Lecture notes on topological insulators

Ming-Che Chang

Department of Physics, National Taiwan Normal University, Taipei, Taiwan

(Dated: September 26, 2021)

Contents

I.	Review of Bloch theory
	A. Translation symmetry
	B. Time reversal symmetry
	1. Spinless state
	2. Spin-1/2 state
	3. Kramer degeneracy
	References

I. REVIEW OF BLOCH THEORY

A. Translation symmetry

For a perfect crystal with discrete translation symmetry, the Hamiltonian is

$$H = \frac{p^2}{2m} + V_L(\mathbf{r}), \text{ with } V_L(\mathbf{r} + \mathbf{R}) = V_L(\mathbf{r}), \quad (1.1)$$

in which $V_L(\mathbf{r})$ is the potential of the atomic lattice, and **R** is a **lattice translation vector**. Define a **lattice translation operator** $T_{\mathbf{R}}$ that acts on electronic states as follows,

$$T_{\mathbf{R}}\psi(\mathbf{r}) = \psi(\mathbf{r} + \mathbf{R}). \tag{1.2}$$

It can be shown that, because H has the translation symmetry,

$$T_{\mathbf{R}}H(\mathbf{r})\psi(\mathbf{r}) = H(\mathbf{r})T_{\mathbf{R}}\psi(\mathbf{r}).$$
(1.3)

That is, $[T_{\mathbf{R}}, H] = 0.$

Because $T_{\mathbf{R}}$ commutes with $H(\mathbf{r})$, one can find their simultaneous eigenstates,

$$H\psi = \varepsilon\psi, \qquad (1.4)$$

$$T_{\mathbf{R}}\psi = c_{\mathbf{R}}\psi, \qquad (1.5)$$

where ε and $c_{\mathbf{R}}$ are eigenvalues of H and $T_{\mathbf{R}}$, and $|c_{\mathbf{R}}| = 1$. Furthermore, successive translations satisfy

$$T_{\mathbf{R}}T_{\mathbf{R}'} = T_{\mathbf{R}'}T_{\mathbf{R}} = T_{\mathbf{R}+\mathbf{R}'}.$$
 (1.6)

This leads to

$$c_{\mathbf{R}}c_{\mathbf{R}'} = c_{\mathbf{R}'}c_{\mathbf{R}} = c_{\mathbf{R}+\mathbf{R}'}.$$
(1.7)

To satisfy these equations, $c_{\mathbf{R}}$ needs to be an exponential, $c_{\mathbf{R}} = e^{i\mathbf{k}\cdot\mathbf{R}}$. Therefore,

$$H\psi_{\varepsilon\mathbf{k}} = \varepsilon\psi_{\varepsilon\mathbf{k}}, \qquad (1.8)$$

$$T_{\mathbf{R}}\psi_{\varepsilon\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{\varepsilon\mathbf{k}}.$$
 (1.9)

The simultaneous eigenstate of H and $T_{\mathbf{R}}$ is called **Bloch** state.

If one writes the Bloch state in the following form,

$$\psi_{\varepsilon \mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\varepsilon \mathbf{k}}(\mathbf{r}), \qquad (1.10)$$

then Eq. (1.9) gives

1

 $\frac{1}{2}$

 $\frac{2}{3}$

3 4

$$u_{\varepsilon \mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{\varepsilon \mathbf{k}}(\mathbf{r}). \tag{1.11}$$

That is, a Bloch state is a plane wave times a **cellperiodic function** $u_{\varepsilon \mathbf{k}}(\mathbf{r})$. The latter contains, *in one unit cell*, all information of the Bloch state $\psi_{\varepsilon \mathbf{k}}$.

The Schrödinger equation for $u_{\varepsilon \mathbf{k}}$ is,

$$H_{\mathbf{k}}(\mathbf{r})u_{\varepsilon\mathbf{k}} = \varepsilon u_{\varepsilon\mathbf{k}},\tag{1.12}$$

in which

$$\tilde{H}_{\mathbf{k}}(\mathbf{r}) \equiv e^{-i\mathbf{k}\cdot\mathbf{r}}H(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$$
(1.13)

$$= \frac{1}{2m}(\mathbf{p}+\hbar\mathbf{k})^2 + V_L(\mathbf{r}). \qquad (1.14)$$

Since $u_{\varepsilon \mathbf{k}}$ can be restricted to one unit cell (with periodic boundary condition), we expect it to have discrete energy eigenvalues ε_n $(n \in Z^+)$ for each \mathbf{k} , and write

$$H_{\mathbf{k}}(\mathbf{r})u_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}u_{n\mathbf{k}}.$$
 (1.15)

The quantum numbers n and \mathbf{k} are called **band index** and **Bloch momentum**, and $\varepsilon_{n\mathbf{k}}$ are the energy dispersions of Bloch bands.

