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I. REVIEW OF BLOCH THEORY
A. Translation symmetry

For a perfect crystal with discrete translation symme-

try, the Hamiltonian is
2
H= 2% +Vi(r), with Vo (r+R) = Vi (r),  (1.1)

in which Vf,(r) is the potential of the atomic lattice, and
R is a lattice translation vector. Define a lattice
translation operator Tgr that acts on electronic states
as follows,

Trip(r) = ¢(r + R).

It can be shown that, because H has the translation sym-
metry,

(1.2)

TrH(r)y(r) = H(r)Tri(r).

That is, [T, H] = 0.
Because Tr commutes with H(r), one can find their
simultaneous eigenstates,

Hy = ey,
TRl// = Cva

where € and cr are eigenvalues of H and Tg, and |cr| =
1. Furthermore, successive translations satisfy

(1.3)

(1.4)
(1.5)

TRTR’ = TR’TR == TR+R/. (16)

This leads to

CRCR’ = CR’CR = CR+R/- (17)

To satisfy these equations, cg needs to be an exponential,
cr = ¢ R Therefore,

stk =

Trtpex =

Ew6k7

eik-R,lpsk.

(1.8)
(1.9)

The simultaneous eigenstate of H and TR is called Bloch
state.
If one writes the Bloch state in the following form,

Per(r) = €™ Tug(r), (1.10)
then Eq. (1.9) gives
ek (r + R) = uek(r). (1.11)

That is, a Bloch state is a plane wave times a cell-
periodic function u.k(r). The latter contains, in one
unit cell, all information of the Bloch state ).x.

The Schrodinger equation for ugy is,

Hy(r)uek = U, (1.12)

in which
Hy(r) = e ™®TH(r)ekT (1.13)
= L(p+hk)2+vL(r). (1.14)

2m

Since ucy can be restricted to one unit cell (with periodic
boundary condition), we expect it to have discrete energy
eigenvalues ¢,, (n € Z1) for each k, and write

ﬁk(r)unk = EnkUnk- (115)

The quantum numbers n and k are called band index
and Bloch momentum, and ¢,k are the energy disper-
sions of Bloch bands.

The Bloch state ),k translates under R as (see

Eq. (1.9)),
’lbnk(l‘ + R) = eik'ank(I‘).

If one shifts the momentum k by a reciprocal lattice
vector G, then since e’S'® =1 (for any R),

wnk-i-G (I‘ + R) = eiklank-i-G (I')

Since the two Bloch states 1,k and ,kiq satisfy the
same Schrodinger equation (with e,k = € t+q) and the
same boundary condition (Egs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor ¢(k). For convenience, one can choose the peri-
odic gauge with ¢(k) = 0, ¥pk+c = ¥nk. Note that
for a quantum phase with non-trivial topology (such as
the quantum Hall state), one can no longer set ¢(k) =0
for all k. This is called topological obstruction (see
Chap. ??). In any case, ¥,k (Or upy) in the first Brillouin
zone should contain enough information of the electronic
state.

(1.16)

(1.17)



FIG. 1 Time reversal © of |a) followed by U(dt) (left), and
U(—6t) of |a) followed by time reversal © (right). Both result
in the same state.

B. Time reversal symmetry

Time reversal operator © maps a state to its time-
reversed state (or, motion-reversed state),

o) — |&) = O|a). (1.18)
Naturally, if a dynamical system has time-reversal sym-
metry (TRS), then for a state |a) evolving with U(t) =
e_’Ht/ﬁ, one expects (see Fig. 1)

U(t)Ola) = OU(—t)|a). (1.19)

For an infinitesimal evolution U(§t) ~ 1 — iHdt/h,
Eq. (1.18) leads to —iHO® = OiH. If © is a unitary
operator, then we have —H©® = ©H. That is, if a state
has energy €, then its time-reversed state has energy —e.
This causes the eigen-energies to be bottomless, which is
unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or ro-
tation, preserves the squared modulus (a|a) of a quan-
tum state |a) if the system under consideration has that
symmetry. According to Wigner’s study, an operator of
transformation that preserves |(f|a)| can only be either
unitary or anti-unitary. Therefore, © must be an anti-
unitary operator, which can be written as

