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I. 2D TOPOLOGICAL INSULATOR

A. Z2 topological number in topological insulator

1. Spinor Bloch state with time-reversal symmetry

The spin of an electron in a solid is often coupled with
the electron’s orbital motion via the spin-orbit inter-
action (SOI),

Hso = λsoσ × p · ∇VL, λso =
eℏ

4m2c2
, (1.1)

where VL is the lattice potential. Such an interac-
tion is invariant under time-reversal symmetry (TRS),
and invariant under space-inversion symmetry (SIS) if
VL(−r) = VL(r). Because of the SOI, Bloch states ψnk±,
which are energy eigenstates, are in general not spin
eigenstates ψnk↑/↓.

Recall that the TR operator for fermion is,

Θ = iσyK, Θ
2 = −1. (1.2)

In the presence of TRS, if the Bloch states are topologi-
cally trivial, then one can choose{

Θψnk+ = −ψn−k−,
Θψnk− = +ψn−k+.

(1.3)

The − sign in front of ψ−k,− is necessary because Θ2 =
−1.
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FIG. 1 (a) Time reversal conjugate pairs and effective Bril-
louin zone. (b) Folding the EBZ into a cylinder, with open
edges.

The Bloch states, which are spinors now, are of the
form,

ψnk+(r) = eik·r [+ank(r)χ↑ + bnk(r)χ↓] , (1.4)

ψnk−(r) = eik·r [−b∗nk(r)χ↑ + a∗nk(r)χ↓] , (1.5)

where ank, bnk are cell-periodic functions, and χ↑ =
(1, 0)T , χ↓ = (0, 1)T . If the SOI is weak, then |bnk(r)| ≪
1, so that (+,−) ≃ (↑, ↓). It is not uncommon to refer to
± simply as spin up/down.
If the Bloch states are topologically non-trivial, then

one needs to write{
Θψnk+ = −eiχn−kψn−k−,
Θψnk− = +eiχnkψn−k+.

(1.6)

It’s possible not to have such a phase (in the so-called
TR-smooth gauge). However, this would result in
points of gauge singularity within the BZ.

2. Chern number

To understand the topology in topological insulator
(TI), we follow Moore and Balent’s argument for 2D
TI (Moore and Balents, 2007). Because of time-reversal
symmetry, the degenerate Bloch states for k and −k in a
Brillouin zone are time-reversal conjugate (see Fig. 1(a)).
As their Berry curvatures cancel with each other, the first
Chern number for a filled band vanishes. Since the do-
main of independent Bloch states cover only half of the
BZ (called effective Brillouin zone, or EBZ), one may
wonder if the integral of the Berry curvature over the
EBZ could be quantized.
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Unfortunately, since the EBZ does not form a closed
surface (see Fig. 1(b)), no quantization is guaranteed.
To fix this, one can put two caps with TR conjugation to
close the EBZ. This closed surface should have an integer
C1, but its value depends on the caps of choice. Never-
theless, Moore and Balents proved that, because of the
TR conjugation, the caps can only change C1 by an even
integer. That is, C1 mod 2 is independent of the caps
of choice. Therefore, C1 mod 2 should be an intrinsic
property of the EBZ itself. We thus have two topologi-
cal classes: 0 being the usual insulator, and 1 being the
topological insulator. Hence, a 2D TI is characterized by
a Z2 topological number.

3. Winding number

Fu and Kane showed that the Z2 topological num-
ber can be related to the winding number between two
patches of gauge (Fu and Kane, 2006), which we now
explain.

First, instead of Eq. (1.6), we will adopt the TR-
smooth gauge, {

Θψnk+ = −ψn−k−,
Θψnk− = +ψn−k+.

(1.7)

As a result, the phases of Bloch states cannot be uniquely
defined over the whole BZ. As in the case of the mag-
netic monopole in Chap ??, we need to use more than
one patch of gauge to get rid of singularity. This is the
topological obstruction mentioned earlier.
Fig. 2 shows the EBZ covered by two patches of gauge.

Along their boundary, the wave functions are connected
by gauge transformation,

|ukα⟩B = Uαβ |ukβ⟩A, (1.8)

where U is a U(2) matrix. Again we consider only one
Kramer pair for simplicity, so that the Berry connection
is a 2× 2 matrix.
Recall that the Berry connection and Berry curvature

for band n are,

An
αβ(k) = i⟨unkα|

∂

∂k
|unkβ⟩, (1.9)

Fn
kℓ = ∂kA

n
ℓ − ∂ℓA

n
k − i[An

k ,A
n
ℓ ], (1.10)

where α, β are “spin” indices ±, and k, ℓ are space indices
1,2,3. Under a gauge transformation,

AB
ℓ = U†AA

ℓ U+ iU† ∂

∂kℓ
U. (1.11)

The topology of the Bloch states can be characterized by
the winding number w of the U(1) phase of U around the
closed loop ∂A in Fig. 2,

w =
1

2πi

∮
∂A

dk · tr
(
U† ∂

∂k
U

)
. (1.12)
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FIG. 2 Two patches of gauge in the EBZ.

