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I. QUANTUM ANOMALOUS HALL EFFECT

A. Qi-Wu-Zhang model

The Hall effect in a metallic ferromagnet is called
anomalous Hall effect (AHE). In the usual Hall effect,
the trajectory of an electron is deflected in an external
magnetic field due to the Lorentz force. However, in a
ferromagnet that hosts the AHE, exchange interaction
would generate an effective magnetic field that is much
stronger than an applied magnetic field. Therefore, the
band structure, and the electron motion, is strongly in-
fluenced by the magnetization of the ferromagnet.

The AHE can be caused by the Berry curvature of the
modified Bloch band, which is an intrinsic effect. It can
also be caused by scatterings with impurities (that lead to
skew scatterings or side jumps). In order for the electron
motion to couple with the direction of the majority spin

FIG. 1 A comparison between quantum Hall effect and quan-
tum anomalous Hall effect.

(magnetization), spin-orbit coupling is required in AHE.
For a comprehensive review on the AHE, see Nagaosa
et al., 2010.
Since the intrinsic AHE is due to the Berry curvature,

we can expect quantized Hall conductivity from a filled
band in a 2D system, if that band has a non-zero Chern
number. To engineer a topological band, one can utilize
the surface states of a topological insulator (Yu et al.,
2010). Dope the surface states with magnetic elements,
then under proper condition, exchange field combined
with spin-orbit coupling could generate quantized Hall
conductivity. This proposal was first realized in Chang
et al., 2013. For subsequent experimental works, see
Halperin, 2015, Chang and Li, 2016, or Zhao et al., 2020.
Fig. 1 shows a comparison of the Hall plateaus in QHE
and QAHE.
In this section, we introduce a simple 2D model pro-

posed by Qi, Wu and Zhang to illustrate the connection
between Berry curvature and AHE (Qi et al., 2006). The
fermions are living on a 2D square lattice, and each lat-
tice point is allowed to have two degrees of freedom (spin,
or quasi-spin). The Qi-Wu-Zhang model has the Hamil-
tonian,

H(k) = H0 + Hm + Hso, (1.1)

H0 = ε0(k) +

t

(
2− cos kxa− cos kya 0

0 −(2− cos kxa− cos kya)

)
,

Hm = m

(
1 0
0 −1

)
,

Hso = λ

(
0 sin kxa− i sin kya

sin kxa+ i sin kya 0

)
.

Hm is a mass term (due to exchange interaction) that
opens an energy gap, and Hso is a spin-orbit coupling.
In short,

H(k) = ε0(k) + h(k) · σ, (1.2)

where

h(k) =

λ sin kxa, λ sin kya,m+ t

2∑
j=1

(1− cos kja)

 .

(1.3)
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FIG. 2 (a) Dispersion of energy bands at m = 0 and m = −2.
(b) The first Chern number is changed when the energy gap
is closed at critical values of m.

The eigen-energies are,

ε±(k) = ε0(k)± |h(k)|. (1.4)

For simplification, we will set t, a = 1. It is not difficult
to see that,

k0 = 0 → ε±(k0) = ε0 ±m, (1.5)

k0 = (π, 0), (0, π) → ε±(k0) = ε0 ± |m+ 2|, (1.6)

k0 = (π, π) → ε±(k0) = ε0 ± |m+ 4|. (1.7)

The energy gap closes at m = 0,−2, and −4. We will see
that the topology of the Bloch states changes at these
critical points, when the energy gap closes (Fig. 2).

The distribution of the h(k) vectors in the BZ changes
when an energy gap closes, see Fig. 3. Depending on the
value of m, there are four different regimes:
1) m > 0 : hz(k) > 0 over the whole BZ.
2) −2 < m < 0 : hz(k) < 0 near k = 0.
3) −4 < m < −2 : hz(k) > 0 near k = (π, π) (and its
equivalent points).
4) m < −4 : Hz(k) < 0 over the whole BZ.

The h in Eq. (1.2) is the “magnetic field” for the quasi-
spin. In case (1), the magnetic field only sweeps over the
northern hemisphere when k scans over the BZ. Accord-
ing to the analysis in ??, we need only one gauge AN (k)
for the whole BZ. Therefore, the topology is expected to
be trivial and the Hall conductivity σH = 0.
In cases (2) and (3), hz changes sign, so that h sweeps

through the whole sphere, and two gauges, AN and AS

are required to avoid the singularity. Therefore the topol-
ogy is non-trivial and σH ̸= 0.
Case (4) is similar to Case (1), but h sweeps over the

southern hemisphere only. The topology is again trivial
and σH = 0.

