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I. REVIEW OF BERRY PHASE

We first review the Berry phase (also known as the
geometric phase) for a non-degenerate energy level
(Abelian case). The Berry phase for degenerate en-
ergy levels (non-Abelian case) is discussed in the second
part.

Note: For the rest of the lecture notes, a matrix is
written in the San-serif font, M = (Mαβ).

A. Non-degenerate energy level

Consider a system that varies slowly with parameters
λ(t). One example is a spin in a slowly varying mag-
netic field B(t). At each instant t, the time-independent
Schrödinger equation is

Hλ|n,λ⟩ = εnλ|n,λ⟩. (1.1)

The eigenstates |n,λ⟩ will be called snapshot states.
We are allowed to assign a λ-dependent phase χn(λ(t))
to the snapshot state |n,λ(t)⟩, since the new state
eiχn(t)|n,λ⟩ still satisfies Eq. (1.1).
Suppose energy level εnλ is gapped from other levels

with a minimal separation ∆0 during the course of evo-
lution, and the characteristic frequency of the changing
parameter Ω0 ≪ ∆0/ℏ, then according to the quantum
adiabatic theorem, an initial state |n,λ(0)⟩ would stay
at the same level n (Fig. 1). After time t, it evolves to the
snapshot state at λ(t), multiplied by a dynamical phase
factor,

|n,λ0⟩ → |Ψnλ(t)⟩ = e−
i
ℏ
∫ t
0
dt′εnλ(t′) |n,λ(t)⟩. (1.2)

0
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FIG. 1 If a Hamiltonian varies slowly with time, then an
electron at state |n,λ⟩ would stay at the same level.

Furthermore, it is possible to develop a λ-dependent
phase γn(λ(t)), hence in general,

|Ψnλ(t)⟩ = eiγn(t)e−
i
ℏ
∫ t
0
dt′εnλ(t′) |n,λ(t)⟩. (1.3)

This extra phase had been deemed as removable with
the help of the χn(λ) phase in Eq. (1.1) ever since the
early days of quantum mechanics, until Berry showed the
contrary in 1984 (Berry, 1984).
The phase γn is constrained by the time-dependent

Schrödinger equation,

H|Ψnλ(t)⟩ = iℏ
∂

∂t
|Ψnλ(t)⟩. (1.4)

Substitute Eq. (1.3) into Eq. (1.4), one has

dγn(t)

dt
= i⟨n,λ| ∂

∂t
|n,λ⟩ (1.5)

→ γn(t) = i

∫ t

0

dt′⟨n,λ| ∂
∂t′

|n,λ⟩. (1.6)

For a cyclic change of the parameters,

λ(0) → λ(T ) = λ(0), (1.7)

one has,

γn(T ) = i

∮
C

dλ · ⟨n,λ| ∂
∂λ

|n,λ⟩, (1.8)

in which C is the loop traversed in the parameter space
of λ. γn(T ), or γn(C), is the Berry phase acquired by
|Ψn⟩ after one cycle in energy level n. It depends only
on the geometry of the path C, but not on the rate of λ̇,
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as long as it is slow enough so that inter-level transition
can be neglected.

We will call the integrand in Eq. (1.8) the Berry con-
nection,

An(λ) ≡ i⟨n,λ| ∂
∂λ

|n,λ⟩. (1.9)

If one re-assigns a λ-dependent phase to the snapshot
state,

|n,λ⟩ → |n,λ⟩′ = eiχ(λ)|n,λ⟩, (1.10)

where eiχ(λ) is a single-valued function, then

An(λ) → A′
n(λ) = An(λ)−

∂χ

∂λ
. (1.11)

This is similar to the gauge transformation of a vec-
tor potential in electromagnetism. Before Berry’s discov-
ery, people thought that by solving ∂χ(λ)/∂λ = An(λ),
A′

n(λ) can be set as zero and removed (Schiff, 1972).
However, this is possible only if the loop integral for
γn(C) is zero. If not, then since γn(C) (mod 2π) is gauge
invariant,

γ′n(C) =

∮
C

dλ ·A′
n(λ)

=

∮
C

dλ ·An(λ)− χ(λ(T )) + χ(λ(0))

= γn(C) + 2π × integer, (1.12)

it’s impossible to removeAn(λ) by gauge transformation.
If the parameter space is three-dimensional, then one

can apply the Stokes theorem to write the Berry phase
as a surface integral over the area S enclosed by the loop
C,

γn(C) =

∫
S

d2a · ∇λ ×An (1.13)

=

∫
S

d2a · Fn, (1.14)

in which Fn ≡ ∇λ×An is called the Berry curvature.
In higher dimension, Stokes theorem remains valid, but
needs be written in the language of differential form
(see App. ??).

