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I. 2D TOPOLOGICAL INSULATOR

A. General theory

Analogous to the connection between 1D charge pump
and 2D quantum Hall effect (see ??), there is also a close
connection between 1D spin pump and 2D topological
insulator (TI). We can identify the parameter t with the
Bloch momentum ky of a 2D lattice system (see Fig. 1),

(k, t) → (kx, ky). (1.1)

The key ingredient that leads to the Z2 values of ∆Pθ is
the TRS of the 1D lattice at t = 0, T/2. Because of the
periodic variation, the edges of the domain at t = T/2
and t = −T/2 are related, just like the edges of a 2D BZ
at ky = π and −π. Hence, ky = 0, π play similar roles
to t = 0, T/2. Mathematically, one expects a similar Z2

number from the following expression.
Consider time-reversal polarization Pθ along the x-

direction. Define

∆Pθ = Pθ (ky = π)− Pθ (ky = 0) . (1.2)

It follows that (set qa = 1)

(−1)∆Pθ

=
∏

n filled

wn(Λ1)√
w2
n(Λ1)

wn(Λ2)√
w2
n(Λ2)

wn(Λ3)√
w2
n(Λ3)

wn(Λ4)√
w2
n(Λ4)

= ±1, (1.3)

where Λi are the TRIM shown in Fig. 1.
We now consider the sewing matrix for N filled Kramer

pairs. Since the Bloch states from different bands are
orthogonal to each other, we have

wmα,nβ(k) = 〈um−kα|Θ|unkβ〉 (1.4)

= δmnwnαβ(k). (1.5)
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FIG. 1 (a) The domain of (k, t) variables in the 1D Fu-Kane
model. (b) The first quadrant of the Brillouin zone in a 2D
lattice model. The four corners are the TRIM.

It follows that,

w(k) =


0 eiχ1k 0 0 0

−eiχ1−k 0 0 0 0
0 0 0 eiχ2k 0
0 0 −eiχ2−k 0 0

0 0 0 0
. . .

 .

(1.6)
One can show that its determinant at a TRIM is,

detw(Λi) =

N∏
n=1

w2
n(Λi), (1.7)

where wn(k) = eiχnk .
For an antisymmetric 2N × 2N matrix M, one can

define its pfaffian (see wikipedia),

pf M =
∑
P

(−1)PMi1j1Mi2j2 · · ·MiN jN . (1.8)

The subscripts,

(i1, j2), (i2, j2), · · · , (iN , jN ), (1.9)

are all possible pairs from the string,

(1, 2, 3, · · · , 2N), (1.10)

but under the constraints,

i1 < i2 < · · · < iN , (1.11)

and i1 < j1, i2 < j2, · · · , iN < jN . (1.12)

P is a permutation from

(1, 2, . . . , 2N)→ (i1, j1, · · · , iN , jN ), (1.13)

and (−1)P is the sign of permutation p.
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For example,

pf

(
0 a
−a 0

)
= a, (1.14)

pf

 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = af − be+ dc. (1.15)

For the determinant in Eq. (1.7), we have

pf w(Λi) =

N∏
n=1

wn(Λi). (1.16)

The square of Pfaffian pf M is the determinant detM,

detM = (pf M)
2
. (1.17)

Thus, pfaffian can be considered as the square root of
determinant. If we define the a cumulative index for filled
bands at each TRIM as,

δi ≡
∏

n filled

wn(Λi)√
w2
n(Λi)

=
pf w(Λi)√
detw(Λi)

, (1.18)

then Eq. (1.3) can be written as (∆Pθ is re-written as ν)

(−1)ν =

4∏
i=1

pf w(Λi)√
detw(Λi)

=

4∏
i=1

δi. (1.19)

An insulator with ν = 0, 1 is called a trivial insulator
and a topological insulator respectively.

1. Edge state in 2D topological insulator

If the 1D spin pump or the 2D lattice in Fig. 1 has
an edge at certain cutoff x, then k (or kx) is no longer a
good quantum number. In Fig. ??, we have shown the
evolution of the edge states in a spin pump. By analogy,
a 2D TI would have similar edge states inside the energy
gap, crossing each other at TRIM (Fig. 2(b)).