From such an analysis, we can see that both the mag-
netization m, which causes band inversion, and the spin-
orbit coupling λ, are essential to the appearance of the
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FIG. 3 Distribution of h(k) vectors in the BZ. Only the signs
of hz(k) are shown.

QAHE. Without band inversion or SOC, one cannot have
the nontrivial topology.

The simple picture presented above can be verified by
actual calculation of σH . First, we show that (Nomura,
2013)

F±
z (k) = ∓ 1

2h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.8)

Pf: The Berry connections in k-space are,

A±
ℓ (k) = i⟨h,±| ∂

∂kℓ
|h,±⟩ (1.9)

=
∂hα
∂kℓ

i⟨h,±| ∂

∂hα
|h,±⟩ (1.10)

=
∂hα
∂kℓ

a±α (h), (1.11)

where a± are the Berry connections in h-space. There-
fore, the Berry curvatures in k-space are,

F±
z (k) =

∂A±
y

∂kx
− ∂A±

x

∂ky
(1.12)

=
∂

∂kx

(
∂hβ
∂ky

a±β

)
− ∂

∂ky

(
∂hα
∂kx

a±α

)
(1.13)

=
∂hα
∂kx

∂hβ
∂ky

(
∂a±β
∂hα

− ∂a±α
∂hβ

)
(1.14)

=
∂hα
∂kx

∂hβ
∂ky

εαβγf
±
γ (1.15)

= ∓ 1

2h3
h · ∂h

∂kx
× ∂h

∂ky
, (1.16)

in which f±γ = ∓hγ/2h3 are the Berry curvatures in h-
space. End of proof.

Suppose the lower band is completely filled, and the
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FIG. 4 Mapping a small area d2k in the 2D BZ to a small
area d2S on the surface of h(k). Its solid angle dΩ is equal to

the area of ĥ · d2S projected on a unit sphere S2
1 .

upper band is empty, then

σH =
e2

h

1

2π

∫
BZ

d2kF−
z (k) (1.17)

=
e2

h

1

4π

∫
BZ

d2k
1

h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.18)

In the integrand, ĥ ·
(

∂h
∂kx

dkx

)
×
(

∂h
∂ky

dky

)
is actually

the area ĥ · d2S on the h-surface in Fig. 4. After being
divided by h2, it becomes the solid angle dΩ extended by
that area. Since the BZ is a closed surface (a 2D torus,
or T 2), under a continuous mapping, it would map to a
closed surface in h-space (see Fig. 5). The integral in
Eq. (1.18) gives the total solid angle extended by that
h-surface. For a closed surface, it must be an integer
multiple of 4π, thus

σH = w
e2

h
,w ∈ Z. (1.19)

The integer w, which is equal to the first Chern num-
ber C1, is the number of times the h-surface wraps over
a unit sphere S2

1 . It characterizes the topology of the
mapping (and the Bloch states) and is called the wind-
ing number (or wrapping number). We emphasize that
w is an integer only if the base space is a closed surface
(in this case, T 2), which requires the valence band to be
completely filled (that is, an insulator).

In addition, one could apply an external magnetic field
to the QAH insulator (aka Chern insulator). Then
there will be orbital quantization and Landau levels in
energy spectrum. Interested readers can consult p. 103
of Bernevig and Hughes, 2013 for more details.

B. Edge state in Qi-Wu-Zhang model

Topological materials (insulators) have an important
property: their surface states are stable against perturba-
tions. They can be destroyed only if the energy gap of the
bulk bands closes so that the topology of the electronic
states is trivialized. In general, the interface between two

FIG. 5 The line segment kx ∈ [−π, π] in a BZ would map to
a closed loop in h-space. As one sweeps the line segment from
ky = −π to ky = 0, the loop in h-space sweeps out a torus-
like structure, as shown in the figures. Further advancement
of ky from 0 to π would map out another half of the torus
(not shown for the sake of clarity). The winding number w
depends on whether the origin is enclosed in the torus-like
structure or not. In (a) and (d) (for m < −4 and m > 0),
the origin is outside of the surface, so w=0. In (b) and (c)
(for m = −3 and m = −1), the winding numbers are −1 and
+1 respectively (not easily seen, though). [These figures are
from Asbóth et al., 2013]

materials with different topologies would have robust in-
terface states. A heuristic explanation is as follows: to
go from one material to another, the spatial-dependent
energy gap (in the sense of the Thomas-Fermi approx-
imation) needs to close near the interface, otherwise it
is simply impossible for the topology to change. This
gapless region is where the surface states reside.

Take the 2D QWZ model as an example. Divide the
space to two parts where

m(x)

{
> 0 for x > 0,
< 0 for x < 0,

(1.20)

so that there is a 1D boundary along the y-axis (see
Fig. 6(a)). For simplicity, consider only the small k limit,

H(k) = ε0 +

(
m λ(kx − iky)

λ(kx + iky) −m

)
+O(k2).

