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I. REVIEW OF BLOCH THEORY

A. Translation symmetry

For a perfect crystal with discrete translation symme-
try, the Hamiltonian is

H =
p2

2m
+ VL(r), with VL(r + R) = VL(r), (1.1)

in which VL(r) is the potential of the atomic lattice, and
R is a lattice translation vector. Define a lattice
translation operator TR that acts on electronic states
as follows,

TRψ(r) = ψ(r + R). (1.2)

It can be shown that, because H has the translation sym-
metry,

TRH(r)ψ(r) = H(r)TRψ(r). (1.3)

That is, [TR, H] = 0.
Because TR commutes with H(r), one can find their

simultaneous eigenstates,

Hψ = εψ, (1.4)

TRψ = cRψ, (1.5)

where ε and cR are eigenvalues of H and TR, and |cR| =
1. Furthermore, successive translations satisfy

TRTR′ = TR′TR = TR+R′ . (1.6)

This leads to

cRcR′ = cR′cR = cR+R′ . (1.7)

To satisfy these equations, cR needs to be an exponential,
cR = eik·R. Therefore,

Hψεk = εψεk, (1.8)

TRψεk = eik·Rψεk. (1.9)

The simultaneous eigenstate of H and TR is called Bloch
state.

If one writes the Bloch state in the following form,

ψεk(r) = eik·ruεk(r), (1.10)

then Eq. (1.9) gives

uεk(r + R) = uεk(r). (1.11)

That is, a Bloch state is a plane wave times a cell-
periodic function uεk(r). The latter contains, in one
unit cell, all information of the Bloch state ψεk.

The Schrödinger equation for uεk is,

H̃k(r)uεk = εuεk, (1.12)

in which

H̃k(r) ≡ e−ik·rH(r)eik·r (1.13)

=
1

2m
(p + ~k)2 + VL(r). (1.14)

Since uεk can be restricted to one unit cell (with periodic
boundary condition), we expect it to have discrete energy
eigenvalues εn (n ∈ Z+) for each k, and write

H̃k(r)unk = εnkunk. (1.15)

The quantum numbers n and k are called band index
and Bloch momentum, and εnk are the energy disper-
sions of Bloch bands.

The Bloch state ψnk translates under R as (see
Eq. (1.9)),

ψnk(r + R) = eik·Rψnk(r). (1.16)

If one shifts the momentum k by a reciprocal lattice
vector G, then since eiG·R = 1 (for any R),

ψnk+G(r + R) = eik·Rψnk+G(r). (1.17)

Since the two Bloch states ψnk and ψnk+G satisfy the
same Schrödinger equation (with εnk = εnk+G) and the
same boundary condition (Eqs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor φ(k). For convenience, one can choose the peri-
odic gauge with φ(k) = 0, ψnk+G = ψnk. Note that
for a quantum phase with non-trivial topology (such as
the quantum Hall state), one can no longer set φ(k) = 0
for all k. This is called topological obstruction (see
Chap. ??). In any case, ψnk (or unk) in the first Brillouin
zone should contain enough information of the electronic
state.
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FIG. 1 Time reversal Θ of |α〉 followed by U(δt) (left), and
U(−δt) of |α〉 followed by time reversal Θ (right). Both result
in the same state.

B. Time reversal symmetry

Time reversal operator Θ maps a state to its time-
reversed state (or, motion-reversed state),

|α〉 → |α̃〉 = Θ|α〉. (1.18)

Naturally, if a dynamical system has time-reversal sym-
metry (TRS), then for a state |α〉 evolving with U(t) =
e−iHt/~, one expects (see Fig. 1)

U(t)Θ|α〉 = ΘU(−t)|α〉. (1.19)

For an infinitesimal evolution U(δt) ' 1 − iHδt/~,
Eq. (1.18) leads to −iHΘ = ΘiH. If Θ is a unitary
operator, then we have −HΘ = ΘH. That is, if a state
has energy ε, then its time-reversed state has energy −ε.
This causes the eigen-energies to be bottomless, which is
unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or ro-
tation, preserves the squared modulus 〈α|α〉 of a quan-
tum state |α〉 if the system under consideration has that
symmetry. According to Wigner’s study, an operator of
transformation that preserves |〈β|α〉| can only be either
unitary or anti-unitary. Therefore, Θ must be an anti-
unitary operator, which can be written as

Θ = UK, (1.20)

where U is a unitary operator, and K is a complex con-
jugate operator, Ki = −iK. As a result, if H has TRS,
then

HΘ = ΘH. (1.21)

Note: even though [H,Θ] = 0, there is no conserved
quantity associated with TRS since U(t)Θ 6= ΘU(t).