In comparison, even though the edge states in a triv-
ial insulator also need to cross each other at TRIM
(Fig. 2(c)), the ways they link together are different. This
is due to the fact that when δ1δ2 and δ3δ4 have opposite
signs, ν = 1, and we have a TI accompanied by a switch
of Kramer-pair partner at TRIM. When δ1δ2 and δ3δ4
have the same sign, ν = 0, and we have a trivial insula-
tor with no switch of Kramer-pair partner.

If one plots a horizontal line (chemical potential) inside
the energy gap, then it would cut the edge states in (b)
odd number of times, but cut those in (c) even number
of times. The former cannot be avoided by shifting or
distorting the energy levels of edge states, while the latter
can be avoided. Thus, the edge states in TI are robust,
while those in trivial insulator are not.

t T/2 ky0 π0

(a) (b)

ky π0

(c)

FIG. 2 Comparison of the edge states in (a) 1D spin pump,
(b) 2D topological insulator, and (c) 2D trivial insulator. (a)
is a schematic plot of the edge state in Fig. ??. (b) and (c)
show the energy levels in edge BZ.

2. Lattice with inversion symmetry

Even though ν is known to have two possible values,
0 and 1, it is not a trivial task to get explicit values of
χnΛi at the first place. Fortunately, if the lattice has

space inversion symmetry (SIS), then wn(Λi)/
√
w2
n(Λi)

is simply equal to the parity ζn(Λi) of the Bloch state
ψnΛi±. Note that the parity of Kramer-pair states with
index α = ± is the same. This fact is proved below,
following Nomura, 2013.

First, suppose Π is the SI operator, then

ψnkα(r)→ Πψnkα(r) ≡ ψnkα(−r)

= ψn−kα(r), (1.20)

apart from a phase factor. The same is true for the cell-
periodic state,

unkα(r)→ Πunkα(r) = un−kα(r), (1.21)

apart from a phase factor. If the lattice has SIS, then
ψnkα (but not unkα) are parity eigenstates at k = Λi,

ΠψnΛiα(r) = ζnΛiψnΛiα(r). (1.22)

The parity eigenvalue ζnΛi = 1 or −1 is the same for the
two Bloch states (with α = ±) in a Kramer pair.

Note that there is a slight difference between Bloch
state ψnkα and cell-periodic state unkα,

ψnk+Gα = ψnkα, (1.23)

but unk+Gα = e−iG·runkα. (1.24)

Therefore, only the Bloch state can have ψn−G
2 α

=

ψnG
2 α

.

Second, define a different type of sewing matrix as fol-
lows, for a particular Kramer pair with index n (sup-
pressed here),

vαβ(k) ≡ 〈ukα|ΠΘ|ukβ〉. (1.25)

(1) The matrix vαβ is anti-symmetric.
Pf: Using the relation 〈ψ1|Θ|ψ2〉 = −〈Θ2ψ1|Θ|ψ2〉 =
−〈ψ2|Θψ1〉, and Π† = Π, one has

vαβ = 〈ukα|ΠΘ|ukβ〉 (1.26)

= 〈ukα|Θ (Π|ukβ〉) (1.27)

= −〈ukβ |ΠΘ|ukα〉 (1.28)

= −vβα. (1.29)
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(a)

EBZ
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FIG. 3 (a) Time reversal conjugate pairs and effective Bril-
louin zone. (b) Folding the EBZ into a cylinder, with open
edges.