Taking the trace of Eq. (1.11), we have

w =
1

2π

∮
∂A

dk ·
(
AA −AB

)
, (1.13)

in which AA/B ≡ tr A⃗A/B .
Since |uAkα⟩ is smoothly defined inside A, one has∮

∂A

dk ·AA =

∫
A

d2k FA
z . (1.14)

The same cannot be done for |uBkα⟩, since it is not
smoothly defined in A. Instead, we write∮

∂A

dk ·AB =

∮
∂EBZ

dk ·AB −
∮
∂B

dk ·AB

=

∮
∂EBZ

dk ·AB −
∫
B

d2k FB
z .(1.15)

Finally, combine Eqs. (1.14) with (1.15), we have (Fu
and Kane, 2006),

w =
1

2π

(∫
EBZ

d2k Fz −
∮
∂EBZ

dk ·A
)
mod 2. (1.16)

A modulo operation is imposed, since the second term
is only gauge invariant modulo 2. This expression of
w is different from the Chern number in systems with
quantum Hall conductance, which only has the first term,
and is an integral over a closed surface (the whole BZ).
Eq. (1.16) looks like the generalized Gauss-Bonnet

formula for an open 2D surface M , in which the Berry
curvature is replaced by the Gaussian curvature G, and
the Berry connection is replace by the geodesic curvature
kg of the boundary,

χ =
1

2π

(∫
M

d2r G−
∮
∂M

dr kg

)
. (1.17)

For example, for a torus, χ = 0, for a disk-like surface
(which has a boundary), χ = 1, and for a sphere, χ = 2.

4. Z2 topological number again

Fu and Kane found yet another way of calculating the
Z2 index (Fu and Kane, 2006). Its deduction is less
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FIG. 3 The first quadrant of the Brillouin zone in a 2D lattice
model. The four corners are the TRIM.

straightforward compared to the ones above, so here we
will not explain how it is derived. Detailed explanation
can be found in another set of my note.

Let’s consider N filled Kramer pairs of Bloch bands in
an insulator, and introduce the following quantity,

wmα,nβ(k) ≡ ⟨um−kα|Θ|unkβ⟩, n = 1, · · · , N ;α, β = ±
(1.18)

They are the matrix elements of a 2N×2N matrix, often
called the sewing matrix. Since the Bloch states from
different bands are orthogonal to each other, one has

wmα,nβ(k) = δmnwnαβ(k). (1.19)

For example, for one Kramer pair, the sewing matrix is

wn =

(
0 eiχnk

−eiχn−k 0

)
. (1.20)

At a TRIM, it becomes an antisymmetric matrix,

wn = wn(Λ)

(
0 1
−1 0

)
, wn(Λ) ≡ eiχnΛ . (1.21)

For filled bands at each TRIM, one can define

δi =
∏

n filled

wn(Λi)√
w2

n(Λi)
. (1.22)

Note that if the argument of a complex number z = reiθ

is restricted to [0, 2π), then
√
z2 has two possible values:

If θ ∈ [0, π), then

z√
z2

=
reiθ

r (e2iθ)
1/2

= 1. (1.23)

However, if θ ∈ [π, 2π), then

z√
z2

=
rei(π+θ̃)

r
(
e2iθ̃

)1/2
, θ̃ ∈ [0, π] (1.24)

= −1. (1.25)

Thus, z/
√
z2 can be +1 or −1. That is, the δi above is

product of +1 and −1.
Finally, the Z2 topological index ν of a topological in-

sulator is related to δi’s,

(−1)ν = δ1δ2δ3δ4. (1.26)

d<dc d>dc

CdTe CdTeHgTe CdTe CdTeHgTe

FIG. 4 HgTe is sandwitched between CdTe, forming a quan-
tum well. The positions of the discrete energy levels in the
QW depend on the width of the QW.