For a small loop □,

γn(□) ≃ d2a · Fn, (1.15)

where d2a = d2an̂. Hence,

Fn · n̂ ≃ γn(□)

d2a
. (1.16)

This becomes an equality when d2a → 0. That is, the
Berry curvature at λ equals the ratio between the Berry
phase for an infinitesimal loop around that point and the
area of the loop.
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FIG. 2 A magnetic field sweeps slowly around the loop C.

Example: Consider a spin-1/2 electron in a mag-
netic field B = Bn̂ (see Fig. 2), where n̂ =
(sin θ cosϕ, sin θ sinϕ, cos θ). The Hamiltonian is

H = −µ ·B = µBσ ·B, µB =
eℏ
2m

. (1.17)

The eigen-energies are ε± = ±µBB, and the eigenstates
are

|n̂,+⟩ =
(

cos θ
2

eiϕ sin θ
2

)
, |n̂,−⟩ =

(
−e−iϕ sin θ

2

cos θ
2

)
.

(1.18)
Note that eiα±ϕ|n̂,±⟩ are also eigenstates (α± do not

depend on angle), but they are not single-valued if α±
is not an integer. We emphasize that, when calculating
the Berry phase, the snapshot states in Eq. (1.8) need
to be single-valued. Even if one adopts only single-valued
states, the choice of basis is still not unique. For example,
|n̂,±⟩′ = e∓iϕ|n̂,±⟩ are also single-valued. You can check
that the ϕ’s in |n̂,±⟩ are ambiguous at θ = π (but not at
θ = 0), while the ϕ’s in |n̂,±⟩′ are ambiguous at θ = 0
(but not at θ = π).
The magnetic field B plays the role of the slowly vary-

ing parameters λ. The Berry connection can be calcu-
lated from Eq. (1.9) with the gradient operator,

∂

∂B
=

∂

∂B
êr +

1

B

∂

∂θ
êθ +

1

B sin θ

∂

∂ϕ
êϕ. (1.19)

It is left as an exercise to show that

A+(B) = i⟨B̂,+| ∂
∂B

|B̂,+⟩ (1.20)

= − 1

2B

1− cos θ

sin θ
êϕ. (1.21)

Similarly,

A−(B) =
1

2B

1− cos θ

sin θ
êϕ. (1.22)

Both A±(B) are singular along θ = π. These vector po-
tentials are the same as that of a magnetic monopole,
and the line of singularity corresponds to the Dirac
string there.
The Berry curvature is,

F±(B) = ∇B ×A±(B) = ∓1

2

B̂

B2
. (1.23)
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FIG. 3 Berry phase of an electron passing through a helical
magnetic field (Bitter and Dubbers, 1987).

This is the same as the field of a magnetic monopole at
the origin with a magnetic charge ∓1/2.
The Berry phase can be calculated using either the line

integral of A±, or the surface integral of F±. For a loop
in Fig. 2, the Berry phase is found to be,

γ±(C) = ∓1

2
Ω(C), (1.24)

where Ω(C) = 2π(1−cos θ) is the solid angle, as seen from
the origin, extended by the loop C. If the loop is lying
on the x-y-plane, then the Berry phase can only be ∓π.
That is, the state changes sign after a cyclic evolution.
The phase in Eq. (1.24) has been confirmed by passing
neutrons through a tube with a helical magnetic field
(Fig. 3).

Note that, given |n̂,±⟩′ = e∓iϕ|n̂,±⟩, the Berry con-
nections calculated from the two basis differ by a gradi-
ent,

A′
±(B) = A±(B)± ∂ϕ

∂B
(1.25)

= A±(B)± 1

B sin θ
êϕ. (1.26)

Therefore,

A′
±(B) = ± 1

2B

1 + cos θ

sin θ
êϕ. (1.27)

Both A′
±(B) are singular along θ = 0. They generate

the same Berry curvatures as those in Eq. (1.23).
The integral of F± over a closed surface enclosing the

origin is quantized,

1

2π

∫
S2
B

d2a · F±(B) = ∓1. (1.28)

TABLE I Analogy between electromagnetism and anholon-
omy

Electromagnetism Quantum anholonomy

vector potential A(r) Berry connection A(λ)

magnetic field B(r) Berry curvature F(λ)

magnetic monopole degenerate point

magnetic charge Berry index

magnetic flux Φ(C) Berry phase γ(C)

This integer remains fixed no matter how the surface S2
B

is deformed, as long as it is not torn up. This topological
number is called the first Chern number in mathe-
matics. It is also known as the Berry index (or the
topological charge) of the degenerate point.
Finally, the analogy between the gauge structure of the

Berry phase and that of the classical electromagnetism is
summarized in Table I.