(2) The matrix vαβ is unitary.
Pf: Using the relation 〈ψ1|ψ2〉∗ = 〈ψ2|ψ1〉, one has(

vv†
)
αγ

=
∑
β

vαβv
∗
γβ (1.30)

=
∑
β

〈ukα|ΠΘ|ukβ〉〈ukγ |ΠΘ|ukβ〉∗ (1.31)

= 〈ukα|ukγ〉 (1.32)

= δαγ . (1.33)

Similarly, one can also show that
(
v†v
)
αγ

= δαγ . There-

fore, it is unitary.
The matrix wαβ is also unitary, and is antisymmetric

at Λi. Therefore, sewing matrices wαβ(Λi) and vαβ(Λi)
differ by a multiplicative constant (the parity!) at TRIM:

wαβ(Λi) = 〈u−Λiα|Θ|uΛiβ〉 (1.34)

= 〈ψ−Λiα|Θ|ψΛiβ〉 (1.35)

= 〈ψΛiα|Π2Θ|ψΛiβ〉,Π2 = 1 (1.36)

= ζΛi〈ψΛiα|ΠΘ|ψΛiβ〉 (1.37)

= ζΛi〈uΛiα|ΠΘ|uΛiβ〉 (1.38)

= ζΛivαβ(Λi). (1.39)

Under a gauge transformation,

uk+ → u′k+ = eiϕkuk+, (1.40)

uk− → u′k− = uk−, (1.41)

the off-diagonal matrix element of v(k) transforms as,

v(k)→ v′(k) = e−iϕkv(k). (1.42)

Therefore, one can adjust its phase such that v(Λi) = 1.
Hence,

wn(Λi) = ζn(Λi)vn(Λi) = ζn(Λi). (1.43)

As a result,

wn(Λi)√
w2
n(Λi)

= ζn(Λi). (1.44)

It follows that,

δi =
∏

n∈filled

ζn(Λi), (1.45)

which is the cumulative parity of filled Bloch states (pick
only one ζn(Λi) for each Kramer pair) at a TRIM, and

(−1)ν =

4∏
i=1

δi. (1.46)

3. Z2 integer ν as a topological invariant

• Chern number

To understand the Z2 topology, we follow Moore
and Balent’s argument for 2D TI (Moore and Balents,
2007). Because of time-reversal symmetry, the degen-
erate Bloch states for k and −k in a Brillouin zone
are time-reversal conjugate (see Fig. 3(a)). As their
Berry curvatures cancel with each other, the first Chern
number for a filled band vanishes. Since the domain
of independent Bloch states cover only half of the BZ
(called effective Brillouin zone, or EBZ), one may
wonder if the integral of the Berry curvature over the
EBZ could be quantized.

Unfortunately, since the EBZ does not form a closed
surface (see Fig. 3(b)), no quantization is guaranteed.
To fix this, one can put two caps with TR conjugation
to close the EBZ. This closed surface should have
an integer C1, but its value depends on the caps of
choice. Nevertheless, Moore and Balents proved that,
because of the TR conjugation, the caps can only
change C1 by an even integer. That is, C1 mod 2
is independent of the caps of choice. Therefore, C1

mod 2 should be an intrinsic property of the EBZ
itself. We thus have two topological classes: 0 being
the usual insulator, and 1 being the topological insulator.

• Winding number

Fu and Kane showed that the Z2 integer ν can be
related to the winding number between two patches of
gauge (Fu and Kane, 2006), which we now explain.

First, instead of Eq. (??) in Chap ??, we adopt the
TR-smooth gauge,{

Θψnk+ = −ψn−k−,
Θψnk− = +ψn−k+.

(1.47)

As a result, the phases of Bloch states cannot be uniquely
defined over the whole BZ. As in the case of the mag-
netic monopole in Chap ??, we need to use more than
one patch of gauge to get rid of singularity. This is the
topological obstruction mentioned earlier.

Fig. 4 shows the EBZ covered by two patches of gauge.
Along their boundary, the wave functions are connected
by gauge transformation,

|ukα〉B = Uαβ |ukβ〉A, (1.48)

where U is a U(2) matrix. Again we consider only one
Kramer pair for simplicity.
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FIG. 4 Two patches of gauge in the EBZ.

