Lecture notes on topological insulators

Ming-Che Chang
Department of Physics, National Taiwan Normal University, Taipei, Taiwan

(Dated: September 26, 2021)

Contents

I. Review of Bloch theory
A. Translation symmetry
B. Time reversal symmetry

1. Spinless state 2
2. Spin- $1 / 2$ state
3. Kramer degeneracy

References

I. REVIEW OF BLOCH THEORY

A. Translation symmetry

For a perfect crystal with discrete translation symmetry, the Hamiltonian is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V_{L}(\mathbf{r}), \text { with } V_{L}(\mathbf{r}+\mathbf{R})=V_{L}(\mathbf{r}) \tag{1.1}
\end{equation*}
$$

in which $V_{L}(\mathbf{r})$ is the potential of the atomic lattice, and \mathbf{R} is a lattice translation vector. Define a lattice translation operator $T_{\mathbf{R}}$ that acts on electronic states as follows,

$$
\begin{equation*}
T_{\mathbf{R}} \psi(\mathbf{r})=\psi(\mathbf{r}+\mathbf{R}) . \tag{1.2}
\end{equation*}
$$

It can be shown that, because H has the translation symmetry,

$$
\begin{equation*}
T_{\mathbf{R}} H(\mathbf{r}) \psi(\mathbf{r})=H(\mathbf{r}) T_{\mathbf{R}} \psi(\mathbf{r}) \tag{1.3}
\end{equation*}
$$

That is, $\left[T_{\mathbf{R}}, H\right]=0$.
Because $T_{\mathbf{R}}$ commutes with $H(\mathbf{r})$, one can find their simultaneous eigenstates,

$$
\begin{align*}
H \psi & =\varepsilon \psi \tag{1.4}\\
T_{\mathbf{R}} \psi & =c_{\mathbf{R}} \psi \tag{1.5}
\end{align*}
$$

where ε and $c_{\mathbf{R}}$ are eigenvalues of H and $T_{\mathbf{R}}$, and $\left|c_{\mathbf{R}}\right|=$ 1. Furthermore, successive translations satisfy

$$
\begin{equation*}
T_{\mathbf{R}} T_{\mathbf{R}^{\prime}}=T_{\mathbf{R}^{\prime}} T_{\mathbf{R}}=T_{\mathbf{R}+\mathbf{R}^{\prime}} \tag{1.6}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
c_{\mathbf{R}} c_{\mathbf{R}^{\prime}}=c_{\mathbf{R}^{\prime}} c_{\mathbf{R}}=c_{\mathbf{R}+\mathbf{R}^{\prime}} \tag{1.7}
\end{equation*}
$$

To satisfy these equations, $c_{\mathbf{R}}$ needs to be an exponential, $c_{\mathbf{R}}=e^{i \mathbf{k} \cdot \mathbf{R}}$. Therefore,

$$
\begin{align*}
H \psi_{\varepsilon \mathbf{k}} & =\varepsilon \psi_{\varepsilon \mathbf{k}} \tag{1.8}\\
T_{\mathbf{R}} \psi_{\varepsilon \mathbf{k}} & =e^{i \mathbf{k} \cdot \mathbf{R}} \psi_{\varepsilon \mathbf{k}} \tag{1.9}
\end{align*}
$$

The simultaneous eigenstate of H and $T_{\mathbf{R}}$ is called Bloch state.

If one writes the Bloch state in the following form,

$$
\begin{equation*}
\psi_{\varepsilon \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{\varepsilon \mathbf{k}}(\mathbf{r}), \tag{1.10}
\end{equation*}
$$

then Eq. (1.9) gives

$$
\begin{equation*}
u_{\varepsilon \mathbf{k}}(\mathbf{r}+\mathbf{R})=u_{\varepsilon \mathbf{k}}(\mathbf{r}) . \tag{1.11}
\end{equation*}
$$

That is, a Bloch state is a plane wave times a cellperiodic function $u_{\varepsilon \mathbf{k}}(\mathbf{r})$. The latter contains, in one unit cell, all information of the Bloch state $\psi_{\varepsilon \mathbf{k}}$.

