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I. EFFECTIVE HAMILTONIAN OF TOPOLOGICAL
INSULATOR

During the majority of physical processes, the energy
bands far away from the Fermi level remain inert. There-
fore, only the energy bands near the Fermi level need be
considered. The order of the effective Hamiltonian ma-
trix H(k) equals the number of bands considered. For ex-
ample, in the QWZ model, and the BHZ model, 2 bands
and 4 bands are considered respectively.

In semiconductors, charge carriers are populated
around the minimal energy gap, say at k = 0. Therefore,
for most purpose, it is sufficient to know the effective
Hamiltonian near k = 0. Furthermore, since its matrix
elements need to respect the symmetry of the system,
the form of the effective Hamiltonian is restricted. That
is, the symmetry would help us reducing the number of
independent parameters.

A. Symmetry of Hamiltonian

Consider a crystal with point group symmetry G.
Write the representations for a group element g ∈ G as
g, Ug (or simply U), and Dg in real space, Hilbert space,
and Fock space respectively. Under the action of g, an
annihilation operator transforms as (Fang et al., 2013),

Dgcα(R)D−1
g =

∑
αβ

Uαβcβ(R′), R′ = gR, (1.1)

in which α, β are orbital indices, R is a lattice vector,
and g is a 3× 3 matrix of transformation.

Fourier transformation gives

cα(k) =
1√
N

∑
R

cα(R)e−ik·R. (1.2)

It transforms as

Dgcα(k)D−1
g =

1√
N

∑
R

∑
αβ

Uαβcβ(R′) e−ik·R︸ ︷︷ ︸
=e−igk·R′

=
∑
αβ

Uαβcβ(gk). (1.3)

Suppose the Hamiltonian is,

H =
∑
α,β

Hαβ(k)c†α(k)cβ(k), (1.4)

then the invariance under symmetry transformation re-
quires

DgHD
−1
g = H. (1.5)

It follows that,

UgH(k)U−1
g = H(gk). (1.6)

B. Effective Hamiltonian of bulk states

The following discussion is based on Zhang et al., 2009.
They focus on materials like Bi2Se3, Bi2Te3, and Sb2Te3

(see Fig. 1). These materials have a layered structure.
Each unit cell spans 5 layers stacked along z-axis, and
there is a three-fold rotation symmetry around the z-
axis. Each quintuple layer has an inversion center, and
these quintuple layers stuck with each other via the Van
der Waals force.

We keep only the 4 bands closest to the Fermi level.
They are originated from the 4 atomic orbitals {|p1+

z ↑
〉, |p2−z ↑〉, |p1+

z ↓〉, |p2−z ↓〉}, in which ± stand for the par-
ities of the states. Therefore, the effective Hamiltonian
is a 4 × 4 matrix. If the orbitals have energies ε0 ±M0,
then at the location of minimum energy gap,

H0 = diag(ε0 +M0, ε0 −M0, ε0 +M0, ε0 −M0). (1.7)

As mentioned above, the Hamiltonian is required to sat-
isfy Eq. (1.6). Here the symmetry operators are:
TR:

Θ = iσyK ⊗ 1 =

 0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

K, (1.8)
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FIG. 1 (a) Crystal structure of Bi2Se3. (b) Top view of the
(111)-surface. (c) Side view of the layered structure. Fig from
Qi and Zhang, 2011.

SI:

Π = 1⊗ τz =

 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (1.9)

Rotation:

C3 = ei
π
3 σz ⊗ 1 =


eiπ/3 0 0 0

0 eiπ/3 0 0
0 0 e−iπ/3 0
0 0 0 e−iπ/3

 .

(1.10)
The Pauli matrices σ and τ stand for spin and orbital
degrees of freedom.

Let hij(k), i, j = 1, 2, be the 2×2 submatrices of H(k).
Inversion symmetry requires

ΠH(k)Π−1 = H(−k). (1.11)

That is,

τzhij(k)τz = hij(−k). (1.12)

Or, a11 −a12 a13 −a14

−a21 a22 −a23 a24

a31 −a32 a33 −a34

−a41 a42 −a43 a44


k

=

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


−k

.

(1.13)
So a11, a13, · · · are even in k, a12, a14, · · · are odd in k.