Recall that

AB` = U†AA` U + iU†
∂

∂k`
U. (1.49)

The topology of the Bloch states can be characterized by
the winding number w of the U(1) phase of U around the
closed loop ∂A in Fig. 4,

w =
1

2πi

∮
∂A

dk · tr
(
U†

∂

∂k
U

)
. (1.50)

Taking the trace of Eq. (1.49), we have

w =
1

2π

∮
∂A

dk ·
(
AA −AB

)
, (1.51)

in which AA/B ≡ tr ~AA/B .
Since |uAkα〉 is smoothly defined inside A, one has∮

∂A

dk ·AA =

∫
A

d2k FAz . (1.52)

The same cannot be done for |uBkα〉, since it is not
smoothly defined in A. Instead, we write∮

∂A

dk ·AB =

∮
∂EBZ

dk ·AB −
∮
∂B

dk ·AB

=

∮
∂EBZ

dk ·AB −
∫
B

d2k FBz .(1.53)

Finally, combine Eqs. (1.52) with (1.53), we have (Fu
and Kane, 2006),

w =
1

2π

(∫
EBZ

d2k Fz −
∮
∂EBZ

dk ·A
)

mod 2. (1.54)

A modulo operation is imposed, since the second term
is only gauge invariant modulo 2. This expression of w
is different from the Chern number in a quantum Hall
system, which only has the first term, and is an integral
over a closed surface (the whole BZ).

Eq. (1.54) looks like the generalized Gauss-Bonnet
formula for a 2D surface M with edge, in which the
Berry curvature is replaced by the Gaussian curvature
G, and the Berry connection is replace by the geodesic
curvature kg of the boundary,

χ =
1

2π

(∫
M

d2r G−
∮
∂M

dr kg

)
. (1.55)

π
0

2π

π−
y

k

( )ykγ

0w =

1w =

FIG. 5 Winding number of the Zak phase.

For example, for a torus, χ = 0, for a disk-like surface
(which has a boundary), χ = 1, and for a sphere, χ = 2.

• Winding number of Zak phase

Recall that the Zak phase for a 1D Bloch state
is

γ =

∫ π

−π
dkA(k). (1.56)

The Chern number for a quantum Hall system is

C =
1

2π

∫
BZ

d2kFz(k). (1.57)

One can choos the parallel-transport gauge (see Chap ??),〈
ukxky

∣∣∣∣ ∂∂ky
∣∣∣∣ukxky〉 = 0, (1.58)

so that Ay(k) = 0. Then the phases of Bloch states
are smooth inside the BZ, but are not continuous across
upper (or lower) edges of the BZ.

With Stokes theorem, one gets

C =
1

2π

(∫ π

−π
dkxAx(kx, π)−

∫ π

−π
dkxAx(kx,−π)

)
=

1

2π

∫ π

−π
dky∂kyγ(ky) (1.59)

=
1

2π
[γ̃(π)− γ(−π)] , (1.60)

where γ(ky) is the Zak phase across the BZ with ky fixed.
We put a tilde on the first term to emphasize that its
value depends on the history of the integration over ky.
In general, γ̃(π) = γ(π) + 2πw, γ(π)=γ(−π) is single-
valued, and w is the winding number of the mapping:
ky ∈ [−π, π] → γ(ky). In the plot of γ(ky) (Fig. 5), w
is the number of times the curve crosses γ = 2π from
below. Finally, we have C = w.

The Z2 topological number ν, or ∆Pθ, is the difference
of TR polarizations (Eq. (1.2)). When it is written in
Zak phase (qa = 1), we have

ν =
1

2π
[γθ(ky = π)− γθ(ky = 0)] mod 2, (1.61)

γθ ≡ γ+ − γ−, (1.62)
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FIG. 6 Effective Brillouin zone (a). The energy dispersion
of a Kramer pair along ky 6= 0 (b) and ky = 0 (c). To get
the Zak phase γ±, one needs to follow the green arrows when
doing the integration.

where γ± are the Zak phases across kx ∈ [0, 2π] for the
two eigenstates uk±. It is tempting to write the difference
as

ν =
1

2π

∫ π

0

dky∂kyγθ(ky), (1.63)

as we have done for the quantum Hall state. However,
this is wrong, since γθ is not continuous when ky moves
away from 0 or π, as shown in Fig. 6 (Grusdt et al., 2014).

Instead, one writes,

2πν = γ+(π)− γ−(π)− [γ+(0)− γ−(0)] (1.64)

= 2 [γ+(π)− γ+(0)]−
∑
α=±

[γα(π)− γα(0)] .