The Schrödinger equation for $u_{\varepsilon \mathbf{k}}$ is,

$$
\begin{equation*}
\tilde{H}_{\mathbf{k}}(\mathbf{r}) u_{\varepsilon \mathbf{k}}=\varepsilon u_{\varepsilon \mathbf{k}} \tag{1.12}
\end{equation*}
$$

in which

$$
\begin{align*}
\tilde{H}_{\mathbf{k}}(\mathbf{r}) & \equiv e^{-i \mathbf{k} \cdot \mathbf{r}} H(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} \tag{1.13}\\
& =\frac{1}{2 m}(\mathbf{p}+\hbar \mathbf{k})^{2}+V_{L}(\mathbf{r}) \tag{1.14}
\end{align*}
$$

Since $u_{\varepsilon \mathbf{k}}$ can be restricted to one unit cell (with periodic boundary condition), we expect it to have discrete energy eigenvalues $\varepsilon_{n}\left(n \in Z^{+}\right)$for each \mathbf{k}, and write

$$
\begin{equation*}
\tilde{H}_{\mathbf{k}}(\mathbf{r}) u_{n \mathbf{k}}=\varepsilon_{n \mathbf{k}} u_{n \mathbf{k}} . \tag{1.15}
\end{equation*}
$$

The quantum numbers n and \mathbf{k} are called band index and Bloch momentum, and $\varepsilon_{n \mathbf{k}}$ are the energy dispersions of Bloch bands.

The Bloch state $\psi_{n \mathbf{k}}$ translates under \mathbf{R} as (see Eq. (1.9)),

$$
\begin{equation*}
\psi_{n \mathbf{k}}(\mathbf{r}+\mathbf{R})=e^{i \mathbf{k} \cdot \mathbf{R}} \psi_{n \mathbf{k}}(\mathbf{r}) \tag{1.16}
\end{equation*}
$$

If one shifts the momentum \mathbf{k} by a reciprocal lattice vector \mathbf{G}, then since $e^{i \mathbf{G} \cdot \mathbf{R}}=1$ (for any \mathbf{R}),

$$
\begin{equation*}
\psi_{n \mathbf{k}+\mathbf{G}}(\mathbf{r}+\mathbf{R})=e^{i \mathbf{k} \cdot \mathbf{R}} \psi_{n \mathbf{k}+\mathbf{G}}(\mathbf{r}) \tag{1.17}
\end{equation*}
$$

Since the two Bloch states $\psi_{n \mathbf{k}}$ and $\psi_{n \mathbf{k}+\mathbf{G}}$ satisfy the same Schrödinger equation (with $\varepsilon_{n \mathbf{k}}=\varepsilon_{n \mathbf{k}+\mathbf{G}}$) and the same boundary condition (Eqs. (1.16)and (1.17)), they can differ (for non-degenerate states) at most by a phase factor $\phi(\mathbf{k})$. For convenience, one can choose the periodic gauge with $\phi(\mathbf{k})=0, \psi_{n \mathbf{k}+\mathbf{G}}=\psi_{n \mathbf{k}}$. Note that for a quantum phase with non-trivial topology (such as the quantum Hall state), one can no longer set $\phi(\mathbf{k})=0$ for all \mathbf{k}. This is called topological obstruction (see Chap. ??). In any case, $\psi_{n \mathbf{k}}$ (or $u_{n \mathbf{k}}$) in the first Brillouin zone should contain enough information of the electronic state.

FIG. 1 Time reversal Θ of $|\alpha\rangle$ followed by $U(\delta t)$ (left), and $U(-\delta t)$ of $|\alpha\rangle$ followed by time reversal Θ (right). Both result in the same state.