5. Lattice with inversion symmetry

Even though ν is known to have two possible values,
0 and 1, it is not easy to get explicit values of χnΛi .
Fortunately, if the lattice has space inversion symmetry
(SIS), then we can determine ν from the parity ζn(Λi) of
the Bloch state ψnΛi± at TRIM.
If the lattice has SIS, then ψnkα are parity eigenstates

at k = Λi,

ΠψnΛiα(r) = ζnΛi
ψnΛiα(r). (1.27)

The parity eigenvalue ζnΛi
= 1 or −1 is the same for the

two Bloch states (with α = ±) in a Kramer pair. Fu
et al., 2007 showed that

wn(Λi) = ζn(Λi), (1.28)

hence

δi =
∏

n∈filled

ζn(Λi). (1.29)

It is the cumulative parity of filled Bloch states (pick only
one ζn(Λi) for each Kramer pair) at a TRIM. Finally,

(−1)ν =

4∏
i=1

δi. (1.30)

Band inversion often results in a change of the parity ζn,
and this results in topological phase transition. For a
crystal without inversion symmetry, one can deform it to
one that has SIS and determine its ν by parities. This
is a valid shortcut only if the energy gap remains open
during the process of deformation.

B. Bernevig-Hughes-Zhang model

There is a close relation between the topology of en-
ergy band and the band inversion (negative energy gap)
near the chemical potential. The first experimentally
confirmed (2D) TI is made from semiconductor quan-
tum well. Bulk HgTe has inverted band structure (due
to spin-orbit coupling) near the Fermi energy. Unfortu-
nately, it’s a metal, not an insulator. Nevertheless, one
can sandwitch it between CdTe (an ordinary insulator),
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FIG. 5 Typical energy bands near the energy gap of a semi-
conductor, in which each line is two-fold degenerate. The
conduction band is originated from the s-orbital. The va-
lence band from the p-orbitals are composed of heavy-hole
(HH) band, light-hole (LH) band, and spin-orbit split-off (SO)
band.

forming a quantum well (QW) and opening an energy
gap near the Fermi energy (see Fig. 4). When the HgTe
layer is thick, the discrete QW energy levels remain in-
verted, similar to the bulk states. However, if the HgTe
layer is thinner than a critical width dc, then the electron
(E1) and hole (H1) levels in the QW would switch posi-
tions. Therefore, one can check if the topology of the QW
states (signified by the emergence of helical edge states)
depends on the width of the QW (König et al., 2007).

Typical semiconductor band structure near k = 0 is
shown in Fig. 5. In a QW, the LH bands split off the
HH bands, so in the simplified Bernevig-Hughes-Zhang
(BHZ) model, only conduction band and one HH valence
band are considered (each are two-fold degenerate). In
order to investigate the parities of Bloch states at TRIM,
we follow the lattice version of the BHZ model proposed
by Fu and Kane, 2007 (also, see Nomura, 2016)

For an atom at site R, four states are considered,

|s ↑⟩, |s ↓⟩, |px + ipy ↑⟩, |px − ipy ↓⟩. (1.31)

Without ambiguity, one can write |px + ipy ↑⟩ and |px −
ipy ↓⟩ simply as |p ↑⟩ and |p ↓⟩. They are the states with
quantum numbers mj = 3/2 and mj = −3/2.

We consider only the electron hopping between nearest
neighbors. The relevant parameters are on-site energies
εs, εp, and hopping amplitudes tss, tpp, and tsp (and its
complex conjugate tps), see Fig. 6. In a 2D square lat-
tice, the vectors R + aµ (µ = ±x,±y) point to the four
nearest neighbors of R. The tight-binding Hamiltonian
is therefore given as,

H = H0 +H1,

H0 =
∑

Rσ=±

(εs|Rsσ⟩⟨Rsσ|+ εp|Rpσ⟩⟨Rpσ|) ,(1.32)

sp
t

s px±ipy

(a)

(b)

, ,

ss pp sp
t t t

R R aµ+

,

s p
ε ε

FIG. 6 (a) The hopping amplitude of an electron hopping
from a s-orbital to the px ± ipy orbitals of a nearest-neighbor
atom is designated as tsp. (b) Each atom has s-orbital and p-
orbital, with energies εs and εp. An electron can hop between
s-orbitals, between p-orbitals, or between an s-orbital and a
p-orbital.

and (given tps = tsp)

H1 = −
∑
Rσ

∑
µ=±x,±y

(tss|R+ aµsσ⟩⟨Rsσ| (1.33)

− tpp|R+ aµpσ⟩⟨Rpσ|
+ eiθµσtsp|R+ aµsσ⟩⟨Rpσ|
+ e−iθµσtsp|Rpσ⟩⟨R+ aµsσ|

)
,

where θµ = ∠(x̂,aµ). That is, θx = 0, θy = π/2, θ−x =
π, θ−y = 3π/2. Such a system has both TRS and SIS
(details later).