Three-fold rotation symmetry requires

C3H(k)C−1
3 = H(e∓i2π/3k±, kz), (1.14)

where k± ≡ kx ± iky. The LHS is

C3H(k)C−1
3 =

(
h11 ei2π/3h12

e−i2π/3h21 h22

)
k

, (1.15)

where h21 = h†12. Therefore, up to quadratic power,
h11, h22 can only have kz, k+k− = k2

x + k2
y(≡ k2

⊥), and

k2
z ; h12 can only have k1

−.
Time reversal symmetry requires

ΘH(k)Θ−1 = H(−k). (1.16)

The LHS is

ΘH(k)Θ−1 =

(
h∗22 −hT12

−h∗12 h∗11

)
k

, (1.17)

Therefore,

h11(k) = h∗22(−k), (1.18)

h12(k) = −hT12(−k). (1.19)

Combine these 3 symmetries, one has

H(k) = ε0(k) +

 M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)

 ,

(1.20)
where

M(k) = M0 −B1k
2
z −B2k

2
⊥, (1.21)

ε0(k) = ε0 +D1k
2
z +D2k

2
⊥. (1.22)

The undetermined parameters need be fit with the actual
energy dispersion near the energy gap.

If the basis are arranged in the order of {|p1+
z ↑〉, |p2−z ↓

〉, |p1+
z ↓〉, |p2−z ↑〉}, then

H(k) = ε0(k) +

 M(k) A2k− 0 A1kz
A2k+ −M(k) −A1kz 0

0 −A1kz M(k) A2k+

A1kz 0 A2k− −M(k)

 .

(1.23)
This can be obtained by first exchanging the 2nd and
the 4th columns, followed by exchanging the 2nd and
4th rows of the H in Eq. (1.20). If A1 = 0, then this
reduces to a block-diagonal Hamiltonian, similar to the
2D BHZ Hamiltonian.

C. Effective Hamiltonian of TI surface states

Similar to the TI bulk-state Hamiltonian, one can
deduce the effective Hamiltonian for the surface states
based on the consideration of symmetry. As an exam-
ple, we consider the [111] surface state of Bi2Te3 (see
Fig. 1(b)). In addition to the TRS, there is also a C3v

symmetry, which consists of a 3-fold rotation transfor-
mation C3 and a mirror transformation M : x→ −x.

The operator for the 3-fold rotation is

C3 = eiπ/3σz . (1.24)

The mirror operation M needs to flip the signs of σy, σz,
but preserve the sign of σx. Note that a mirror reflection
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FIG. 2 (a) The energy dispersion of the Rashba system con-
sists of two paraboloids. The magnitude of α is highly exag-
gerated in the figure. (b) When the chemical potential µ is
above the nodal point, there are two Fermi circles. The spin
of an electron follows the direction of the effective magnetic
field b(k) = αk × ẑ, which is always perpendicular to the
momentum.

in 3D equals an inversion followed by a 180◦ rotation.
Therefore, M2 = −1 for spin-1/2 electron (Kane, 2013).
These restrictions give

M = iσx (1.25)

The effective Hamiltonian is transformed as (Θ =
iσyK),

ΘH(k)Θ−1 = H(−k), (1.26)

C3H(k±)C−1
3 = H(e∓i2π/3k±), (1.27)

MH(k±)M−1 = H(−k∓), (1.28)

where k = (kx, ky). Write the 2× 2 Hamiltonian matrix
as

H(k) =

(
h(k) g(k)
g∗(k) −h(k)

)
, (1.29)

then time-reversal symmetry dictates that h(−k) =
−h(k), g(−k) = −g(k).

Rotation symmetry gives

h(k±) = h(e∓2πi/3k±); (1.30)

ei2π/3g(k±) = g(e∓2πi/3k±). (1.31)

Mirror symmetry gives

h(k±) = −h(−k∓); (1.32)

g(k±) = g∗(−k∓). (1.33)

To linear order of the momentum, it is not difficult to
see that h(k) = 0, g(k) = ik−. Therefore,

H(k) = ε0(k) + v(σxky − σykx). (1.34)

To the third order of momentum, it is left as an exercise
to show that

H(k) = ε0(k)+vk(σxky−σykx)+
λ

2

(
k3

+ + k3
−
)
σz, (1.35)

where vk = v0(1 + αk2). The energy dispersion is

ε±(k) = ε0(k)±
√
v2
kk

2 + λ2k6 cos2(3θ), (1.36)

where θ = ∠(k, x̂). This would give a Fermi contour with
6-fold rotation symmetry (Fu, 2009), which is consistent
with observation (Xu et al., 2011).

E-E+

µ1

µ2

E-E+

µ

m(a) (b)

FIG. 3 Fig. (a) shows the Fermi circles for chemical potential
lower (µ1), or higher (µ2), than the nodal energy. In Fig. (b),
the nodal point is lifted by magnetization, and the chemical
potential is within the energy gap.

