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I. MORE ABOUT 4 × 4 EFFECTIVE HAMILTONIAN
MATRIX

Just like the two-state model is very popular in al-
most every branch of physics, the four-state model is also
widely used. In addition to be an effective model of TI,
it also appears in, for example, Dirac Hamiltonian, nu-
clear quadrupole resonance, 4-band Luttinger model, and
graphene... etc. Therefore, it’s worthy of exploring more
about this topic. This chapter can be skipped at first
reading, except Sections A and B, if you want to study
the chapters on Weyl semimetal.

A. Clifford matrices

Recall that the Hamiltonian of a two-level system is
a 2 × 2 hermitian matrix, which has 4 real parameters.
It thus can be expanded by the identity matrix and the
three Pauli matrices,

H = d01 + d1σx + d2σy + d3σz, (1.1)

in which all of the coefficients di are real.
Because of the spin degeneracy, a minimal model of a

TI usually requires four energy levels, instead of two. A
4 × 4 Hamiltonian has 16 real parameters, and can be
expanded by 16 bases,

{1, σx, σy, σz} ⊗ {1, τx, τy, τz}, (1.2)

which are direct products of {spin}⊗{orbital} (we call
these spin basis). One can also adopt the basis with
{orbital}⊗{spin} (we call these orbital basis). Both
choices have their advantages and users.

TABLE I Clifford matrices and their symmetries

Γ ΘΓΘ−1 ΠΓΠ−1

Γ0 = 1 ⊗ 1 + +

Γ1 = σz ⊗ τx − −
Γ2 = 1 ⊗ τy − −
Γ3 = 1 ⊗ τz + +

Γ4 = σx ⊗ τx − −
Γ5 = σy ⊗ τx − −
Γ12 = σz ⊗ τz − +

Γ13 = −σz ⊗ τy + −
Γ14 = σy ⊗ 1 − +

Γ15 = σx ⊗ 1 − +

Γ23 = 1 ⊗ τx + −
Γ24 = −σx ⊗ τz − +

Γ25 = −σy ⊗ τz − +

Γ34 = −σx ⊗ τy + −
Γ35 = σy ⊗ τy + −
Γ45 = σz ⊗ 1 − +

Here we choose the spin basis to define the 16 Clifford
matrices in Table I following Bernevig’s choice (Chap 11
of Bernevig and Hughes, 2013). The matrices Γ1, · · · ,Γ5

are called generators of the Clifford algebra. They sat-
isfy the anti-commutation relations,

{Γa,Γb} = 2δab, a, b = 1, · · · , 5. (1.3)

The next 10 Clifford matrices with two indices are defined
as,

Γab =
1

2i
[Γa,Γb]. (1.4)

They satisfy (see App. A in Murakami et al., 2004)

{Γab,Γcd} = 2εabcdeΓe + 2δacδbd − 2δadδbc. (1.5)

Also,

{Γab,Γc} = εabcdeΓde. (1.6)

In the table we also show the change of sign of a Γ un-
der TR transformation and SI transformation. The TR
operator Θ = iσyK ⊗ 1, and the SI operator Π = 1⊗ τz,
assuming that the conduction band and the valence band
have opposite parities (such as s-orbital and p-orbital). If
the two bands have the same parity, then the SI operator
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should be Π = 1 ⊗ 1, and the right-most column in the
table would all be +’s.

Notice that the first 6 Clifford matrices Γa are even
under combined Θ and Π operations,

ΘΠΓa(ΘΠ)−1 = Γa. (1.7)

Because of the i in the definition of Γab shown above, the
other 10 Clifford matrices are odd under combined Θ and
Π operations,

ΘΠΓab(ΘΠ)−1 = −Γab. (1.8)

Several identities are listed below for later reference:

tr(ΓaΓb) = δab, (1.9)

tr(ΓaΓbΓc) = 0, (1.10)

tr(ΓaΓbΓcΓd) = 4(δabδcd + δadδbc − δacδbd), (1.11)

tr(ΓaΓbΓcΓdΓe) = −εabcde, (1.12)

Γ1Γ2Γ3Γ4Γ5 = −1. (1.13)

B. Global two-fold degeneracy

Let’s consider the case when a Hamiltonian can be ex-
panded by the first 6 Clifford matrices,

H(k) = h0(k) +

5∑
a=1

ha(k)Γa, (1.14)

where ha(k) are real functions. If this system has TRS,
such that ΘH(k)Θ−1 = H(−k), then

ha(−k) =

{
+ha(k), for a = 0, 3

−ha(k), for a = 1, 2, 4, 5
(1.15)

This automatically implies SIS, ΠH(k)Π−1 = H(−k).
With both TRS and SIS, the energy spectrum would have
global two-fold degeneracy.