The second term, which relates to the charge polariza-
tion, is continuous throughout the BZ. Thus, it can be
written as an integral over ky. Furthermore, it is known
that γ+ = γ−. Hence,

γc ≡ γ+ + γ− = 2γ+, (1.65)

2πν = γc(π)− γc(0)−
∫ π

0

dky∂kyγc(ky)︸ ︷︷ ︸
=γ̃c(π)−γc(0)

. (1.66)

The history-dependent phase γ̃c(π) = γc(π) + 2πwc,
where wc is the winding number of the mapping: ky ∈
[0, π]→ γc(ky). Finally, we have ν = wc mod 2.

Note that, with the parallel-transport gauge,∫
EBZ

d2k Fz −
∮
∂EBZ

dk ·A

=

∫ π

0

dky∂kyγc(ky)− [γc(π)− γc(0)]. (1.67)

Thus, the winding number in Eq. (1.54) is the same as
the winding number of the Zak phase.

d<dc d>dc

CdTe CdTeHgTe CdTe CdTeHgTe

FIG. 7 HgTe is sandwitched between CdTe, forming a quan-
tum well. The positions of the discrete energy levels in the
QW depend on the width of the QW.

• Summary

So far we have learned that the Z2 topological in-
variant ν can be calculated via,
1. The sign of pf w/

√
detw at TRIM (or, the parities of

Bloch states at TRIM, if there is inversion symmetry).
2. The Gauss-Bonnet-like integral formula above.
In addition, ν can also be characterized by
3. The vorticity of the pfaffian of a sewing matrix m (see
Prob. 2).
4. The axion angle of electromagnetic response (see
Chap ??).

Except for the parities in 1., none of these is easy to
evaluate. For a crystal without inversion symmetry, one
can deform it to one that has SIS and determine its ν
by parities. This is a valid shortcut if the energy gap
remains open during the process of deformation.

B. Bernevig-Hughes-Zhang model

There is a close relation between the Z2 integer and
the band inversion (negative energy gap) near the chemi-
cal potential. The first experimentally confirmed (2D) TI
is made from semiconductor quantum well. Bulk HgTe
has inverted band structure (due to spin-orbit coupling)
near the Fermi energy. Unfortunately, it’s a metal, not
an insulator. Nevertheless, one can sandwitch it between
CdTe (an ordinary insulator), forming a quantum well
(QW) and opening an energy gap near the Fermi energy
(see Fig. 7). When the HgTe layer is thick, the discrete
QW energy levels remain inverted, similar to the bulk
states. However, if the HgTe layer is thinner than a crit-
ical width dc, then the electron (E1) and hole (H1) levels
in the QW would switch positions. Therefore, one can
check if the topology of the QW states (signified by the
emergence of helical edge states) depends on the width
of the QW (König et al., 2007).

Typical semiconductor band structure near k = 0 is
shown in Fig. 8. In a QW, the LH bands split off the
HH bands, so in the simplified Bernevig-Hughes-Zhang
(BHZ) model, only conduction band and one HH valence
band are considered (each are two-fold degenerate). In
order to investigate the parities of Bloch states at TRIM,
we follow the lattice version of the BHZ model proposed
by Fu and Kane, 2007 (also, see Nomura, 2016)
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4-band 

model

E(k)

Eg

∆

HH

LH
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CB

FIG. 8 Typical energy bands near the energy gap of a semi-
conductor, in which each line is two-fold degenerate. The
conduction band is originated from the s-orbital. The va-
lence band from the p-orbitals are composed of heavy-hole
(HH) band, light-hole (LH) band, and spin-orbit split-off (SO)
band.

For an atom at site R, four states are considered,

|s ↑〉, |s ↓〉, |px + ipy ↑〉, |px − ipy ↓〉. (1.68)

Without ambiguity, one can write |px + ipy ↑〉 and |px −
ipy ↓〉 simply as |p ↑〉 and |p ↓〉. They are the states with
quantum numbers mj = 3/2 and mj = −3/2.