B. Geometric analogy

Berry phase is analogous to the anholonomy angle on
a curved surface M . This is explained as follows. Sup-
pose that at point p on M , there is an orthogonal frame
(n, ẽ1, ẽ2), where n is the unit normal vector at p and
(ẽ1, ẽ2) is an orthonormal basis in the tangent plane,
n̂ = ẽ1 × ẽ2 (see Fig. 4). As a rule of parallel trans-
port (PT), we demand that, when moving along a curve
C onM , the frame should not twist around n (see Berry’s
introductory article in Wilczek and Shapere, World Sci-
entific). That is, if ω is the angular velocity of the triad,
then

ω · n = 0. (1.29)

Also, one has ˙̃e1,2 = ω × ẽ1,2. It follows that,

ω · n = ω · ẽ1 × ẽ2

= ω × ẽ1 · ẽ2 = ˙̃e1 · ẽ2 = 0. (1.30)

Furthermore, since ẽ1 · ẽ1 = ẽ2 · ẽ2 = 1, one has ˙̃e1 · ẽ1 =
˙̃e2 · ẽ2 = 0.
If we introduce the following complex vector,

ψ =
1√
2
(ẽ1 + iẽ2, ) . (1.31)

then the PT condition can be rephrased as,

Im
(
ψ∗ · ψ̇

)
= 0, or ψ∗ · ψ̇ = 0. (1.32)

Note that the real part of ψ∗ · ψ̇ is always zero.
Instead of this parallel-transported triad, we can erect

a fixed triad (n, e1, e2) at each point on the surface. They
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FIG. 4 A triad (solid lines) moves along a path C under the
parallel transport condition. A fixed triad assigned to each
point is indicated by dotted lines.

are required to vary smoothly, but are otherwise arbi-
trary. Introduce

ϕ =
1√
2
(e1 + ie2) . (1.33)

Assuming these two frames differ by an angle α(r) around
the n-axis, then ψ(r) = ϕ(r)eiα(r). It follows that

ψ∗ · dψ = ϕ∗ · dϕ+ idα. (1.34)

Because of the PT condition in Eq. (1.32), we have dα =
iϕ∗ · dϕ. Finally, the twist angle accumulated by the
moving PT frame after completing a closed loop C is,

α(C) = i

∮
C

ϕ∗ · dϕ
dr

· dr, (1.35)

That is, the anholonomy angle α(C) can be calculated
with the fixed, single-valued frames. This is analogous to
the formula for Berry phase Eq. (1.8). In Table II, one
can find more analogies between theories of anholonomy
angle and Berry phase.

C. Degenerate energy levels

One can extend the analysis above to degenerate en-
ergy levels (Wilczek and Zee, 1984). The wave function
now has multiple components for a given energy level. As
a result, the Berry connection and the Berry curvature
become matrix-valued vectors (or vector-valued matri-
ces). For simplicity, we consider an energy level εnλ with
only two orthonormal, (globally) degenerate eigenstates,
|n, 1,λ⟩ and |n, 2,λ⟩. Again λ are slowly varying param-
eters.

After time t, the states evolve to (compare with
Eq. (1.3))

|Ψn,1(t)⟩ = e−
i
ℏ
∫ t
0
dt′εnλ(t′) (1.36)

× (|n, 1,λ(t)⟩Γ11(t) + |n, 2,λ(t)⟩Γ21(t)) ,

|Ψn,2(t)⟩ = e−
i
ℏ
∫ t
0
dt′εnλ(t′) (1.37)

× (|n, 1,λ(t)⟩Γ12(t) + |n, 2,λ(t)⟩Γ22(t)) .