Assume the Hamiltonian has energy eigenvalue ε(k),

H(k)ψ = ε(k)ψ, (1.16)

then

H2(k)ψ = ε2(k)ψ. (1.17)

But from Eq. (1.3), we get

(H− h0)2 =

5∑
a=1

h2
a. (1.18)

Therefore,

ε±(k) = h0(k)±

√√√√ 5∑
a=1

h2
a. (1.19)

Thus, indeed the energy levels have global two-fold de-
generacy.

C. Berry curvature

We now calculate the Berry curvature of this 4 × 4
Hamiltonian. The h0 term can be dropped since it does
not affect the Berry curvature. To facilitate the calcula-
tion, it helps to introduce the projection operator. First
write

H =

5∑
a=1

ha(k)Γa = hH̃, (1.20)

where

H̃ = ĥ · ~Γ, (1.21)

and ĥ is the unit vector of the 5-dimensional vector h. If
|±〉 are the energy eigenstates (each spans a 2D Hilbert
space) with energies ε±, then

H̃2 = |ĥ|2 = 1, (1.22)

H̃|+〉 = +|+〉, (1.23)

H̃|−〉 = −|−〉. (1.24)

The projection operators that pick up the |±〉 states
can be written as,

P± =
1

2

(
1± H̃

)
=

1

2

(
1± ĥ · ~Γ

)
. (1.25)

It satisfies

P 2
± = P±, P+P− = P−P+ = 0, (1.26)

and

H = h (P+ − P−) = ε+P+ + ε−P−. (1.27)

Recall that the non-Abelian Berry curvature is (see ??)

Fk` = ∂kA` − ∂`Ak − i[Ak,A`], (1.28)

where

(A`)αβ = i〈α| ∂
∂k`
|β〉, (1.29)

in which k, ` = 1, 2, 3 are space indices, and α, β =
1, 2, 3, 4 are energy-level indices. It can also be written
as

(Fk`)αβ = i (〈∂kα|∂`β〉 − 〈∂`α|∂kβ〉) (1.30)

− i

4∑
γ=1

(〈∂kα|γ〉〈γ|∂`β〉 − 〈∂`α|γ〉〈γ|∂kβ〉) .

One can insert a complete set to the first line∑4
γ=1 |γ〉〈γ| = 1, then the two lines are the same and

cancel with each other. That is, the Berry curvature in
the whole Hilbert space (which is model-dependent, of
course) is always zero. It is non-zero only in a subspace.
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FIG. 1 A subspace of an Euclidean space can be curved.

An analogy of this is that the 3D Euclidean space we live
in is flat, but a 2D surface in it can be curved (Fig. 1).

For example, consider the nuclear quadrupole reso-
nance in ??. The Hilbert space there has four dimen-
sions. If one calculates its Berry curvature, the result
would be zero. Only after the projections to subspaces
(|m| = 3/2, |m| = 1/2) can we get non-zero Berry curva-

tures F
3/2
θφ ,F

1/2
θφ .

To get the Berry curvature F±k` for a subspace (|+〉 or
|−〉), one restricts α, β, γ to (1,2) for |−〉; or (3,4) for
|+〉. Other than that, the equation above remains the
same, Again one can insert a complete set to the first
line

∑4
γ=1 |γ〉〈γ| = 1, but now there is an incomplete

cancellation between the two lines, and

(Fk`)
±
αβ = i

∑
γ̄∈out

(〈∂kα|γ̄〉〈γ̄|∂`β〉 − 〈∂`α|γ̄〉〈γ̄|∂kβ〉) ,

(1.31)
in which γ̄ runs over states outside of the subspace that
we are interested in.