B. Time reversal symmetry

Time reversal operator Θ maps a state to its timereversed state (or, motion-reversed state),

$$
\begin{equation*}
|\alpha\rangle \rightarrow|\tilde{\alpha}\rangle=\Theta|\alpha\rangle . \tag{1.18}
\end{equation*}
$$

Naturally, if a dynamical system has time-reversal symmetry (TRS), then for a state $|\alpha\rangle$ evolving with $U(t)=$ $e^{-i H t / \hbar}$, one expects (see Fig. 1)

$$
\begin{equation*}
U(t) \Theta|\alpha\rangle=\Theta U(-t)|\alpha\rangle \tag{1.19}
\end{equation*}
$$

For an infinitesimal evolution $U(\delta t) \simeq 1-i H \delta t / \hbar$, Eq. (1.18) leads to $-i H \Theta=\Theta i H$. If Θ is a unitary operator, then we have $-H \Theta=\Theta H$. That is, if a state has energy ε, then its time-reversed state has energy $-\varepsilon$. This causes the eigen-energies to be bottomless, which is unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or rotation, preserves the squared modulus $\langle\alpha \mid \alpha\rangle$ of a quantum state $|\alpha\rangle$ if the system under consideration has that symmetry. According to Wigner's study, an operator of transformation that preserves $|\langle\beta \mid \alpha\rangle|$ can only be either unitary or anti-unitary. Therefore, Θ must be an antiunitary operator, which can be written as

$$
\begin{equation*}
\Theta=U K \tag{1.20}
\end{equation*}
$$

where U is a unitary operator, and K is a complex conjugate operator, $K i=-i K$. As a result, if H has TRS, then

$$
\begin{equation*}
H \Theta=\Theta H \tag{1.21}
\end{equation*}
$$

Note: even though $[H, \Theta]=0$, there is no conserved quantity associated with TRS since $U(t) \Theta \neq \Theta U(t)$.

For states under TR, one has

$$
\begin{equation*}
\langle\tilde{\beta} \mid \tilde{\alpha}\rangle=\langle\alpha \mid \beta\rangle, \quad \text { or } \quad\langle\beta \mid \alpha\rangle^{*} . \tag{1.22}
\end{equation*}
$$

Pf:

$$
\begin{align*}
\langle\tilde{\beta} \mid \tilde{\alpha}\rangle & =\langle U K \beta \mid U K \alpha\rangle \tag{1.23}\\
& =\langle U \alpha \mid U \beta\rangle \tag{1.24}\\
& =\langle\alpha \mid \beta\rangle . \quad Q E D \tag{1.25}
\end{align*}
$$

For the matrix elements of an operator O, one has

$$
\begin{equation*}
\langle\tilde{\beta}| O|\tilde{\alpha}\rangle=\langle\alpha| \Theta^{-1} O^{\dagger} \Theta|\beta\rangle \tag{1.26}
\end{equation*}
$$

Pf: We would try not to use the dual operation of Θ explicitly. That is, Θ is only allowed to act on ket states. First define $|\tilde{\gamma}\rangle=O^{\dagger}|\tilde{\beta}\rangle$, or

$$
\begin{equation*}
\Theta|\gamma\rangle=O^{\dagger} \Theta|\beta\rangle \tag{1.27}
\end{equation*}
$$

then $\langle\tilde{\gamma}|=\langle\tilde{\beta}| O$, and

$$
\begin{align*}
\langle\tilde{\beta}| O|\tilde{\alpha}\rangle & =\langle\tilde{\gamma} \mid \tilde{\alpha}\rangle \tag{1.28}\\
& =\langle\alpha \mid \gamma\rangle \tag{1.29}\\
& =\langle\alpha| \Theta^{-1} O^{\dagger} \Theta|\beta\rangle . \quad Q E D \tag{1.30}
\end{align*}
$$

If an operator O transforms under time reversal as,

$$
\begin{equation*}
\Theta^{-1} O^{\dagger} \Theta= \pm O \tag{1.31}
\end{equation*}
$$

then $\langle\Theta \alpha| O|\Theta \alpha\rangle= \pm\langle\alpha| O|\alpha\rangle$.