The Bloch state $\psi_{n\mathbf{k}}$ translates under **R** as (see Eq. (1.9)),

$$\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}(\mathbf{r}). \tag{1.16}$$

If one shifts the momentum \mathbf{k} by a reciprocal lattice vector \mathbf{G} , then since $e^{i\mathbf{G}\cdot\mathbf{R}} = 1$ (for any \mathbf{R}),

$$\psi_{n\mathbf{k}+\mathbf{G}}(\mathbf{r}+\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}+\mathbf{G}}(\mathbf{r}). \qquad (1.17)$$

Since the two Bloch states $\psi_{n\mathbf{k}}$ and $\psi_{n\mathbf{k}+\mathbf{G}}$ satisfy the same Schrödinger equation (with $\varepsilon_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}+\mathbf{G}}$) and the same boundary condition (Eqs. (1.16)and (1.17)), they can differ (for non-degenerate states) at most by a phase factor $\phi(\mathbf{k})$. For convenience, one can choose the **periodic gauge** with $\phi(\mathbf{k}) = 0$, $\psi_{n\mathbf{k}+\mathbf{G}} = \psi_{n\mathbf{k}}$. Note that for a quantum phase with non-trivial topology (such as the quantum Hall state), one can no longer set $\phi(\mathbf{k}) = 0$ for *all* \mathbf{k} . This is called **topological obstruction** (see Chap. ??). In any case, $\psi_{n\mathbf{k}}$ (or $u_{n\mathbf{k}}$) in the first Brillouin zone should contain enough information of the electronic state.

FIG. 1 Time reversal Θ of $|\alpha\rangle$ followed by $U(\delta t)$ (left), and $U(-\delta t)$ of $|\alpha\rangle$ followed by time reversal Θ (right). Both result in the same state.

B. Time reversal symmetry

Time reversal operator Θ maps a state to its timereversed state (or, motion-reversed state),

$$|\alpha\rangle \to |\tilde{\alpha}\rangle = \Theta |\alpha\rangle. \tag{1.18}$$

Naturally, if a dynamical system has time-reversal symmetry (TRS), then for a state $|\alpha\rangle$ evolving with $U(t) = e^{-iHt/\hbar}$, one expects (see Fig. 1)

$$U(t)\Theta|\alpha\rangle = \Theta U(-t)|\alpha\rangle. \tag{1.19}$$

For an infinitesimal evolution $U(\delta t) \simeq 1 - iH\delta t/\hbar$, Eq. (1.18) leads to $-iH\Theta = \Theta iH$. If Θ is a unitary operator, then we have $-H\Theta = \Theta H$. That is, if a state has energy ε , then its time-reversed state has energy $-\varepsilon$. This causes the eigen-energies to be bottomless, which is unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or rotation, preserves the squared modulus $\langle \alpha | \alpha \rangle$ of a quantum state $|\alpha\rangle$ if the system under consideration has that symmetry. According to Wigner's study, an operator of transformation that preserves $|\langle \beta | \alpha \rangle|$ can only be either unitary or anti-unitary. Therefore, Θ must be an **antiunitary operator**, which can be written as

$$\Theta = UK, \tag{1.20}$$

where U is a unitary operator, and K is a **complex con**jugate operator, Ki = -iK. As a result, if H has TRS, then

$$H\Theta = \Theta H. \tag{1.21}$$

Note: even though $[H, \Theta] = 0$, there is no conserved quantity associated with TRS since $U(t)\Theta \neq \Theta U(t)$.