It follows from Eq. (1.31) that the Berry curvature
can also be expressed in projection operators P± =∑
α∈± |α〉〈α|,

F̂±k` ≡
∑
αβ∈±

|α〉(Fk`)±αβ〈β| (1.32)

= i

[
∂P±
∂kk

P∓
∂P±
∂k`

− (k ↔ `)

]
. (1.33)

One can rewrite P∓ = 1 − P±, use (∂kP±)P± =
−P±∂kP±, and write the Berry curvature in an alter-
native form,

F̂±k` = iP±

[
∂P±
∂kk

,
∂P±
∂k`

]
. (1.34)

A closely related Berry curvature is

F̂±ab = iP±

[
∂P±
∂ha

,
∂P±
∂hb

]
, (1.35)

where a, b = 1, 2, · · · , 5 are the Clifford indices. The
two Berry curvatures defined on different domains in

Eq. (1.34) and (1.35) can be related by a pull-back trans-
formation,

F̂±k` =
∑
ab

F̂±ab
∂ha
∂kk

∂hb
∂k`

. (1.36)

For more discussion, see Murakami et al., 2004.

D. Spin-3/2 representation

The spin matrices for a spin-3/2 particle are (see ??)

J1 =


0

√
3/2 0 0√

3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0

 , (1.37)

J2 =


0 −i

√
3/2 0 0

i
√

3/2 0 −i 0

0 i 0 −i
√

3/2

0 0 i
√

3/2 0

 , (1.38)

J3 =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 . (1.39)

A 4× 4 matrix can be expanded using either the Clifford
matrices or the spin matrices (Avron et al., 1988),

H =

5∑
a=1

haΓa +
∑
ab

habΓab (1.40)

=

3∑
µν=0

AµνJµJν , J0 = 1. (1.41)

If there is TRS, then the Hamiltonian is

H(Q) =

3∑
k`=1

Qk`JkJ`, (1.42)

where Qk` is a 3 × 3, real, symmetric, traceless matrix
with 5 independent parameters.

The quadrupole tensor Q itself can be considered as a
vector in a 5D space. For example, choose the following
basis,

Q1 =
1√
3

 0 0 0

0 0 1

0 1 0

 ,Q2 =
1√
3

 0 0 1

0 0 0

1 0 0

 , (1.43)

Q3 =
1√
3

 0 1 0

1 0 0

0 0 0

 ,Q4 =
1√
3

 1 0 0

0 −1 0

0 0 0

 ,(1.44)

Q5 =
1

3

 −1 0 0

0 −1 0

0 0 2

 . (1.45)
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Their inner products can be defined as,

(Qa,Qb) =
3

2
tr (QaQb) = δab. (1.46)

Expand Q as,

Q =
∑
a

h̃aQa, (1.47)

then the inner product between two “vectors” Q and Q′

are,

(Q,Q′) =
3

2
tr (QQ′) , (1.48)

and

|Q|2 =
∑
a

h̃2
a. (1.49)

Consider the following matrices,

Γ̃1 = H(Q1) =
1√
3

(J2J3 + J3J2) = σ3 ⊗ σ2, (1.50)

Γ̃2 = H(Q2) =
1√
3

(J3J1 + J1J3) = σ3 ⊗ σ1, (1.51)

Γ̃3 = H(Q3) =
1√
3

(J1J2 + J2J1) = σ2 ⊗ 1, (1.52)

Γ̃4 = H(Q4) =
1√
3

(
J2

1 − J2
2

)
= σ1 ⊗ 1, (1.53)

Γ̃5 = H(Q5) =
1

3

(
2J2

3 − J2
1 − J2

2

)
= σ3 ⊗ σ3. (1.54)

Apart from signs, they are Γ13,Γ1,Γ14,Γ15,Γ12 in Ta-
ble I. According to Eqs. (1.5) and (1.6), these Γ̃a’s can
also be generators of the Clifford algebra. That is,

{Γ̃a, Γ̃b} = 2δab, a, b = 1, · · · , 5. (1.55)

The Hamiltonian can be regarded as a linear operator
acting on the vector Q. Given Q =

∑
h̃aQa, one has

H(Q) =
∑
a

h̃aH(Qa) (1.56)

=
∑
a

h̃aΓ̃a. (1.57)

This is analogous to Eq. (1.14), but with a different Clif-
ford basis. Also,

[H(Q)]
2

= |h̃|2 = |Q|2. (1.58)

The eigenvalues of H(Q) are ±|h̃|, as shown earlier.
A rotation in the 5D Q-space is an isometric trans-

formation that preserves distance, and vice versa. That
is, if |h̃′| = |h̃|, then Q′ and Q are related by a SO(5) rota-
tion. Furthermore, since H(Q′) and H(Q) have the same
eigenvalues, they are linked by an unitary transformation
that corresponds to a rotation,

H(Q′) = UH(Q)U−1. (1.59)

Note that a general spin-j model has SO(3) symmetry,
but only the spin-3/2 system with TRS can have this ex-
tra SO(5) symmetry.(?) For more discussions, see Avron
et al., 1989.