D. Berry curvature near level crossing

In the following, we review several systems with nodal
points in energy spectrum: Rashba system, graphene,
and the surface state of 3D TI. They are all 2D systems.
Near a nodal point, the system can be approximated as a
two-level system (assuming there is no spin degeneracy),
and the effective Hamiltonian can be expanded by Pauli
matrices. Nodal points in 3D systems will be investigated
in the chapters on Weyl semimetal.

1. Rashba system

For the 2DEG in an asymmetric quantum well, there
can be Rashba spin-orbit coupling (Bihlmayer et al.,
2015). The Hamiltonian is,

H(k) =
~2k2

2m∗
+ α (σ × k) · ẑ, (1.37)

where α is the strength of the Rashba coupling, and z
is the direction perpendicular to the 2DEG. The energy
spectrum is,

E± =
~2k2

2m∗
± αk, k = |k|. (1.38)

They are two paraboloids with a point degeneracy at
k = 0.

When the chemical potential is above the nodal point,
there are two Fermi circles, see Fig. 2(a). When written
in the standard form,

H(k) =
~2k2

2m∗
+ b(k) · σ, (1.39)

the Rashba coupling acts like a k-dependent magnetic
field, b(k) = αk × ẑ = α(ky,−kx, 0). The spins of the
electrons on the Fermi circles are parallel or anti-parallel
to the effective magnetic field b(k), see Fig. 2(b).

After circling the Fermi circle once, an electron ac-
quires a Berry phase proportional to the solid angle ΩC
extended by the spin vector,

γ± = ∓1

2
ΩC . (1.40)
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FIG. 4 (a) Brillouin zone of graphene, with valleys K and
−K. (b) Dirac cones at the two valleys. Valence band has
τz = −, and conduction band has τz = +. The signs of the
Berry curvatures for the conduction bands and the valence
bands are indicated.

Since the spin always lies on a plane, the solid angle is
2π, and the Berry phases are γ± = ∓π.

The value of the Berry phase remains to be π, irrespec-
tive of the size of the Fermi circle, as long as the path
C encloses the nodal point. This implies that the Berry
curvature is a delta function,

F±z (k) = ∓πδ2(k). (1.41)

The Hall conductivity is given as,

σH =
e2

h

1

2π

(∫
filled

d2kF+
z +

∫
filled

d2kF−z

)
. (1.42)

Since the two branches of the paraboloids have Berry cur-
vatures with opposite signs. Therefore, when the chemi-
cal potential µ is higher than the nodal energy, the two
integrals of Berry curvature cancel with each other. If µ
is below the nodal energy, then the Fermi sea does not
enclose the node (see Fig. 3(a)), and the two integrals
are both zero. Therefore, no matter where µ is, the Hall
conductivity is zero.

If the 2DEG is doped with magnetization m, then

H(k) =
~2k2

2m∗
+ α (σ × k) · ẑ +mσz. (1.43)

The magnetization opens a gap at the node, see Fig 3(b).
The Berry curvature becomes (Culcer et al., 2003),

F±z (k) = ∓ α2m

2(m2 + α2k2)3/2
. (1.44)

When the chemical potential is inside the gap, only one
branch is filled, and one can verify that,

σH =
1

2

e2

h

(
1− m√

m2 + α2k2
F

)
6= 0. (1.45)

2. Graphene

Graphene is probably the most famous material that
has nodal points. There are two different Dirac valleys
located at the corners of the hexagonal BZ. The effective
Hamiltonians near the nodes are (neglecting spin)

H0 = ~vF (±kxτx + kyτy) , at ±K, (1.46)
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FIG. 5 (a) Graphene lattice with staggered on-site potentials
opens a gap at a Dirac point, which is described by a mass. (b)
A special distribution of magnetic flux invented by Haldane
also opens a gap at a Dirac point, which is described by a
valley-dependent mass.

where τ is the quasi-spin for orbital degrees of freedom
(i.e., conduction and valence bands), and ±K are shown
in Fig. 4(a).

When an electron circles a Dirac cone once, it would
get a Berry phase γC = π. According to the Onsager
quantization rule (Chang and Niu, 1996),∮

C

k · dr = 2π

(
n+

1

2
− γC

2π

)
. (1.47)

The Berry phase term cancels with the 1/2, so that
there is no zero-point energy for Landau levels, εn =
vF
√

2eB~n. See Sec. VII.C of Xiao et al., 2010 for a
semiclassical derivation of the energy levels. A direct
measurement of the Berry phase π from a Dirac point in
cold atoms is reported in Duca et al., 2015.

Similar to the Rashba system, the Berry curvature is
a delta function,

F±Kz = ±δ2(k)τz. (1.48)

Not only that the two orbitals have opposite monopole
charges, the Berry curvatures of the two nodes also have
opposite signs, see Fig. 4(b). As a result, the Hall con-
ductivity is zero in the absence of magnetic field.