For states under TR, one has

$$\langle \hat{\beta} | \tilde{\alpha} \rangle = \langle \alpha | \beta \rangle, \text{ or } \langle \beta | \alpha \rangle^*.$$
 (1.22)

Pf:

$$\langle \tilde{\beta} | \tilde{\alpha} \rangle = \langle U K \beta | U K \alpha \rangle \tag{1.23}$$

$$= \langle U\alpha | U\beta \rangle \tag{1.24}$$

$$= \langle \alpha | \beta \rangle. \quad QED \tag{1.25}$$

For the matrix elements of an operator O, one has

$$\langle \hat{\beta} | O | \tilde{\alpha} \rangle = \langle \alpha | \Theta^{-1} O^{\dagger} \Theta | \beta \rangle. \tag{1.26}$$

Pf: We would try *not* to use the dual operation of Θ explicitly. That is, Θ is only allowed to act on ket states. First define $|\tilde{\gamma}\rangle = O^{\dagger}|\tilde{\beta}\rangle$, or

$$\Theta|\gamma\rangle = O^{\dagger}\Theta|\beta\rangle, \qquad (1.27)$$

then $\langle \tilde{\gamma} | = \langle \tilde{\beta} | O$, and

$$\langle \tilde{\beta} | O | \tilde{\alpha} \rangle = \langle \tilde{\gamma} | \tilde{\alpha} \rangle \tag{1.28}$$

$$= \langle \alpha | \gamma \rangle \tag{1.29}$$

$$= \langle \alpha | \Theta^{-1} O^{\dagger} \Theta | \beta \rangle. \quad QED \quad (1.30)$$

If an operator O transforms under time reversal as,

$$\Theta^{-1}O^{\dagger}\Theta = \pm O, \qquad (1.31)$$

then $\langle \Theta \alpha | O | \Theta \alpha \rangle = \pm \langle \alpha | O | \alpha \rangle.$

1. Spinless state

Given a time-reversed state $|\tilde{\psi}\rangle = \Theta |\psi\rangle$, one expects

$$\langle \psi | \Theta^{-1} \mathbf{r} \Theta | \psi \rangle = \langle \psi | \mathbf{r} | \psi \rangle, \qquad (1.32)$$

$$\langle \psi | \Theta^{-1} \mathbf{p} \Theta | \psi \rangle = - \langle \psi | \mathbf{p} | \psi \rangle,$$
 (1.33)

Since this is valid for every time-reversed state, we demand

$$\Theta^{-1}\mathbf{r}\Theta = \mathbf{r}, \qquad (1.34)$$

$$\Theta^{-1}\mathbf{p}\Theta = -\mathbf{p}. \tag{1.35}$$

This also implies that the angular momentum operator $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ changes sign under TR.

A spin-less state is described by a scalar function, and this two relations can be satisfied with $\Theta = K$ (i.e. U = 1). Hence

$$\psi(\mathbf{r},t) \xrightarrow{TR} \Theta \psi(\mathbf{r},t) = \psi^*(\mathbf{r},t).$$
 (1.36)

Given the Schrödinger equation,

$$H\psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t}\psi(\mathbf{r},t), \qquad (1.37)$$

its complex-conjugate counterpart is,

$$H\psi^*(\mathbf{r},t) = i\hbar \frac{\partial}{\partial(-t)}\psi^*(\mathbf{r},t).$$
(1.38)

That is $\psi^*(\mathbf{r}, t)$ evolves to -t the same way as $\psi(\mathbf{r}, t)$ evolves to t. Hence, $\psi^*(\mathbf{r}, t)$ is indeed a time-reversed state.

For the Hamiltonian in Eq. (1.1), $K^{-1}HK = H$ (note that $K^{-1} = K$). However, for a crystal in a magnetic field,

$$H = \frac{(\mathbf{p} - q\mathbf{A})^2}{2m} + V_L(\mathbf{r}), \qquad (1.39)$$

where q = -e is the charge of an electron and **A** is the vector potential, we have

$$K^{-1}HK = \frac{(\mathbf{p} + q\mathbf{A})^2}{2m} + V_L(\mathbf{r}) \neq H.$$
 (1.40)

That is, the magnetic field breaks the TRS, as expected. For a Bloch state, one has

$$\psi_{n\mathbf{k}}(\mathbf{r}) \xrightarrow{TR} \Theta \psi_{n\mathbf{k}}(\mathbf{r}) = \psi_{n\mathbf{k}}^*(\mathbf{r}).$$
 (1.41)