E. First and Second Chern numbers

1. First Chern number

For a system with N energy levels, the Berry curvature
Fk` is a N ×N matrix. Given an insulator with N filled
levels andM empty levels, only the filled levels contribute
to the electronic topological phase. For a 2D system, the
first Chern number is,

C1 =
1

2π

∫
BZ

d2k tr F12, (1.60)

tr Fk` =

N∑
α=1

(Fαα)k` . (1.61)

If a level α is gapped from the rest of the filled levels,
then its first Chern number is well-defined,

Cα1 =
1

2π

∫
BZ

d2k (Fαα)12 . (1.62)

However, if it tangles with other levels, then Cα1 is not
gauge invariant (from the multi-level perspective) and
may not be an integer due to level crossing (Soluyanov
and Vanderbilt, 2012).

The Hamiltonian can be written as a sum of two parts,

H =

N∑
α=1

εα(k)|αk〉〈αk|+
N+M∑
α=N+1

εα(k)|αk〉〈αk|. (1.63)

If we are only interested in its topology, then it is alright
to merge and deform the energy levels, so that all of the
filled levels have the same energy ε−, and all of the empty
levels have the energy ε+. The topology is not changed
as long as the insulating gap is not closed. After the
simplification,

H = ε−

N∑
α=1

|αk〉〈αk|+ ε+

N+M∑
α=N+1

|αk〉〈αk| (1.64)

= ε−P− + ε+P+, (1.65)

where

P− =

N∑
α=1

|αk〉〈αk|, P+ =

N+M∑
α=N+1

|αk〉〈αk|. (1.66)

They project a state to the subspaces of empty levels or
filled levels. This is a generalization of the projection
operators in I.C.

The Berry curvature of each subspace can be written
as (see Eq. (1.34))

F̂±k` = iP±

[
∂P±
∂kk

,
∂P±
∂k`

]
. (1.67)

Also, the Chern number in Eq. (1.60) can be written as

C1 =
i

2π

∫
BZ

d2k tr

(
P−

[
∂P−
∂k1

,
∂P−
∂k2

])
. (1.68)
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For example, if

H(k) = h(k) · σ, (1.69)

then one can show that,

C1 =
1

4π

∫
BZ

d2kĥ · ∂ĥ

∂kx
× ∂ĥ

∂ky
. (1.70)

This is the winding number of the 2D h-surface over the
2D k-surface.

2. Second Chern number

The second Chern number is defined as (see App. ??)

C2 =
1

32π2

∫
M

d4x εijkl tr (FijFkl) , (1.71)

which is an integral over a closed manifold M . If the
dimension of M is less than 4, then C2 = 0. Such a
topological invariant appears, for example, in the the-
ory of non-Abelian instanton (M is the 4D Euclidean
space-time, see below), or 4D quantum Hall effect (M
is the 4D BZ, see next chapter). General formulation of
higher Chern numbers, rarely used in condensed matter
researches, can be found in App. ??.
� Instanton

In the following, we cite the instanton in SU(2) gauge
field theory as an example to illustrate that C2 is a topo-
logical invariant. An instanton is a classical soliton of
Yang-Mills field in Euclidean space-time (see Chap 6 of
Coleman, 1985). Its topological charge (aka Pontrygain
index) is given by the second Chern number,

QT =
1

8π2

∫
M

d4x
1

4
εijkl tr (FijFkl) . (1.72)

At first, let’s introduce the Chern-Simons identity:

1

4
εijkl tr (FijFkl) = ∂i

[
εijkl tr

(
Aj∂kAl −

2i

3
AjAkAl

)]
.