Because of the lattice translation symmetry, the
Hamiltonian can be diagonalized using the momentum
basis. We therefore introduce the Fourier transformation
(N is the total number of lattice sites),

|Rsσ⟩ =
1√
N

∑
k

eik·R|ksσ⟩, (1.34)

|Rpσ⟩ =
1√
N

∑
k

eik·R|kpσ⟩, (1.35)

and get (the lattice constant is set as one)

H =
∑
k

(⟨ks ↑ |, ⟨ks ↓ |, ⟨kp ↑ |, ⟨kp ↓ |)H(k)


|ks ↑⟩
|ks ↓⟩
|kp ↑⟩
|kp ↓⟩

 ,

where

H(k) (1.36)

=

(
εs − 2tss(cos kx + cos ky) 2tsp(σz sin ky − i sin kx)
2tsp(σz sin ky + i sin kx) εp + 2tpp(cos kx + cos ky)

)
.
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Or,

H(k) =

[
εs + εp

2
− (tss − tpp)(cos kx + cos ky)

]
1⊗ 1

+

[
εs − εp

2
− (tss + tpp)(cos kx + cos ky)

]
τz ⊗ 1

+ 2tsp sin kxτy ⊗ 1 + 2tsp sin kyτx ⊗ σz. (1.37)

The Pauli matrices τx,y,z are for the orbital degree of
freedom, and σx,y,z are for the spin degree of freedom.

1. Time reversal and space inversion

Time reversal flips spin, but not orbital, therefore it
acts only on the spin degree of freedom. The TR operator
is thus,

Θ =

(
iσyK 0
0 iσyK

)
= 1⊗ iσyK. (1.38)

The s-orbital is even under space inversion, while the
p-orbital is odd under SI. That is,

Π|ksσ⟩ = |ksσ⟩, (1.39)

Π|kpσ⟩ = −|kpσ⟩. (1.40)

Therefore,

Π =

(
1 0
0 −1

)
= τz ⊗ 1. (1.41)

One can check that the Hamiltonian H(k) is indeed in-
variant under these two transformations,

ΘH(k)Θ−1 = H(−k), (1.42)

ΠH(k)Π−1 = H(−k). (1.43)

2. Z2 topological number

Since the BHZ model has SI symmetry, one can calcu-
late the Z2 topological number from the parities of the
Bloch states at TRIM (see Fig. 3(b)). At a TRIM, the
first line of Eq. 1.37 contributes a constant energy shift
and can be ignored, and the third line is zero. Therefore,

H(Λ1) =

[
εs − εp

2
− 2(tss + tpp)

]
τz ⊗ 1, (1.44)

H(Λ2) =

(
εs − εp

2

)
τz ⊗ 1, (1.45)

H(Λ3) =

(
εs − εp

2

)
τz ⊗ 1, (1.46)

H(Λ4) =

[
εs − εp

2
+ 2(tss + tpp)

]
τz ⊗ 1. (1.47)

Note that they are proportional to the parity operator,

H(Λi) = giΠ, Π = τz ⊗ 1. (1.48)

Λ

(a) (b)

( )kε

k

µ

FIG. 7 (a) In real space, there is a helical edge state along
the boundary of a 2D TI. (b) In momentum space, the en-
ergy dispersion curves of the edge states cross each other at
a TRIM.

Hence, an energy eigenstate at Λi is also a parity eigen-
state,

Πψ = ζψ ↔ H(Λi)ψ = (giζ)ψ. (1.49)

Let’s assume εs > εp in the following discussion. If
εs − εp > 4(tss + tpp) > 0, then the energies at Λ1 are

ε1+ = +

[
εs − εp

2
− 2(tss + tpp)

]
, (1.50)

ε1− = −
[
εs − εp

2
− 2(tss + tpp)

]
. (1.51)

The degenerate eigenstates ψ1+ have even parity, while
ψ1− have odd parity. Only the state ψ1− is filled, so
δ(Λ1) = −1. Similarly, one can also get δ(Λ2) = δ(Λ3) =
δ(Λ4) = −1. Therefore,

(−1)ν = 1, or ν = 0. (1.52)

This is a trivial insulator.
On the other hand, if εs − εp < 4(tss + tpp), then

ε1− > ε1+. Due to the band inversion, now the states
ψ1+ are filled instead. Therefore, δ(Λ1) = 1. The other
three parities are not changed. As a result,

(−1)ν = −1, or ν = 1. (1.53)

This is a topological insulator.
At the critical point, εs − εp = 4(tss + tpp), the en-

ergy gap closes. The transition from the trivial phase to
the topological phase is accompanied by an inversion of
energy bands, when ε+ and ε− switch positions.

