
Stokes theorem, the area of integration cannot contain
singular points. That is why we need to choose Sy for
the loop Cs.

It is possible to remove the string of singularity if both
types of gauges are used (Wu and Yang, 1975): people
living on the northern hemisphere uses gauge-IN, while
people living on the southern hemisphere uses gauge-S
(see Fig. 2(b)). So both tribes of people feel no singu-
larity. However, they need to switch gauges near the
equator with the gauge transformation,

9¢

A{(B)=AYB)+ B

(1.37)

In this case, the Stokes theorem can be applied for an
integration over the whole sphere,

d2a . Fi
§2

= d?a-V x AY + [ d*a-V x A (1.38)

Ss

SN
f{ de- AY + dk - A%
C. C_e

— (1.39)

= ]f de- (AY — A3) (1.40)
Co

= F de - 99 = F27. (1.41)

¢, OB
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FIG. 3 (a) Gauge-I has a singularity at the red dot on the
right side of the BZ. (b) An atlas with two patches of gauge
is singularity-free. Gauge-1 has a singularity on the right;
gauge-II has one on the left.

In the line integrals, C'y. are loops near the equator at
angles 6 = w/2 + ¢, and Cj is the equator with the same
orientation as C..

Like the spin-1/2 system, the quantum Hall system
also has non-trivial topology, and their Bloch states
have similar non-trivial gauge structure. What is spe-
cial about the QH Bloch state is that there exist nodal
points in the BZ, where u,x, = 0. Similar to the south
pole in Fig. 2(a), the phase is ambiguous at k;, and the
Berry connection A, (k) is singular there (see Fig. 3(a)).
Assume there is only one singular point, then the line in-
tegral of A, (k) around a small loop C enclosing k; (and
divided by 27) equals the first Chern number (similar
to the loop Cy in Fig. 2(a)). It is sometimes called the
vorticity of the singular point.

Similarly, the singularity can be removed with multiple
patches of gauge (Kohmoto, 1985): If ul, are eigenstates
of the Schrodinger equation, then

UII ankurlzk

n—e (1.42)

are also eigenstates. The phase factor e”X»* needs to be
a single-valued function in k, but is otherwise arbitrary.
Their Berry connections are related by

~ Oxa(k)
ok

Assume gauge-I has a singularity on the right of the
BZ; gauge-1T has a singularity on the left of the BZ (see
Fig. 3(b)). Then we can adopt gauge-I on the left side,
and gauge-IT on the right side, so that there is no sin-
gularity throughout the whole BZ. Again when crossing
the boundary C between different patches, one needs to
switch gauges using Eq. (1.43). The single-valuedness of
Yk along the boundary would guarantee that the Berry
curvature integrated over the whole BZ (and divided by
27) is an integer value Cy times 2,

/ d’k - F,,
BZ

= / d2k-VfoL+/ d’k -V x Al
left right

Al (k) = Aj (k) (1.43)

= f dk - (AL — Al (1.44)
C
= fgdk- 85;: = 27 X integer. (1.45)

FIG. 4 Paths of parallel transport are indicated by lines with
arrows.

If there are multiple singularities for a single gauge, than
more patches need be used, but the procedure remains
essentially the same.

In addition to the two gauge choices above, one can
also fix the phase of the Bloch state using the parallel
transport gauge (see Thouless, 1984).

0

<Ukz0 ke Ulemo> = 0, (1.46)
0

<u’€zky BT uerky> = 0. (1.47)
y

The first equation defines the phase of the states (of a
band n) on the k. -axis; the second equation defines the
phase along a line with fixed k, (see Fig. 4). As a result,
the phases of any two states in the BZ have a definite
relation. Be aware that the phases defined by the parallel
transport gauge are not necessarily single-valued.

The states on opposite sides of the BZ boundaries
represent the same physical state. Therefore, they can

only differ by a k-dependent phase factor. Following
Egs. (1.46) and (1.47), we can choose
Ukytgo by = Ukyk, (1.48)
Uky ky+gy, = ei‘s(km)ukzky, (149)

where g, and g, are the basis of reciprocal lattice vec-
tors. That is, the states on the opposite sides of the ver-
tical boundaries have the same phase. The same cannot
also be true for the horizontal boundaries, otherwise the
topology will be too trivial to accommodate the quantum
Hall conductivity.

Periodicity of the BZ requires that

d(ky + gz) = 0(kz) + 27 x integer. (1.50)
In order for the integral (1/27) §, 5, dk - A(k) (which is
nonzero only along the upper horizontal boundary) to give
the Hall conductivity C1h/e?, the integer in Eq. (1.50)
obviously has to be equal to Cf.

Following the periodicity condition in Eq. (1.50), one
can choose the phase to be,

(ky) = d(ks) + Cikyar, (1.51)

where (kg + g2) = 6(k,) is periodic in k,, but otherwise
remains arbitrary, a; is a lattice constant.



In summary, when the Bloch states have non-trivial
topology, the phases of the Bloch states cannot be
defined uniquely and smoothly over the whole BZ. There
are either points of phase ambiguity, or lines where
phases are not single-valued, so that the vorticity of the
whole BZ can be non-zero (Soluyanov and Vanderbilt,
2012). This is the topological obstruction mentioned
at the end of Chap 1.

Exercise
1. To derive Eq. (1.16), first write

|W(t)) = Zeivm(t)e—% I3 4 e mcsn) gy, (£) | tmic)

m
= YRty )i, (152)
m

in which a,,(t) vary slowly with time. This is a multi-
level generalization of Eq. (??) in Chap 2. Recall that
i) = €71 |u,,) satisfies the parallel transport con-
dition (see Prob. 2.1),

0
<umk|a|umk> =0. (153)

(a) Use the Schrodinger equation H|U(t)) = i0|¥(t))/0t
and show that,

dam, (t)
at

— _¢ % I dtl(enk—amk)<amk|g|ank>_ (1.54)
t

(b) Assume the exponential factor oscillates much faster

than the bracket, so that the latter can be treated as

static. Integrate the equation above to get Eq. (1.16).

Note: If the non-integrable phases 7,,(t) are not involved

in a dynamical process, then they can be ignored and

|tmi) are simplified as |umk).

Ref: Appendix of Xiao et al., 2010.

2. Under the one-band approximation, the effective

Lagrangian of a Bloch wavepacket in an external elec-

tromagnetic field can be obtained by using the time-

dependent variational principle. Here we merely take the

effective Lagrangian as the starting point for subsequent
derivations:

L(r,k; 1, k) (1.55)
= hk-t+ k- A(k) —ef- Ao (r) + e — £™(r, k),

where A (k) is the Berry connection, ¢.(r) and A.(r) are
the electromagnetic potentials, and e™ = ¢(k) —m(k)-B.

Treating both r and k as generalized coordinates, using
the Euler-Lagrange equation to derive the equations of
motion,

hk = —eE —ef x B, (1.56)
o= 0 ik F (1.57)
0k ’ '

where B =V, X A (r), and F = Vi x A(k).

For simplicity, assume that the electron is moving
in the zy-plane and the magnetic field is along the z-
direction. It would not be difficult to see that the equa-
tions of motion remain valid in more general situations.
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