(1.73)
Be aware that the same symbol i is used for both a sub-
script and an imaginary number (i, j, k, l = 1, · · · , 4).
Pf: First,

Fkl = ∂kAl − iAkAl − (k ↔ l), (1.74)

so

LHS = εijkl tr (∂iAj − iAiAj) (∂kAl − iAkAl)
= εijkl tr (∂iAj∂kAl − 2iAiAj∂kAl) . (1.75)

The quartic term is zero because εijkl = −εlijk, while the
trace has cyclic symmetry. Next, use

εijkl tr (∂iAj∂kAl) = εijkl∂k tr (∂iAj Al) , (1.76)

εijkl tr (AiAj∂kAl) =
1

3
εijkl∂k tr (AiAjAl) . (1.77)

It follows that,

LHS = εijkl∂k tr

(
∂iAj Al −

2i

3
AiAjAl

)
(1.78)

= ∂i

[
εijkl tr

(
Aj∂kAl −

2i

3
AjAkAl

)]
. (1.79)

End of proof.
Note: If (A`)αβ ≡ −i〈α|

∂
∂k`
|β〉, then the coefficient of the

second term would be +2i/3, instead of −2i/3.
The CS identity shows that the LHS (aka topological

charge density) can be written as a total derivative ∂iJi.
At infinity, the field strength Fkl → 0, so the gauge po-
tential is a pure gauge,

Ak → iU†∂kU. (1.80)

The topological current density can be written as,

Ji ≡ εijkl tr

(
Aj∂kAl −

2i

3
AjAkAl

)
(1.81)

= εijkl tr

(
1

2
AjFkl +

i

3
AjAkAl

)
(1.82)

=
1

3
εijkl tr

(
U†∂jUU

†∂kUU
†∂lU

)
. (1.83)

Thus,

C2 =
1

8π2

∫
M

d4x∂iJi =
1

8π2

∫
S3
∞

dSiJi, (1.84)

where S3
∞ is a 3D sphere at infinity in the 4D Euclidean

space.
We now show that the integral above is an integer:

U(x) defines a mapping from an unit sphere x ∈ S3
1

to U(x) ∈ SU(2), which is also a 3-sphere. One can
parametrize x ∈ S3

1 by ψ1, ψ2, ψ3 (Dittrich and Reuter,
1986),

x1 = sinψ1 sinψ2 sinψ3, (1.85)

x2 = sinψ1 sinψ2 cosψ3, (1.86)

x3 = sinψ1 cosψ2, (1.87)

x4 = cosψ1. (1.88)

The SU(2) sphere is parametrized by the Euler angles
θ1, θ2, θ3,

U(x) = e
i
2 θ1σ3e

i
2 θ2σ2e

i
2 θ3σ3 , (1.89)

in which θ1 ∈ [0, 2π], θ2 ∈ [0, π], and θ3 ∈ [0, 4π] (Got-
tfried, 1989). Note that for SO(3), θ3 is restricted [0, 2π].
Use

∂U

∂xi
=

∂U

∂θa

∂θa
∂xi

, (1.90)

then

Ji =
1

3
εijkl∂jθa∂kθb∂lθc tr

(
U†∂aUU

†∂bUU
†∂cU

)
(1.91)

= 3!
1

3
εijkl∂jθ1∂kθ2∂lθ3 tr

(
U†∂1UU

†∂2UU
†∂3U

)
.
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The surface element

εijkl∂jθ1∂kθ2∂lθ3dSi = dθ1dθ2dθ3. (1.92)

Therefore,

C2 =
1

4π2

∫
dθ1dθ2dθ3 tr

(
U†∂1UU

†∂2UU
†∂3U

)
. (1.93)

It is left as an exercise to show that

tr
(
U†∂1UU

†∂2UU
†∂3U

)
=

1

4
sin θ2. (1.94)

Therefore,

C2 =
n

16π2

∫ 2π

0

dθ1

∫ π

0

dθ2

∫ 4π

0

dθ3 sin θ2 (1.95)

= n ∈ Z,

where n is the winding number of the mapping S3
1 →

SU(2).
In general, there is higher Chern number Cn in 2n-

dimension. We then could have the following integral
(Ryu et al., 2010),

ν2n−1 (1.96)

= N2n−1

∫
M

d2n−1x εi1···i2n−1tr
(
U†∂i1U · · ·U†∂i2n−1U

)
,

where M is a closed (2n− 1)-dimensional manifold, and
U is a U(N) matrix. With proper normalization, this is
an integer under continuous deformation of M .
Note: Similar integral with even number of U†dU is al-
ways zero. This is a result of the cyclic symmetry of the
trace, plus the fact that εi1i2···i2n = −εi2ni1···i2n−1

.