TABLE II Holonomies in geometry and quantum state

geometry quantum state

fixed basis ϕ(x) |ϕ;λ⟩
PT basis ψ(x) |ψ;λ⟩

PT condition ψ∗ · ψ̇ = 0 ⟨ψ|ψ̇⟩ = 0

holonomy anholonomy angle Berry phase

curvature Gaussian curvature Berry curvature

topological number Euler characteristic Chern number

Or, (α, β = 1, 2)

|Ψnβ(t)⟩ = e−
i
ℏ
∫ t
0
dt′εnλ(t′)

∑
α

|nαλ(t)⟩Γαβ(t). (1.38)

We call the matrix Γαβ a Berry rotation matrix. To
be consistent with the orthonormal condition

⟨Ψnα|Ψnβ⟩ = δαβ , (1.39)

the Berry rotation matrix needs to be unitary,

Γ†Γ = ΓΓ† = 1. (1.40)

Substitute the states into the Schrödinger equation,

H|Ψnβ(t)⟩ = iℏ
∂

∂t
|Ψnβ(t)⟩, (1.41)

one will get,

dΓαβ

dt
= −

∑
γ

⟨nαλ| ∂
∂t

|nγλ⟩Γγβ (1.42)

= i
∑
γ

λ̇(t) ·A(n)
αγ (λ)Γγβ , (1.43)

where

A
(n)
αβ (λ) ≡ i⟨nαλ| ∂

∂λ
|nβλ⟩. (1.44)

The Berry connection now becomes a matrix-valued vec-
tor, A⃗(n). To simplify the index, we focus only on one
degenerate eigenenergy and suppress the index n from
now on.
To solve for the U(2) Berry rotation matrix Γ(t), first

consider an infinitesimal dt,

Γ(t+ dt) = Γ(t) + idtλ̇(t) · A⃗(t)Γ(t) (1.45)

≃ eidtλ̇(t)·A⃗(t)Γ(t) (1.46)

A full path can be divided into small steps, so that

Γ(t) = · · · eidλ·A⃗(λ1)eidλ·A⃗(λ0)Γ(0) (1.47)

≡ Pei
∫ λ(t)
λ0

dλ·A⃗(λ), Γ(0) = 1, (1.48)
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in which P is a path-ordering operator. Because of
the path-ordering, Γ(t) usually can only be computed nu-
merically (see Sec. I.E).

Sometimes one can see non-Abelian Berry connections
being calculated for energy levels that are not globally
degenerate (or not degenerate at all). In such cases, the
dynamical phase factor in Eq. (1.38) needs be changed

to e−
i
ℏ
∫ t
0
dt′εnαλ(t′) , and the right hand side of Eq. (1.43)

is multiplied by e−
i
ℏ
∫ t
0
dt′(εnγλ−εnαλ). The Berry connec-

tion and Berry curvature can still be defined in the same
manner, but the Berry rotation among these energy lev-
els would be mixed with dynamical phase factors.

We now consider a gauge transformation,

|αλ⟩′ =
∑
γ

|γλ⟩Uγα(λ). (1.49)

Its dual is

⟨αλ|′ =
∑
γ

U†
αγ(λ)⟨γλ|. (1.50)

Therefore,

A′
αβ(λ) = i⟨αλ|′ ∂

∂λ
|βλ⟩′ (1.51)

= U†
αγAγδUδβ + iU†

αγ

∂

∂λ
Uγβ . (1.52)

Or,

A′
k = U†AkU+ iU† ∂

∂λk
U. (1.53)

The phase factor

eidλ·A⃗′
≃ 1 + idλ · A⃗′ (1.54)

= 1 + idλ · U†A⃗U− dλ · U† ∂

∂λ
U (1.55)

≃ U†
(
1 + idλ · A⃗

)(
U− dλ · ∂

∂λ
U

)
(1.56)

≃ U†(λ)eidλ·A⃗U(λ− dλ). (1.57)

Therefore, after a closed path,

Γ′[C] = U†(λ0)Γ[C]U(λ0). (1.58)

That is, the non-Abelian Berry rotation is gauge co-
variant.
Berry curvature F⃗ is defined as the Berry rotation Γ□

around an infinitesimal loop □ enclosing an area d2a,

Γ□ = ei⃗F□·d2a, or

iF⃗□ · n̂ ≡ Γ□ − 1

d2a
, (1.59)

where n̂ is the normal vector of the surface d2a.

1
dλ

2
dλ

1
d− λ

2
d− λ

FIG. 5 A small loop in the parameter space of λ.