We consider only the electron hopping between nearest
neighbors. The relevant parameters are on-site energies
εs, εp, and hopping amplitudes tss, tpp, and tsp (and its
complex conjugate tps), see Fig. 9. In a 2D square lat-
tice, the vectors R + aµ (µ = ±x,±y) point to the four
nearest neighbors of R. The tight-binding Hamiltonian
is therefore given as,

H = H0 +H1,

H0 =
∑

Rσ=±

(εs|Rsσ〉〈Rsσ|+ εp|Rpσ〉〈Rpσ|) ,(1.69)

and (given tps = tsp)

H1 = −
∑
Rσ

∑
µ=±x,±y

(tss|R + aµsσ〉〈Rsσ| (1.70)

− tpp|R + aµpσ〉〈Rpσ|
+ eiθµσtsp|R + aµsσ〉〈Rpσ|
+ e−iθµσtsp|Rpσ〉〈R + aµsσ|

)
,

where θµ = ∠(x̂,aµ). That is, θx = 0, θy = π/2, θ−x =
π, θ−y = 3π/2. Such a system has both TRS and SIS
(details later).

Because of the lattice translation symmetry, the
Hamiltonian can be diagonalized using the momentum
basis. We therefore introduce the Fourier transformation
(N is the total number of lattice sites),

|Rsσ〉 =
1√
N

∑
k

eik·R|ksσ〉, (1.71)

|Rpσ〉 =
1√
N

∑
k

eik·R|kpσ〉, (1.72)

sp
t

s px±ipy

(a)

(b)

, ,

ss pp sp
t t t

R R aµ+

,

s p
ε ε

FIG. 9 (a) The hopping amplitude of an electron hopping
from a s-orbital to the px± ipy orbitals of a nearest-neighbor
atom is designated as tsp. (b) Each atom has s-orbital and p-
orbital, with energies εs and εp. An electron can hop between
s-orbitals, between p-orbitals, or between an s-orbital and a
p-orbital.

and get (the lattice constant is set as one)

H =
∑
k

(〈ks ↑ |, 〈ks ↓ |, 〈kp ↑ |, 〈kp ↓ |)H(k)

 |ks ↑〉|ks ↓〉
|kp ↑〉
|kp ↓〉

 ,

where

H(k) (1.73)

=

(
εs − 2tss(cos kx + cos ky) 2tsp(σz sin ky − i sin kx)
2tsp(σz sin ky + i sin kx) εp + 2tpp(cos kx + cos ky)

)
.

Or,

H(k) =

[
εs + εp

2
− (tss − tpp)(cos kx + cos ky)

]
1⊗ 1

+

[
εs − εp

2
− (tss + tpp)(cos kx + cos ky)

]
τz ⊗ 1

+ 2tsp sin kxτy ⊗ 1 + 2tsp sin kyτx ⊗ σz. (1.74)

The Pauli matrices τx,y,z are for the orbital degree of
freedom, and σx,y,z are for the spin degree of freedom.

1. Time reversal and space inversion

Time reversal flips spin, but not orbital, therefore it
acts only on the spin degree of freedom. The TR operator
is thus,

Θ =

(
iσyK 0

0 iσyK

)
= 1⊗ iσyK. (1.75)

The s-orbital is even under space inversion, while the
p-orbital is odd under SI. That is,

Π|ksσ〉 = |ksσ〉, (1.76)

Π|kpσ〉 = −|kpσ〉. (1.77)



7

Therefore,

Π =

(
1 0
0 −1

)
= τz ⊗ 1. (1.78)

One can check that the Hamiltonian H(k) is indeed in-
variant under these two transformations,

ΘH(k)Θ−1 = H(−k), (1.79)

ΠH(k)Π−1 = H(−k). (1.80)

2. Z2 topological number

Since the BHZ model has SI symmetry, one can calcu-
late the Z2 topological number from the parities of the
Bloch states at TRIM (see Fig. 1(b)). At a TRIM, the
first line of Eq. 1.74 contributes a constant energy shift
and can be ignored, and the third line is zero. Therefore,

H(Λ1) =

[
εs − εp

2
− 2(tss + tpp)