Under a translation,

$$T_{\mathbf{R}}\psi_{n\mathbf{k}}^{*}(\mathbf{r}) = \psi_{n\mathbf{k}}^{*}(\mathbf{r} + \mathbf{R}) \qquad (1.42)$$

$$= e^{-i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}^*(\mathbf{r}). \qquad (1.43)$$

If the state is not degenerate, then according to Eq. (1.9), $\psi_{n\mathbf{k}}^*(\mathbf{r})$ with the eigenvalue $e^{-i\mathbf{k}\cdot\mathbf{R}}$ could be identified as $\psi_{n-\mathbf{k}}(\mathbf{r})$. That is (see Sec. 16.3 of Dresselhaus *et al.*, 2008),

$$\psi_{n\mathbf{k}}^*(\mathbf{r}) = \psi_{n-\mathbf{k}}(\mathbf{r}). \tag{1.44}$$

2. Spin-1/2 state

For a quantum state with spin, in addition to Eqs. (1.34), (1.35), we also require the spin operator under TR to satisfy

$$\Theta^{-1}\mathbf{s}\Theta = -\mathbf{s}.\tag{1.45}$$

A spin-1/2 state is a two-component **spinor**, and the spin operators $\mathbf{s} = \frac{\hbar}{2}\boldsymbol{\sigma}$, where $\boldsymbol{\sigma}$ are the **Pauli matrices**,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(1.46)

Obviously, $\Theta = K$ cannot satisfy Eq. (1.45), and a unitary rotation U (not operating on **r** and **p**) in $\Theta = UK$ is required.

From Eq. (1.45), one has

$$s_x \Theta = -\Theta s_x, \tag{1.47}$$

$$s_y \Theta = -\Theta s_y, \tag{1.48}$$

$$s_z \Theta = -\Theta s_z. \tag{1.49}$$

Using the standard representation for Pauli matrices in Eq. (1.46), where only σ_y has *complex* matrix elements, we have

$$\sigma_x U = -U\sigma_x, \tag{1.50}$$

$$\sigma_u U = +U\sigma_u, \tag{1.51}$$

$$\sigma_z U = -U\sigma_z. \tag{1.52}$$

U is a 2 × 2 matrix (for spin-1/2 states), which can be expanded by Pauli matrices. Since U anti-commutes with $\sigma_{x,z}$, but commutes with σ_y , the equations above can be satisfied with $U = \sigma_y$, or $U = e^{i\delta}\sigma_y$, where δ is an arbitrary phase. A popular choice of $e^{i\delta}$ is -i. Thus,

$$\Theta = -i\sigma_y K = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} K.$$
(1.53)

Other choices of $e^{i\delta}$ are allowed, such as +i or 1.

In general, for a state with spin quantum number j, which can be an integer or a half-integer,

$$\Theta = e^{-iJ_y\pi/\hbar}K,\tag{1.54}$$

in which J_y is a spin operator (Sakurai, 1985). For spin 1/2,

$$\Theta = e^{-is_y \pi/\hbar} K = -i\sigma_y K. \tag{1.55}$$

A Bloch state with spin-1/2 transforms as

$$\begin{pmatrix} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{pmatrix} \xrightarrow{TR} \Theta \begin{pmatrix} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{pmatrix} = \begin{pmatrix} -\varphi_{\mathbf{k}\downarrow}^* \\ +\varphi_{\mathbf{k}\uparrow}^* \end{pmatrix}.$$
(1.56)

Applying the time-reversal transformation twice gives $\Theta^2 = -1$.

3. Kramer degeneracy

In general, if a particle has *integer spin*, then applying the TR transformation twice gives $\Theta^2 = 1$. However, if a particle has *half-integer spin*, then

$$\Theta^2 = -1. \tag{1.57}$$

This fact is crucial to the existence of the **Kramer degeneracy**: If a system has TRS and its spin is a *half-integer*, then eigenstates ψ and $\Theta \psi$ are degenerate and orthogonal to each other.