(1.21)
The exact profile of m(x) does not matter, as long as
it is monotonic and smooth (compared to the electron
wavelength). To solve for the surface states, one needs
to re-quantize the Hamiltonian with the substitution k →



4

m<0 m>0

(a) (b)

m>0m>0 m<0

x

y

FIG. 6 (a) A topological phase occupies the left side of the
space. (b) A finite sample with two boundaries. The edge
states move in a definite direction along an edge.

1
i

∂
∂r , such that

H(p) = ε0+

 m(x) λ
(

1
i

∂
∂x − ∂

∂y

)
λ
(

1
i

∂
∂x + ∂

∂y

)
−m(x)

 . (1.22)

The x-directions extend to infinity on both ends, and
PBC is imposed along the y-direction.

We now solve the differential equation,

H(p)ψ(x, y) = εψ(x, y). (1.23)

Use the method of separation of variables and write

ψ(x, y) = ϕ1(x)ϕ2(y). (1.24)

Since the y-direction is invariant under translation, a
trivial solution is ϕ2(y) = eikyy, a plane wave. There-
fore, the equation for ϕ1(x) = (f(x), g(x))T is,(

m(x) λ
i

(
d
dx + ky

)
λ
i

(
d
dx − ky

)
−m(x)

)(
f
g

)
= εe(ky)

(
f
g

)
.

(1.25)
Eliminate g from the coupled equations to get

−λ2
(
d2

dx2
− k2y

)
f =

(
ε2e −m2

)
f. (1.26)

We have assumed that m(x) varies slowly so that dm/dx
can be neglected. It follows that the eigenvalue εe(ky) =
λky, and the eigenstate

ϕ1(x) = e−
1
λ

∫ x
0

dx′m(x′)

(
1
i

)
, (1.27)

which is localized near x = 0.
On the other hand, if

m(x)

{
> 0 for x < 0,
< 0 for x > 0,

(1.28)

then

ϕ1(x) = e
1
λ

∫ x
0

dx′m(x′)

(
1
−i

)
. (1.29)

is a localized eigenstate with εe(ky) = −λky.

Therefore, in a sample with finite width (see
Fig. 6(b)), the electrons on the right edge move with
velocity 1

ℏ
∂εe
∂ky

= λ/ℏ; the ones on the left move with

velocity −λ/ℏ. They are called chiral edge states. The
two edges can be treated as independent only if the strip
is wide enough (compared to the decay length of the edge
state) so that the edge states on two sides do not couple
with each other. In the small ky limit, the energy disper-
sion εe(ky) of the edge state is linear in ky. This is not
so for larger ky’s, where numerical calculation is required.

Exercise

1. The effective two-band Hamiltonian for graphene with
gapped Dirac points is

H0 = ℏvF (±kxτx + kyτy) +mv2F τz, near ±K, (1.30)

where vF is the Fermi velocity, τ is the quasi-spin for
orbital degrees of freedom (i.e., conduction and valence
bands), and ±K are the indices for two Dirac valleys.
(a) Find out the eigen-energies ε±(k) near the two Dirac
points and plot their energy dispersions. How large is the
energy gap?
(b) Find out the Berry curvatures F±K

z for the lower
energy bands ε− near +K and −K.
(c) What would the Berry curvatures become if the Dirac
points are gapless (i.e. m = 0)?
2. In Prob. 3 of Chap 2, we derived the effective Hamil-
tonian of an electron moving in a non-uniform magnetic
field B(r, t) = B0m̂(r, t),[

1

2m
(p− ℏAn)

2
+ ℏVn + εn

]
ψn = iℏ

∂ψn

∂t
, (1.31)

where Vn and An can be found there.
(a) Show that an electron with spin up/down feels an
effective electromagnetic field,

Ẽα = ∓1

2
m̂ · ∂m̂

∂rα
× ∂m̂

∂t
, (1.32)

B̃γ = ∓1

4
ϵαβγm̂ · ∂m̂

∂rα
× ∂m̂

∂rβ
. (1.33)

As a result, an electron with velocity v is subject to a
force ℏ(Ẽ+ v × B̃).
(b) A magnetic skyrmion is a topological spin texture
in magnetic materials. Because of the exchange inter-
action, the spin texture has an effective magnetic field
that can be identified with the B(r, t)-field above. Show
that a skyrmion moving rigidly (without change of shape)
with velocity vs generates an effective electric field that
is transverse to the direction of motion,

Ẽ = −vs × B̃, (1.34)

where B̃ is the effective magnetic field of a static
skyrmion.
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