For states under TR, one has

〈β̃|α̃〉 = 〈α|β〉, or 〈β|α〉∗. (1.22)

Pf:

〈β̃|α̃〉 = 〈UKβ|UKα〉 (1.23)

= 〈Uα|Uβ〉 (1.24)

= 〈α|β〉. QED (1.25)

For the matrix elements of an operator O, one has

〈β̃|O|α̃〉 = 〈α|Θ−1O†Θ|β〉. (1.26)

Pf: We would try not to use the dual operation of Θ
explicitly. That is, Θ is only allowed to act on ket states.
First define |γ̃〉 = O†|β̃〉, or

Θ|γ〉 = O†Θ|β〉, (1.27)

then 〈γ̃| = 〈β̃|O, and

〈β̃|O|α̃〉 = 〈γ̃|α̃〉 (1.28)

= 〈α|γ〉 (1.29)

= 〈α|Θ−1O†Θ|β〉. QED (1.30)

If an operator O transforms under time reversal as,

Θ−1O†Θ = ±O, (1.31)

then 〈Θα|O|Θα〉 = ±〈α|O|α〉.

1. Spinless state

Given a time-reversed state |ψ̃〉 = Θ|ψ〉, one expects

〈ψ|Θ−1rΘ|ψ〉 = 〈ψ|r|ψ〉, (1.32)

〈ψ|Θ−1pΘ|ψ〉 = −〈ψ|p|ψ〉, (1.33)

Since this is valid for every time-reversed state, we de-
mand

Θ−1rΘ = r, (1.34)

Θ−1pΘ = −p. (1.35)

This also implies that the angular momentum operator
L = r× p changes sign under TR.

A spin-less state is described by a scalar function, and
this two relations can be satisfied with Θ = K (i.e. U =
1). Hence

ψ(r, t)
TR−→ Θψ(r, t) = ψ∗(r, t). (1.36)

Given the Schrödinger equation,

Hψ(r, t) = i~
∂

∂t
ψ(r, t), (1.37)

its complex-conjugate counterpart is,

Hψ∗(r, t) = i~
∂

∂(−t)
ψ∗(r, t). (1.38)

That is ψ∗(r, t) evolves to −t the same way as ψ(r, t)
evolves to t. Hence, ψ∗(r, t) is indeed a time-reversed
state.

For the Hamiltonian in Eq. (1.1), K−1HK = H (note
that K−1 = K). However, for a crystal in a magnetic
field,

H =
(p− qA)2

2m
+ VL(r), (1.39)
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where q = −e is the charge of an electron and A is the
vector potential, we have

K−1HK =
(p + qA)2

2m
+ VL(r) 6= H. (1.40)

That is, the magnetic field breaks the TRS, as expected.
For a Bloch state, one has

ψnk(r)
TR−→ Θψnk(r) = ψ∗nk(r). (1.41)

Under a translation,

TRψ
∗
nk(r) = ψ∗nk(r + R) (1.42)

= e−ik·Rψ∗nk(r). (1.43)

If the state is not degenerate, then according to Eq. (1.9),
ψ∗nk(r) with the eigenvalue e−ik·R could be identified as
ψn−k(r). That is (see Sec. 16.3 of Dresselhaus et al.,
2008),

ψ∗nk(r) = ψn−k(r). (1.44)

2. Spin-1/2 state

For a quantum state with spin, in addition to
Eqs. (1.34), (1.35), we also require the spin operator un-
der TR to satisfy

Θ−1sΘ = −s. (1.45)

A spin-1/2 state is a two-component spinor, and the spin
operators s = ~

2σ, where σ are the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(1.46)
Obviously, Θ = K cannot satisfy Eq. (1.45), and a uni-
tary rotation U (not operating on r and p) in Θ = UK
is required.

From Eq. (1.45), one has

sxΘ = −Θsx, (1.47)

syΘ = −Θsy, (1.48)

szΘ = −Θsz. (1.49)

Using the standard representation for Pauli matrices in
Eq. (1.46), where only σy has complex matrix elements,
we have

σxU = −Uσx, (1.50)

σyU = +Uσy, (1.51)

σzU = −Uσz. (1.52)

U is a 2 × 2 matrix (for spin-1/2 states), which can be
expanded by Pauli matrices. Since U anti-commutes with
σx,z, but commutes with σy, the equations above can

be satisfied with U = σy, or U = eiδσy, where δ is an
arbitrary phase. A popular choice of eiδ is −i. Thus,

Θ = −iσyK =

(
0 −1
1 0

)
K. (1.53)