0 =UK, (1.20)

where U is a unitary operator, and K is a complex con-
jugate operator, Ki = —iK. As aresult, if H has TRS,
then

HO = OH. (1.21)

Note: even though [H,0] = 0, there is no conserved
quantity associated with TRS since U(t)O # QU ().
For states under TR, one has

(Bla) = (alB), or (Bla)*. (1.22)
Pf
(Bla) = (WKBIUKa) (1.23)
= (Ua|UB) (1.24)
— (a|B). QED (1.25)

For the matrix elements of an operator O, one has

(Bl0la) = (al0"0T0)8). (1.26)

Pf. ' We would try mot to use the dual operation of ©
explicitly. That is, © is only allowed to act on ket states.
First define |¥) = Of|3), or

Oly) = 0'e|), (1.27)
then (5| = (3|0, and
(Blola) = Gla) (1.28)
= (a]7) (1.29)
= (@|07'0'0|8). QED  (1.30)

If an operator O transforms under time reversal as,
o~'ote = +0, (1.31)

then (©a|0O|0a) = +(a|O|a).

1. Spinless state

Given a time-reversed state |1/~)> = O[¢), one expects

WO~y = (Ylrjv),
(WO~ 'pOl) = —(¥|p[v),

Since this is valid for every time-reversed state, we de-
mand

(1.32)
(1.33)

07 're = r, (1.34)
O 'p6 = —p. (1.35)

This also implies that the angular momentum operator
L = r x p changes sign under TR.

A spin-less state is described by a scalar function, and
this two relations can be satisfied with © = K (i.e. U =
1). Hence

Pr,t) =5 Oy t) = ¢t (r ). (136)
Given the Schrodinger equation,
0
H’l/)(I‘, t) = Zﬁ§¢(ra t)7 (137)
its complex-conjugate counterpart is,
Hy*(r,t) = m@(—t)w (r,t). (1.38)

That is ©*(r,t) evolves to —t the same way as ¥(r,t)
evolves to t. Hence, ¢*(r,t) is indeed a time-reversed
state.

For the Hamiltonian in Eq. (1.1), K "'HK = H (note
that K~! = K). However, for a crystal in a magnetic
field,

(p—qA)?

H:
2m

+ Vi (r), (1.39)



where ¢ = —e is the charge of an electron and A is the
vector potential, we have

(p+qA)?
2m

K 'HK = +Vi(r) # H. (1.40)
That is, the magnetic field breaks the TRS, as expected.

For a Bloch state, one has

V(1) 75 Oae(r) = Y (r). (1.41)

Under a translation,
TrYpk(r) = Yp(r +R) (1.42)
= e_ik'Rw;‘Lk(r). (1.43)

If the state is not degenerate, then according to Eq. (1.9),
¥*, (r) with the eigenvalue e =R could be identified as
Yn—x(r). That is (see Sec. 16.3 of Dresselhaus et al.,
2008),

Uk (r) = Yn—k(r). (1.44)

2. Spin-1/2 state

For a quantum state with spin, in addition to
Egs. (1.34), (1.35), we also require the spin operator un-
der TR to satisfy

07150 = —s. (1.45)
A spin-1/2 state is a two-component spinor, and the spin

operators s = %o‘, where o are the Pauli matrices,

Uz:((l) é),q,,:(? 0i>,az=<(l) _01)
(1.46)

Obviously, ® = K cannot satisfy Eq. (1.45), and a uni-
tary rotation U (not operating on r and p) in © = UK
is required.

From Eq. (1.45), one has

5:0 = —Osy, (1.47)
5,0 = —0Osy, (1.48)
5,0 = —0Os,. (1.49)

Using the standard representation for Pauli matrices in
Eq. (1.46), where only o, has complez matrix elements,
we have

o, U = —Uoy, (1.50)
oy,U = +Uay, (1.51)
o, U = —Uo,. (1.52)

U is a 2 X 2 matrix (for spin-1/2 states), which can be
expanded by Pauli matrices. Since U anti-commutes with
Oz, but commutes with o,, the equations above can

be satisfied with U = oy, or U = ei‘sqy7 where § is an
arbitrary phase. A popular choice of € is —i. Thus,

. 0 -1
@zoyK(l 0 )K.