1. Spinless state

Given a time-reversed state $|\tilde{\psi}\rangle=\Theta|\psi\rangle$, one expects

$$
\begin{align*}
\langle\psi| \Theta^{-1} \mathbf{r} \Theta|\psi\rangle & =\langle\psi| \mathbf{r}|\psi\rangle \tag{1.32}\\
\langle\psi| \Theta^{-1} \mathbf{p} \Theta|\psi\rangle & =-\langle\psi| \mathbf{p}|\psi\rangle \tag{1.33}
\end{align*}
$$

Since this is valid for every time-reversed state, we demand

$$
\begin{align*}
\Theta^{-1} \mathbf{r} \Theta & =\mathbf{r} \tag{1.34}\\
\Theta^{-1} \mathbf{p} \Theta & =-\mathbf{p} \tag{1.35}
\end{align*}
$$

This also implies that the angular momentum operator $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ changes sign under TR.
A spin-less state is described by a scalar function, and this two relations can be satisfied with $\Theta=K$ (i.e. $U=$ 1). Hence

$$
\begin{equation*}
\psi(\mathbf{r}, t) \xrightarrow{T R} \Theta \psi(\mathbf{r}, t)=\psi^{*}(\mathbf{r}, t) . \tag{1.36}
\end{equation*}
$$

Given the Schrödinger equation,

$$
\begin{equation*}
H \psi(\mathbf{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) \tag{1.37}
\end{equation*}
$$

its complex-conjugate counterpart is,

$$
\begin{equation*}
H \psi^{*}(\mathbf{r}, t)=i \hbar \frac{\partial}{\partial(-t)} \psi^{*}(\mathbf{r}, t) \tag{1.38}
\end{equation*}
$$

That is $\psi^{*}(\mathbf{r}, t)$ evolves to $-t$ the same way as $\psi(\mathbf{r}, t)$ evolves to t. Hence, $\psi^{*}(\mathbf{r}, t)$ is indeed a time-reversed state.

For the Hamiltonian in Eq. (1.1), $K^{-1} H K=H$ (note that $K^{-1}=K$). However, for a crystal in a magnetic field,

$$
\begin{equation*}
H=\frac{(\mathbf{p}-q \mathbf{A})^{2}}{2 m}+V_{L}(\mathbf{r}) \tag{1.39}
\end{equation*}
$$

where $q=-e$ is the charge of an electron and \mathbf{A} is the vector potential, we have

$$
\begin{equation*}
K^{-1} H K=\frac{(\mathbf{p}+q \mathbf{A})^{2}}{2 m}+V_{L}(\mathbf{r}) \neq H . \tag{1.40}
\end{equation*}
$$

That is, the magnetic field breaks the TRS, as expected.
For a Bloch state, one has

$$
\begin{equation*}
\psi_{n \mathbf{k}}(\mathbf{r}) \xrightarrow{T R} \Theta \psi_{n \mathbf{k}}(\mathbf{r})=\psi_{n \mathbf{k}}^{*}(\mathbf{r}) . \tag{1.41}
\end{equation*}
$$

Under a translation,

$$
\begin{align*}
T_{\mathbf{R}} \psi_{n \mathbf{k}}^{*}(\mathbf{r}) & =\psi_{n \mathbf{k}}^{*}(\mathbf{r}+\mathbf{R}) \tag{1.42}\\
& =e^{-i \mathbf{k} \cdot \mathbf{R}} \psi_{n \mathbf{k}}^{*}(\mathbf{r}) . \tag{1.43}
\end{align*}
$$

If the state is not degenerate, then according to Eq. (1.9), $\psi_{n \mathbf{k}}^{*}(\mathbf{r})$ with the eigenvalue $e^{-i \mathbf{k} \cdot \mathbf{R}}$ could be identified as $\psi_{n-\mathbf{k}}(\mathbf{r})$. That is (see Sec. 16.3 of Dresselhaus et al., 2008),

$$
\begin{equation*}
\psi_{n \mathbf{k}}^{*}(\mathbf{r})=\psi_{n-\mathbf{k}}(\mathbf{r}) . \tag{1.44}
\end{equation*}
$$

2. Spin-1/2 state

For a quantum state with spin, in addition to Eqs. (1.34), (1.35), we also require the spin operator under TR to satisfy

$$
\begin{equation*}
\Theta^{-1} \mathbf{s} \Theta=-\mathbf{s} \tag{1.45}
\end{equation*}
$$

A spin- $1 / 2$ state is a two-component spinor, and the spin operators $\mathbf{s}=\frac{\hbar}{2} \boldsymbol{\sigma}$, where $\boldsymbol{\sigma}$ are the Pauli matrices,