The local stability of the Dirac point in graphene is
protected by space-inversion and time-reversal symme-
tries (C3 symmetry ensures global stability. See Chap 7
of Bernevig and Hughes, 2013). For a staggered graphene
lattice (ses Fig. 5(a)), the SIS is broken and a gap can be
opened. This is described by the effective Hamiltonian,

H±K = H0 +mv2
F τz. (1.49)

The Berry curvature for the lower band is

F±Kz (k) = ±1

2

kF
(k2
F + k2)3/2

, (1.50)

where kF = mvF /~. The Hall conductivity remains zero,
no matter where the chemical potential is, because of the
cancellation from two valleys.
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FIG. 6 (a) Dirac cone of the surface state. The chemical
potential can be below (µ1) or above (µ2) the Dirac point.
(b) The Dirac point can be opened by magnetization.

With an ingenious choice of flux distribution, Haldane
devised a way to build two valleys with the same sign of
Berry curvatures (Haldane, 1988). In Fig. 5(b), there are
positive (negative) magnetic fluxes through the triangles
indicated by + (−). The total flux through a hexagon
is zero, thus there are no Landau levels, but the TRS is
broken.

The effective Hamiltonian now becomes,

H±K = H0 ±mv2
F τz. (1.51)

The Berry curvature for the lower band is

F±Kz (k) =
1

2

kF
(k2
F + k2)3/2

. (1.52)

When the chemical potential is inside the gap, the Hall
conductivity is σH = e2/h, because the contribution from
two valleys no longer cancel with each other.

Two remarks about Haldane’s graphene model : First,
with proper tuning of model parameters, it’s possible not
to open the two nodes simultaneously. That is, there can
be only one Dirac point, not two, at critical values. This
demonstrates the parity anomaly in (2+1)-dimensional
field theories.

Second, σH = e2/2h if there is only one gapped node.
This seems to contradict the fact that the Chern number
must be an integer . The half-integer here is in fact an
artifact of the bottomless Dirac sea. For an usual Bloch
band with lower bound, the region away from the node
would contribute another 1/2 to make up for the integer.
This is sometimes called a hidden massive spectator
(see Hatsugai et al., 1996).

3. Surface state of topological insulator

As shown in Sec. I.C, a typical TI surface state Hamil-
tonian near a Dirac point is

HSS = α(σ × k)z +O(k2), (1.53)

which is similar to the Rashba Hamiltonian, but with-
out the dominant parabolic term. It has the same Berry
curvature as the Rashba system,

F±z = ∓πδ2(k). (1.54)

It’s not difficult to see that the Hall conductivity given
by Eq. (1.42) is zero, no matter whether the chemical

potential is located below or above the Dirac point (see
Fig. 6(a)).

The Dirac point can be opened by magnetic dopants
with magnetization m (see Fig. 6(b)),

HSS = α(σ × k)z +mσz. (1.55)

Same as the Rashba system, the Berry curvature is

F±z = ∓ α2m

2(m2 + α2k2)3/2
. (1.56)

If the chemical potential is inside the energy gap, the Hall
conductivity is a half-integer,

σH =
e2

h

1

2π

∫
d2kF−z =

1

2

e2

h
. (1.57)

This is different from the Rashba system. It is not a half-
integer there because the lower band is not completely
filled.

As we have mentioned earlier, even though the TI has
odd number of Dirac point on one surface. The total
number of Dirac point for all surfaces should be even.
Overall they would contribute an integer Hall conductiv-
ity.

Same as in graphene, an electron circling the Fermi
circle C acquires a Berry phase γC = π. This value
is restricted by time-reversal symmetry: If the electron
circles in the opposite direction −C, then the Berry phase
becomes −γc. For the graphene and the TI with TRS, we
should have γc = −γc mod 2π. Therefore, γc can only
be 0 or π.

Due to the phase shift of π for a closed path, one
expects to see weak anti-localization, instead of
weak localization, in a graphene or a TI surface with
disorders (He et al., 2011). However, real samples are
more complicated. Depending on condition, both types
of localization can be observed (Lu and Shen, 2014;
Tikhonenko et al., 2009).

Exercise
1. Following the discussion in subsection B, generalize
the effective Hamiltonian of the TI surface state to the
third order of momentum,

H(k) = ε0(k)+vk(σxky−σykx)+
λ

2

(
k3

+ + k3
−
)
σz. (1.58)

2. Given the 2D Hamiltonian,

H(k) =
~2k2

2m
+ α (σ × k) · ẑ +mσz, (1.59)

show that the Berry curvature is,

F±z (k) = ∓ α2m

2(m2 + α2k2)3/2
. (1.60)
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