F. More on the second Chern number

1. C2 and projection operator

Similar to C1, C2 can also be written in projection
operators (Chap 13 of Bernevig and Hughes, 2013),

C2 =
1

8π2

∫
BZ

d4kεijkl tr

(
P+

∂P−
∂ki

∂P−
∂kj

P+
∂P−
∂kk

∂P−
∂kl

)
,

(1.97)
where P± are defined in Eq. (1.66), and one needs to
trace over filled levels below the chemical potential.
Pf: First, use

F̂±k` = i

[
∂P±
∂kk

P∓
∂P±
∂k`

− (k ↔ `)

]
. (1.98)

Then

1

4
εijkl tr

(
F−ijF

−
kl

)
= −1

4
εijkl tr

{[
∂P−
∂ki

P+
∂P−
∂kj

− (i↔ j)

] [
∂P−
∂kk

P+
∂P−
∂kl

− (k ↔ l)

]}
(1.99)

= −1

4
εijkl tr

(
∂P−
∂ki

P+
∂P−
∂kj

∂P−
∂kk

P+
∂P−
∂kl

− ∂P−
∂ki

P+
∂P−
∂kj

∂P−
∂kl

P+
∂P−
∂kk

− ∂P−
∂kj

P+
∂P−
∂ki

∂P−
∂kk

P+
∂P−
∂kl

+
∂P−
∂kj

P+
∂P−
∂ki

∂P−
∂kl

P+
∂P−
∂kk

)
(1.100)

= εijkl tr

(
P+

∂P−
∂ki

∂P−
∂kj

P+
∂P−
∂kk

∂P−
∂kl

)
. (1.101)

In the last equation, we have used the cyclic invariance
of the trace to move the projection operators to the right
positions. The C2 in Eq. (1.97) then follows.

2. C2 and winding number

A formula similar to Eq. (1.70) exists in 4-level system
with TRS. That is, if

H(k) = h(k) · ~Γ, (1.102)

where Γa are the 5 generators of the Clifford algebra,
then

C2 =
3

8π2

∫
BZ

d4kεabcdeĥa∂1ĥb∂2ĥc∂3ĥd∂4ĥe. (1.103)

This is the winding number of the 4D h-surface over the
4D k-surface. The readers are invited to prove this using
Eq. (1.101).

In general, the winding number of a n-sphere over a
n-dimensional closed surface Mn is given by

wn =
1

Sn1

∫
Mn

dnkεza1a2···an ĥz∂1ĥa1∂2ĥa2 · · · ∂nĥan ,

(1.104)
in which

Snr =
2π

n+1
2

Γ
(
n+1

2

)rn (1.105)

is the surface area of a n-sphere with radius r. Recall
that Γ(1) = 1,Γ(1/2) = π1/2, and Γ(x+ 1) = xΓ(x). For
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example,

S2
r = 4πr2, S3

r = 2π2r3, S4
r =

8

3
π2r4. (1.106)

Example related to the mapping T 3 → S3 can be found
in Eq. (??) of previous chapter.

The formulation here does not apply to the TI directly.
For a 3D TI, the base space (BZ) is 3D, instead of 4D,
and the second Chern number is irrelevant. For a 2D TI,
the base space is 2D (T 2). Even though its C1 can be
calculated, but the result is zero due to the TRS. The
topology is hidden in the Z2 topological number.

As we have mentioned, C2 is relevant in a 4D QH
system (which has TRS, unlike the 2D QH system). It is
found by Qi and Zhang that the 3D TI can be inferred
from the 4D QHE by dimensional reduction. This is the
subject of next chapter.

Exercise
1.If the SI operator is Π = 1⊗ τx, instead of 1⊗ τz, then
how would the parities in the column ΠΓΠ−1 of Table I
be changed?
2. Show that, given the unitary matrix,

U(x) = e
i
2 θ1σ3e

i
2 θ2σ2e

i
2 θ3σ3 , (1.107)

where θ1, θ2, θ3 are the Euler angles, one has,

tr
(
U†∂1UU

†∂2UU
†∂3U

)
=

1

4
sin θ2. (1.108)

3. With the help of Eq. (1.101), and given

H(k) = h(k) · ~Γ, (1.109)

where Γa are the 5 generators of the Clifford algebra,
show that, for the two energy branches,

C2 = ± 3

8π2

∫
BZ

d4kεabcdeĥa∂1ĥb∂2ĥc∂3ĥd∂4ĥe. (1.110)
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