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{1.46}\\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Obviously, $\Theta=K$ cannot satisfy Eq. (1.45), and a unitary rotation U (not operating on \mathbf{r} and \mathbf{p}) in $\Theta=U K$ is required.
From Eq. (1.45), one has

$$
\begin{align*}
& s_{x} \Theta=-\Theta s_{x} \tag{1.47}\\
& s_{y} \Theta=-\Theta s_{y}, \tag{1.48}\\
& s_{z} \Theta=-\Theta s_{z} \tag{1.49}
\end{align*}
$$

Using the standard representation for Pauli matrices in Eq. (1.46), where only σ_{y} has complex matrix elements, we have

$$
\begin{align*}
\sigma_{x} U & =-U \sigma_{x}, \tag{1.50}\\
\sigma_{y} U & =+U \sigma_{y}, \tag{1.51}\\
\sigma_{z} U & =-U \sigma_{z} . \tag{1.52}
\end{align*}
$$

U is a 2×2 matrix (for spin- $1 / 2$ states), which can be expanded by Pauli matrices. Since U anti-commutes with $\sigma_{x, z}$, but commutes with σ_{y}, the equations above can
be satisfied with $U=\sigma_{y}$, or $U=e^{i \delta} \sigma_{y}$, where δ is an arbitrary phase. A popular choice of $e^{i \delta}$ is $-i$. Thus,

$$
\Theta=-i \sigma_{y} K=\left(\begin{array}{cc}
0 & -1 \tag{1.53}\\
1 & 0
\end{array}\right) K
$$

Other choices of $e^{i \delta}$ are allowed, such as $+i$ or 1 .
In general, for a state with spin quantum number j, which can be an integer or a half-integer,

$$
\begin{equation*}
\Theta=e^{-i J_{y} \pi / \hbar} K \tag{1.54}
\end{equation*}
$$

in which J_{y} is a spin operator (Sakurai, 1985). For spin $1 / 2$,

$$
\begin{equation*}
\Theta=e^{-i s_{y} \pi / \hbar} K=-i \sigma_{y} K . \tag{1.55}
\end{equation*}
$$

A Bloch state with spin- $1 / 2$ transforms as

$$
\begin{equation*}
\binom{\varphi_{\mathbf{k} \uparrow}}{\varphi_{\mathbf{k} \downarrow}} \xrightarrow{T R} \Theta\binom{\varphi_{\mathbf{k} \uparrow}}{\varphi_{\mathbf{k} \downarrow}}=\binom{-\varphi_{\mathbf{k} \downarrow}^{*}}{+\varphi_{\mathbf{k} \uparrow}^{*}} . \tag{1.56}
\end{equation*}
$$

Applying the time-reversal transformation twice gives $\Theta^{2}=-1$.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying the TR transformation twice gives $\Theta^{2}=1$. However, if a particle has half-integer spin, then

$$
\begin{equation*}
\Theta^{2}=-1 \tag{1.57}
\end{equation*}
$$

This fact is crucial to the existence of the Kramer degeneracy: If a system has TRS and its spin is a halfinteger, then eigenstates ψ and $\Theta \psi$ are degenerate and orthogonal to each other.
Pf: Since $H \Theta=\Theta H$, so if ψ is an eigenstate with energy $\varepsilon, H \psi=\varepsilon \psi$, then

$$
\begin{equation*}
H \Theta \psi=\Theta H \psi=\varepsilon \Theta \psi . \tag{1.58}
\end{equation*}
$$

That is, $\Theta \psi$ is also an eigenstate with energy ε. Furthermore, using the identity $\langle\beta \mid \alpha\rangle=\langle\tilde{\alpha} \mid \beta\rangle$, one has

$$
\begin{align*}
\langle\psi \mid \Theta \psi\rangle & =\langle\Theta(\Theta \psi) \mid \Theta \psi\rangle \tag{1.59}\\
& =-\langle\psi \mid \Theta \psi\rangle, \tag{1.60}
\end{align*}
$$

in which $\Theta^{2}=-1$ has been used to get the second equation. Therefore, $\langle\psi \mid \Theta \psi\rangle=0$. QED.