]
τz ⊗ 1, (1.81)

H(Λ2) =

(
εs − εp

2

)
τz ⊗ 1, (1.82)

H(Λ3) =

(
εs − εp

2

)
τz ⊗ 1, (1.83)

H(Λ4) =

[
εs − εp

2
+ 2(tss + tpp)

]
τz ⊗ 1. (1.84)

Note that they are proportional to the parity operator,

H(Λi) = giΠ, Π = τz ⊗ 1. (1.85)

Hence, an energy eigenstate at Λi is also a parity eigen-
state,

Πψ = ζψ ↔ H(Λi)ψ = (giζ)ψ. (1.86)

Let’s assume εs > εp in the following discussion. If
εs − εp > 4(tss + tpp) > 0, then the energies at Λ1 are

ε1+ = +

[
εs − εp

2
− 2(tss + tpp)

]
, (1.87)

ε1− = −
[
εs − εp

2
− 2(tss + tpp)

]
. (1.88)

The degenerate eigenstates ψ1+ have even parity, while
ψ1− have odd parity. Only the state ψ1− is filled, so
δ(Λ1) = −1. Similarly, one can also get δ(Λ2) = δ(Λ3) =
δ(Λ4) = −1. Therefore,

(−1)ν = 1, or ν = 0. (1.89)

This is a trivial insulator.
On the other hand, if εs − εp < 4(tss + tpp), then

ε1− > ε1+. Due to the band inversion, now the states
ψ1+ are filled instead. Therefore, δ(Λ1) = 1. The other
three parities are not changed. As a result,

(−1)ν = −1, or ν = 1. (1.90)

Λ

(a) (b)

( )kε

k

µ

FIG. 10 (a) In real space, there is a helical edge state along
the boundary of a 2D TI. (b) In momentum space, the en-
ergy dispersion curves of the edge states cross each other at
a TRIM.

This is a topological insulator.
At the critical point, εs − εp = 4(tss + tpp), the en-

ergy gap closes. The transition from the trivial phase to
the topological phase is accompanied by an inversion of
energy bands, when ε+ and ε− switch positions.

3. Orbital basis versus spin basis

Note that in Eq. 1.73, every 2× 2 block of the Hamil-
tonian matrix is diagonal. In this case, it is possible to
block-diagonal the 4×4 matrix by re-arranging the order
of the basis,

|s ↑〉, |s ↓〉; |p ↑〉, |p ↓〉 (1.91)

→ |s ↑〉, |p ↑〉; |s ↓〉, |p ↓〉. (1.92)

For convenience, we call the first choice the orbital basis,
and the second the spin basis.

Under the spin basis, the Hamiltonian becomes (first
switch the 2nd and the 3rd rows, then switch the 2nd
and the 3rd columns of the matrix)

H(k) =

(
h(k) 0

0 h∗(−k)

)
, (1.93)

where

h(k)

=

(
εs − 2tss(cos kx + cos ky) 2tsp(−i sin kx + sin ky)

2tsp(i sin kx + sin ky) εp + 2tpp(cos kx + cos ky)

)
= ε0(k) + 2tsp sin kxτy + 2tsp sin kyτx

+

[
εs − εp

2
− (tss + tpp)(cos kx + cos ky)

]
τz. (1.94)

Because of the block diagonalization, the up and down
spins are explicitly decoupled.

Note that the TR and SI operators also are altered
under the new basis. They now become

Θ = iσyK ⊗ 1, Π = 1⊗ τz. (1.95)

4. QWZ model versus BHZ model

When written in the block-diagonal form, the Hamil-
tonian h(k) is similar to the QWZ model Hamiltonian for
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the QAHE (see ??). That is, the BHZ model is composed
of two independent QWZ subsystems, h(k) and h∗(−k).