Pf: Since $H\Theta = \Theta H$, so if ψ is an eigenstate with energy ε , $H\psi = \varepsilon\psi$, then

$$H\Theta\psi = \Theta H\psi = \varepsilon\Theta\psi. \tag{1.58}$$

That is, $\Theta \psi$ is also an eigenstate with energy ε . Furthermore, using the identity $\langle \beta | \alpha \rangle = \langle \tilde{\alpha} | \tilde{\beta} \rangle$, one has

$$\langle \psi | \Theta \psi \rangle = \langle \Theta (\Theta \psi) | \Theta \psi \rangle \tag{1.59}$$

$$= -\langle \psi | \Theta \psi \rangle, \qquad (1.60)$$

in which $\Theta^2 = -1$ has been used to get the second equation. Therefore, $\langle \psi | \Theta \psi \rangle = 0$. QED.

For example, if a Bloch state $\psi_{n\mathbf{k}\uparrow}$ has energy $\varepsilon_{n\mathbf{k}\uparrow}$, then its time-reversed state $\Theta\psi_{n\mathbf{k}\uparrow} = -\psi_{n-\mathbf{k}\downarrow}$ (see Eq. (1.56)) has energy $\varepsilon_{n-\mathbf{k}\downarrow}$, and with time reversal symmetry, $\varepsilon_{n\mathbf{k}\uparrow} = \varepsilon_{n-\mathbf{k}\downarrow}$ (Kramer degeneracy).

For a solid with space inversion symmetry, one has $\varepsilon_{n-\mathbf{k}s} = \varepsilon_{n\mathbf{k}s}$ ($s = \uparrow$ or \downarrow). When the solid has *both* TR and SI symmetries, there is a two-fold degeneracy at each **k**-point,

$$\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n\mathbf{k}-s}.$$
 (1.61)

FIG. 2 (a) The TRIM are shown as black and white dots in the first Brillouin zone. Only four of them (black dots) are independent. (b) The Bloch energy levels of a system with time-reversal symmetry but without space-inversion symmetry.

An energy band thus has a *global* two-fold degeneracy over the whole Brillouin zone.

On the other hand, if there is TRS but no SIS, so that $\varepsilon_{n-\mathbf{k}s} \neq \varepsilon_{n\mathbf{k}s}$, then the two-fold degeneracy at a **k**-point is not guaranteed, except at the **k**-point that differs from $-\mathbf{k}$ by a **reciprocal lattice vector G**,

$$\mathbf{k} = -\mathbf{k} + \mathbf{G}.\tag{1.62}$$

These **k**-points are called **time-reversal-invariant momenta** (TRIM), see Fig. 2(a). At a TRIM,

$$\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n,-\mathbf{k}+\mathbf{G},-s} = \varepsilon_{n\mathbf{k}-s}.$$
 (1.63)

Typical TRIM are located at the corners of a BZ, $\mathbf{k} = \mathbf{G}/2$. They play important roles in the theory of **topological insulator**.

Note: For a crystal *without* space-inversion symmetry, we often still have $\varepsilon_{n\mathbf{k}} = \varepsilon_{n-\mathbf{k}}$ (Fig. 2(b)). This is due to the fact that, with time-reversal symmetry, $\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s}$. In the absence of spin-orbit interaction (SOI), $\varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n-\mathbf{k}s}$ and we have a symmetric energy spectrum with global two-fold degeneracy. A SOI breaks the two-fold degeneracy (except at TRIM), but the energy spectrum still looks symmetric because of the Kramer degeneracy.

Exercise

1. Suppose Q = UK is an anti-unitary operator, prove that Q^2 can only be +1 or -1.

Hint: Since performing Q twice would get us back to the original state, differing at most by a phase factor, we can assume $Q^2 = e^{i\delta}$. Check the consistency between mathematical operations to find out $e^{i\delta}$.

2. Show that, if an operator O transforms as,

$$\Theta^{-1}O^{\dagger}\Theta = O, \tag{1.64}$$

and $\Theta^2 = -1$, then $\langle \psi | O | \Theta \psi \rangle = 0$.

For example, if an electron is scattered by a scalar potential $V(\mathbf{r})$, then to the first-order approximation (**Born approximation**), the scattering amplitude for ψ being scattered to its time-revered state is zero, $\langle \Theta \psi | V | \psi \rangle = 0$. **References**

Dresselhaus, M. S., G. Dresselhaus, and A. Jorio, 2008, Group Theory (Springer-Verlag Berlin Heidelberg).

Sakurai, J. J., 1985, Modern quantum mechanics (Benjamin-Cummings Publishing Company).