For example, if a Bloch state $\psi_{n \mathbf{k} \uparrow}$ has energy $\varepsilon_{n \mathbf{k} \uparrow}$, then its time-reversed state $\Theta \psi_{n \mathbf{k} \uparrow}=-\psi_{n-\mathbf{k} \downarrow}$ (see Eq. (1.56)) has energy $\varepsilon_{n-\mathbf{k} \downarrow}$, and with time reversal symmetry, $\varepsilon_{n \mathbf{k} \uparrow}=\varepsilon_{n-\mathbf{k} \downarrow}$ (Kramer degeneracy).
For a solid with space inversion symmetry, one has $\varepsilon_{n-\mathbf{k} s}=\varepsilon_{n \mathbf{k} s}(s=\uparrow$ or $\downarrow)$. When the solid has both TR and SI symmetries, there is a two-fold degeneracy at each k-point,

$$
\begin{equation*}
\varepsilon_{n \mathbf{k} s}=\varepsilon_{n-\mathbf{k}-s}=\varepsilon_{n \mathbf{k}-s} . \tag{1.61}
\end{equation*}
$$

FIG. 2 (a) The TRIM are shown as black and white dots in the first Brillouin zone. Only four of them (black dots) are independent. (b) The Bloch energy levels of a system with time-reversal symmetry but without space-inversion symmetry.

An energy band thus has a global two-fold degeneracy over the whole Brillouin zone.

On the other hand, if there is TRS but no SIS, so that $\varepsilon_{n-\mathbf{k} s} \neq \varepsilon_{n \mathbf{k} s}$, then the two-fold degeneracy at a \mathbf{k}-point is not guaranteed, except at the \mathbf{k}-point that differs from $-\mathbf{k}$ by a reciprocal lattice vector \mathbf{G},

$$
\begin{equation*}
\mathbf{k}=-\mathbf{k}+\mathbf{G} \tag{1.62}
\end{equation*}
$$

These k-points are called time-reversal-invariant momenta (TRIM), see Fig. 2(a). At a TRIM,

$$
\begin{equation*}
\varepsilon_{n \mathbf{k} s}=\varepsilon_{n-\mathbf{k}-s}=\varepsilon_{n,-\mathbf{k}+\mathbf{G},-s}=\varepsilon_{n \mathbf{k}-s} \tag{1.63}
\end{equation*}
$$

Typical TRIM are located at the corners of a BZ, $\mathbf{k}=$ G/2. They play important roles in the theory of topological insulator.

Note: For a crystal without space-inversion symmetry, we often still have $\varepsilon_{n \mathbf{k}}=\varepsilon_{n-\mathbf{k}}$ (Fig. 2(b)). This is due to the fact that, with time-reversal symmetry, $\varepsilon_{n \mathbf{k} s}=\varepsilon_{n-\mathbf{k}-s}$. In the absence of spin-orbit interaction (SOI), $\varepsilon_{n-\mathbf{k}-s}=\varepsilon_{n-\mathbf{k} s}$ and we have a symmetric energy spectrum with global two-fold degeneracy. A SOI breaks the two-fold degeneracy (except at TRIM), but the energy spectrum still looks symmetric because of the Kramer degeneracy.

Exercise

1. Suppose $Q=U K$ is an anti-unitary operator, prove that Q^{2} can only be +1 or -1 .
Hint: Since performing Q twice would get us back to the original state, differing at most by a phase factor, we can assume $Q^{2}=e^{i \delta}$. Check the consistency between mathematical operations to find out $e^{i \delta}$.
2. Show that, if an operator O transforms as,

$$
\begin{equation*}
\Theta^{-1} O^{\dagger} \Theta=O \tag{1.64}
\end{equation*}
$$

and $\Theta^{2}=-1$, then $\langle\psi| O|\Theta \psi\rangle=0$.
For example, if an electron is scattered by a scalar potential $V(\mathbf{r})$, then to the first-order approximation (Born approximation), the scattering amplitude for ψ being scattered to its time-revered state is zero, $\langle\Theta \psi| V|\psi\rangle=0$.

References

Dresselhaus, M. S., G. Dresselhaus, and A. Jorio, 2008, Group Theory (Springer-Verlag Berlin Heidelberg).
Sakurai, J. J., 1985, Modern quantum mechanics (BenjaminCummings Publishing Company).