One can write

h(k) = ε0(k) + d(k) · τ , (1.96)

then the Hall conductivity of the subsystem is,

σxy = −e
2

h

1

4π

∫
BZ

d2k
1

d3
d · ∂d

∂kx
× ∂d

∂ky
. (1.97)

One can check that if εs − εp > 4(tss + tpp), then the
signs of dz(k) are all positive at the TRIM (analogous
to Fig. ??(a)). If εs − εp < 4(tss + tpp), then dz(Λ1)
becomes negative, while the other three signs remain the
same (see Fig. ??(b)). According to the analysis of the
QAHE in ??, the first case has σxy = 0, while the second
case has σxy = e2/h.

When the subsystem is in the QAH phase, accord-
ing to the discussion in ??, it has chiral edge states.
Since this subsystem consists only of spin-up electrons
(see Eq. 1.92), the edge-state electrons are spin-up. On
the other hand, the conjugate subsystem h∗(−k) has
σxy = −e2/h. Its edge electrons transport along the op-
posite direction and the spins are down (see Fig. 10(a)).

In momentum space, the energy dispersion of the edge
state is linear in the small k-limit. One has positive slope
(positive velocity), and the other has negative slope (neg-
ative velocity). Because of the Kramer degeneracy, these
two dispersion curves have to cross each other at a TRIM
(see Fig. 10(b)). This point degeneracy can be lifted only
if the TRS is broken.

The topological phase of the BHZ model is called a 2D
TI phase, aka a quantum spin Hall (QSH) phase. Its
edge state, with one spin moving along one direction, and
the opposite spin moving along the opposite direction, is
called a helical edge state. It is robust in the sense
that, even if there is a non-magnetic impurity Vimp(r)
blocking the way, the electron will not be back scattered
since that requires a spin flip. Indeed, in the Born ap-
proximation, the transition amplitude for an edge state
ψe being scattered to its time-reversed state θψe is pro-
portional to the square of

〈ψe|Vimp(r)|θψe〉. (1.98)

However, such a bracket is zero, as has been shown in
Prob. 2 of Chap 1.

If there is a magnetic impurity that breaks TRS, then
an electron could be backscattered, accompanied by a
spin flip. Also, in the presence of electron interaction,
there is a possibility that the edge is spontaneously mag-
netized. Should this happen, then the edge state is no
longer protected by the TRS.

Some proposed materials for 2D topological insulator
are 2D transition metal dichalcogenides (such as the 1T’
form of WTe2) (Cazalilla et al., 2014, Qian et al., 2014),
and single-layer ZrTe5 (Weng et al., 2014, Li et al.,
2016). Several experimental reports can be found in,

e.g., Fei et al., 2017, Wu et al., 2018, and Ugeda et al.,
2018.

Exercise
1. Start from the tight-binding Hamiltonian in
Eqs. (1.69) and (1.70), switch to the momentum basis,
and verify Eq. (1.73).
2. In addition to w, s, and v, a fourth type of sewing
matrix is defined as

mαβ(k) = 〈ukα|Θ|ukβ〉. (1.99)

Consider the case with only one Kramer pair (α, β = ±):
a) Show that the matrix m is unitary and antisymmetric.
b) Show that

m(−k) = w(k)m∗(k)wT (k). (1.100)

c) With the help of the identity pf(BABT ) =
(detB)(pf A), show that

log[detw(k)] = log[pf m(−k)]− log[pf m∗(k)]

= log[pf m(−k)] + log[pf m(k)].(1.101)

d) Let Λx and Λy be 0 or π. Write pf m(kx,Λy) as m(kx);
pf w(kx,Λy) as w(kx). Show that (ky = Λy),

Pθ =
1

2πi

∫ π

−π
dkx ∂kx logm(kx) +

i

π
log

m(π)

m(0)
. (1.102)

Note that w(Λx) = m(Λx) = ±1.
e) Finally, show that

∆Pθ ≡ Pθ(ky = π)− Pθ(ky = 0)

=
1

2πi

∮
∂EBZ

dk · ∂k log[pf m(k)] mod 2,(1.103)

where EBZ = [−π, π]× [0, π] is the upper half of the BZ.
That is, the Z2 topological invariant is the total vorticity
of the zeros of pf[m(k)] in the effective BZ. For more
details, see Fu and Kane, 2006 and Sec. 4.5 of Fruchart
and Carpentier, 2013.
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