Other choices of eiδ are allowed, such as +i or 1.
In general, for a state with spin quantum number j,

which can be an integer or a half-integer,

Θ = e−iJyπ/~K, (1.54)

in which Jy is a spin operator (Sakurai, 1985). For spin
1/2,

Θ = e−isyπ/~K = −iσyK. (1.55)

A Bloch state with spin-1/2 transforms as(
ϕk↑
ϕk↓

)
TR−→ Θ

(
ϕk↑
ϕk↓

)
=

(
−ϕ∗k↓
+ϕ∗k↑

)
. (1.56)

Applying the time-reversal transformation twice gives
Θ2 = −1.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying
the TR transformation twice gives Θ2 = 1. However, if
a particle has half-integer spin, then

Θ2 = −1. (1.57)

This fact is crucial to the existence of the Kramer de-
generacy: If a system has TRS and its spin is a half-
integer, then eigenstates ψ and Θψ are degenerate and
orthogonal to each other.
Pf: Since HΘ = ΘH, so if ψ is an eigenstate with energy
ε, Hψ = εψ, then

HΘψ = ΘHψ = εΘψ. (1.58)

That is, Θψ is also an eigenstate with energy ε.
Furthermore, using the identity 〈β|α〉 = 〈α̃|β̃〉, one has

〈ψ|Θψ〉 = 〈Θ(Θψ)|Θψ〉 (1.59)

= −〈ψ|Θψ〉, (1.60)

in which Θ2 = −1 has been used to get the second equa-
tion. Therefore, 〈ψ|Θψ〉 = 0. QED.

For example, if a Bloch state ψnk↑ has energy εnk↑,
then its time-reversed state Θψnk↑ = −ψn−k↓ (see
Eq. (1.56)) has energy εn−k↓, and with time reversal sym-
metry, εnk↑ = εn−k↓ (Kramer degeneracy).

For a solid with space inversion symmetry, one has
εn−ks = εnks (s =↑ or ↓). When the solid has both TR
and SI symmetries, there is a two-fold degeneracy at each
k-point,

εnks = εn−k−s = εnk−s. (1.61)
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FIG. 2 (a) The TRIM are shown as black and white dots in
the first Brillouin zone. Only four of them (black dots) are
independent. (b) The Bloch energy levels of a system with
time-reversal symmetry but without space-inversion symme-
try.

An energy band thus has a global two-fold degeneracy
over the whole Brillouin zone.

On the other hand, if there is TRS but no SIS, so that
εn−ks 6= εnks, then the two-fold degeneracy at a k-point
is not guaranteed, except at the k-point that differs from
−k by a reciprocal lattice vector G,

k = −k + G. (1.62)

These k-points are called time-reversal-invariant mo-
menta (TRIM), see Fig. 2(a). At a TRIM,

εnks = εn−k−s = εn,−k+G,−s = εnk−s. (1.63)

Typical TRIM are located at the corners of a BZ, k =
G/2. They play important roles in the theory of topo-
logical insulator.

Note: For a crystal without space-inversion symmetry,
we often still have εnk = εn−k (Fig. 2(b)). This is
due to the fact that, with time-reversal symmetry,
εnks = εn−k−s. In the absence of spin-orbit interaction
(SOI), εn−k−s = εn−ks and we have a symmetric energy
spectrum with global two-fold degeneracy. A SOI breaks
the two-fold degeneracy (except at TRIM), but the
energy spectrum still looks symmetric because of the
Kramer degeneracy.

Exercise

1. Suppose Q = UK is an anti-unitary operator, prove
that Q2 can only be +1 or −1.
Hint: Since performing Q twice would get us back to
the original state, differing at most by a phase factor, we
can assume Q2 = eiδ. Check the consistency between
mathematical operations to find out eiδ.

2. Show that, if an operator O transforms as,

Θ−1O†Θ = O, (1.64)

and Θ2 = −1, then 〈ψ|O|Θψ〉 = 0.

For example, if an electron is scattered by a scalar po-
tential V (r), then to the first-order approximation (Born
approximation), the scattering amplitude for ψ being
scattered to its time-revered state is zero, 〈Θψ|V |ψ〉 = 0.
References

Dresselhaus, M. S., G. Dresselhaus, and A. Jorio, 2008, Group
Theory (Springer-Verlag Berlin Heidelberg).

Sakurai, J. J., 1985, Modern quantum mechanics (Benjamin-
Cummings Publishing Company).


	Contents
	Review of Bloch theory
	Translation symmetry
	Time reversal symmetry
	Spinless state
	Spin-1/2 state
	Kramer degeneracy


	References