3. Orbital basis versus spin basis

Note that in Eq. 1.36, every 2× 2 block of the Hamil-
tonian matrix is diagonal. In this case, it is possible to
block-diagonal the 4×4 matrix by re-arranging the order
of the basis,

|s ↑⟩, |s ↓⟩; |p ↑⟩, |p ↓⟩ (1.54)

→ |s ↑⟩, |p ↑⟩; |s ↓⟩, |p ↓⟩. (1.55)

For convenience, we call the first choice the orbital basis,
and the second the spin basis.
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FIG. 8 Comparison of the edge states in (a) 2D topological
insulator, and (b) 2D trivial insulator.

Under the spin basis, the Hamiltonian becomes (first
switch the 2nd and the 3rd rows, then switch the 2nd
and the 3rd columns of the matrix)

H(k) =

(
h(k) 0
0 h∗(−k)

)
, (1.56)

where

h(k)

=

(
εs − 2tss(cos kx + cos ky) 2tsp(−i sin kx + sin ky)
2tsp(i sin kx + sin ky) εp + 2tpp(cos kx + cos ky)

)
= ε0(k) + 2tsp sin kxτy + 2tsp sin kyτx

+

[
εs − εp

2
− (tss + tpp)(cos kx + cos ky)

]
τz. (1.57)

Because of the block diagonalization, the up and down
spins are explicitly decoupled.

Note that the TR and SI operators also are altered
under the new basis. They now become

Θ = iσyK ⊗ 1, Π = 1⊗ τz. (1.58)

4. QWZ model versus BHZ model

When written in the block-diagonal form, the Hamil-
tonian h(k) is similar to the QWZ model Hamiltonian for
the QAHE (see ??). That is, the BHZ model is composed
of two independent QWZ subsystems, h(k) and h∗(−k).
One can write

h(k) = ε0(k) + d(k) · τ , (1.59)

then the Hall conductivity of the subsystem is,

σxy = −e
2

h

1

4π

∫
BZ

d2k
1

d3
d · ∂d

∂kx
× ∂d

∂ky
. (1.60)

One can check that if εs − εp > 4(tss + tpp), then the
signs of dz(k) are all positive at the TRIM (analogous
to Fig. ??(a)). If εs − εp < 4(tss + tpp), then dz(Λ1)
becomes negative, while the other three signs remain the
same (see Fig. ??(b)). According to the analysis of the
QAHE in ??, the first case has σxy = 0, while the second
case has σxy = e2/h.

When the subsystem is in the QAH phase, accord-
ing to the discussion in ??, it has chiral edge states.
Since this subsystem consists only of spin-up electrons
(see Eq. 1.55), the edge-state electrons are spin-up. On
the other hand, the conjugate subsystem h∗(−k) has
σxy = −e2/h. Its edge electrons transport along the
opposite direction and the spins are down (see Fig. 7(a)).

In momentum space, the energy dispersion of the edge
state is linear in the small k-limit. One has positive slope
(positive velocity), and the other has negative slope (neg-
ative velocity), see Fig. 7(b). Because of the Kramer de-
generacy, these two dispersion curves have to cross each
other at a TRIM. This point degeneracy can be lifted
only if the TRS is broken.

The topological phase of the BHZ model is called a 2D
TI phase, aka a quantum spin Hall (QSH) phase. Its
edge state, with one spin moving along one direction, and
the opposite spin moving along the opposite direction, is
called a helical edge state. It is robust in the sense
that, even if there is a non-magnetic impurity Vimp(r)
blocking the way, the electron will not be back scattered
since that requires a spin flip.

In general, if one plots a horizontal line (chemical po-
tential) inside the energy gap, then it would cut the edge
states of a TI odd number of times (Fig. 8(a)). For a triv-
ial insulator, the chemical potential would cut its edge
states even number of times (Fig. 8(b)). The former can-
not be avoided by shifting or distorting the energy levels
of edge states, while the latter can be avoided. Thus,
the edge states in TI are robust, while those in trivial
insulator are not.

Some proposed materials for 2D topological insulator
are 2D transition metal dichalcogenides (such as the 1T’
form of WTe2) (Cazalilla et al., 2014, Qian et al., 2014),
and single-layer ZrTe5 (Weng et al., 2014, Li et al.,
2016). Several experimental reports can be found in,
e.g., Fei et al., 2017, Wu et al., 2018, and Ugeda et al.,
2018.

Exercise
1. Start from the tight-binding Hamiltonian in
Eqs. (1.32) and (1.33), switch to the momentum basis,
and verify Eq. (1.36).
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