(1.53)

Other choices of €? are allowed, such as +i or 1.
In general, for a state with spin quantum number j,
which can be an integer or a half-integer,
O =c /K, (1.54)

in which J,, is a spin operator (Sakurai, 1985). For spin
1/2,

O=¢""K = _ig,K. (1.55)
A Bloch state with spin-1/2 transforms as
<¢k¢)ﬂ9<¢kT>(_¢§¢). (1.56)
Pkl Pkl +Pks

Applying the time-reversal transformation twice gives
0% =-1.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying
the TR transformation twice gives ©% = 1. However, if
a particle has half-integer spin, then

0% = 1. (1.57)

This fact is crucial to the existence of the Kramer de-
generacy: If a system has TRS and its spin is a half-
integer, then eigenstates ¥ and 1 are degenerate and
orthogonal to each other.
Pf. Since HO = ©H, so if ¢ is an eigenstate with energy
e, Hiy = e, then

HOY =0Hy = 0. (1.58)
That is, ©1 is also an eigenstate with energy e.
Furthermore, using the identity (5|a) = (&|8), one has

(Y|0y) = (0(69)|6Y) (1.59)
= —(¥|6y), (1.60)
in which ©2 = —1 has been used to get the second equa-

tion. Therefore, (|0v) = 0. QED.

For example, if a Bloch state 1,k has energy ek,
then its time-reversed state Oupir = —¢n_k (see
Eq. (1.56)) has energy €, k|, and with time reversal sym-
metry, enkt = €n—k, (Kramer degeneracy).

For a solid with space inversion symmetry, one has
En—ks = €nks (8 =1 or |). When the solid has both TR
and ST symmetries, there is a two-fold degeneracy at each
k-point,

(1.61)

Enks = €n—k—s = Enk—s-
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FIG. 2 (a) The TRIM are shown as black and white dots in
the first Brillouin zone. Only four of them (black dots) are
independent. (b) The Bloch energy levels of a system with
time-reversal symmetry but without space-inversion symme-
try.

An energy band thus has a global two-fold degeneracy
over the whole Brillouin zone.

On the other hand, if there is TRS but no SIS, so that
€n—ks 7 Enks, then the two-fold degeneracy at a k-point
is not guaranteed, except at the k-point that differs from
—k by a reciprocal lattice vector G,

k=-k+G. (1.62)

These k-points are called time-reversal-invariant mo-
menta (TRIM), see Fig. 2(a). At a TRIM,

€nks = En—k—s = €n,—k+G,—s — Enk—s- (163>

Typical TRIM are located at the corners of a BZ, k =
G/2. They play important roles in the theory of topo-
logical insulator.

Note: For a crystal without space-inversion symmetry,
we often still have e,x = e,k (Fig. 2(b)). This is
due to the fact that, with time-reversal symmetry,
€nks = €n_k_s. In the absence of spin-orbit interaction
(SOI), e1—x—s = €n—ks and we have a symmetric energy
spectrum with global two-fold degeneracy. A SOI breaks
the two-fold degeneracy (except at TRIM), but the
energy spectrum still looks symmetric because of the
Kramer degeneracy.

Exercise

1. Suppose @ = UK is an anti-unitary operator, prove

that Q2 can only be 4+1 or —1.

Hint: Since performing @ twice would get us back to

the original state, differing at most by a phase factor, we

can assume Q2 = €. Check the consistency between

mathematical operations to find out e®.

2. Show that, if an operator O transforms as,
elofe =0, (1.64)

and ©2? = —1, then (1|0]|©y) = 0.

For example, if an electron is scattered by a scalar po-
tential V' (r), then to the first-order approximation (Born
approximation), the scattering amplitude for ¢ being
scattered to its time-revered state is zero, (@¢|V]y) = 0.
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