The Berry rotation matrix is composed of 4 steps (see
Fig. 5),

Γ□(λ) (1.60)

= Γ(λ,λ+ dλ2)Γ(λ+ dλ2,λ+ dλ1 + dλ2)

× Γ(λ+ dλ1 + dλ2,λ+ dλ1)Γ(λ+ dλ1,λ).

Using the approximation,

eϵAeϵB = eϵ(A+B)+ ϵ2

2 [A,B] +O(ϵ3), (1.61)

one has

Γ(λ+ dλ1 + dλ2,λ+ dλ1)Γ(λ+ dλ1,λ)

= eiAk(λ+dλ1)dλ2keiAℓ(λ)dλ1ℓ (1.62)

≃ ei(Akdλ2k+Aℓdλ1ℓ+∂ℓAkdλ2kdλ1ℓ)− 1
2 [Ak,Aℓ]dλ2kdλ1ℓ .(1.63)

For the next two steps, it is convenient to adopt instead
(see p. 239 of Cheng and Li, 1988),

Γ−1(λ+ dλ2,λ)Γ
−1(λ+ dλ1 + dλ2,λ+ dλ2)

= e−iAk(λ)dλ2ke−iAℓ(λ+dλ2)dλ1ℓ (1.64)

≃ e−i(Akdλ2k+Aℓdλ1ℓ+∂kAℓdλ2kdλ1ℓ)− 1
2 [Ak,Aℓ]dλ2kdλ1ℓ .(1.65)

Therefore,

Γ□ = e−i(∂kAℓ−∂ℓAk−i[Ak,Aℓ])dλ2kdλ1ℓ (1.66)

= eiFkℓdλ1kdλ2ℓ , (1.67)

with the Berry curvature matrix,

Fkℓ = ∂kAℓ − ∂ℓAk − i[Ak,Aℓ]. (1.68)

Under a gauge transformation,

Fkℓ → F′
kℓ = ∂kA

′
ℓ − ∂ℓA

′
k − i[A′

k,A
′
ℓ] (1.69)

= U†FkℓU. (1.70)

That is, the non-Abelian Berry curvature is gauge covari-
ant (similarly for F⃗).
Note that Fkℓ is antisymmetric in k, ℓ, and

Fkℓdλ1kdλ2ℓ =
1

2
ϵcabFab ϵckℓdλ1kdλ2ℓ, (1.71)

in which 1
2ϵcabFab = Fc is the vector equivalent of the an-

tisymmetric matrix, and ϵckℓdλ1kdλ2ℓ = (d2a)c. There-
fore,

Fkℓdλ1kdλ2ℓ = F⃗ · d2a, (1.72)

When written in the vectorial form, the Berry curvature
is (cf. Eq. (1.68)),

F⃗ = ∇λ × A⃗− iA⃗× A⃗. (1.73)
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D. Magnetic resonance of nuclear quadrupole

The interaction between a nuclear quadrupole with a
magnetic field B is (Zee, 1988),

H = (⃗J ·B)2, (1.74)

where J⃗ is the spin operator for spin-j. This coupling
is invariant under time reversal. The eigen-energies and

eigenstates are

H|B̂,±m⟩ = (mB)2|B̂,±m⟩, m = −j, · · · , j. (1.75)

Note that |B̂,±m⟩ are degenerate with the same energy
(mB)2.
Since σ2

α = 1 (α = x, y, z) for the Pauli matrices, the
Hamiltonian is non-trivial only if the spin quantum num-
ber j ≥ 1. We are interested in half-integer spins, so the
next non-trivial case is j = 3/2. In this case, the angular
momentum matrices are

Jx =


0

√
3/2 0 0√

3/2 0 1 0

0 1 0
√
3/2

0 0
√
3/2 0

 , Jy =


0 −i

√
3/2 0 0

i
√
3/2 0 −i 0

0 i 0 −i
√
3/2

0 0 i
√
3/2 0

 , Jz =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 .

(1.76)

The spectrum of H is composed of 2 two-fold degen-
erate energy levels. When B is along the direction in
Fig. 2, the eigenstates are (m = −3/2, · · · , 3/2)

|B̂,m⟩ = Uz(ϕ)Uy(θ)|m⟩ (1.77)

= e−iJzϕe−iJyθ|m⟩. (1.78)

The Berry connection is

Amm′

= i⟨B̂,m| ∂
∂B

|B̂,m′⟩ (1.79)

=
i

B
⟨m|U†

y(θ)U
†
z(ϕ)

(
∂

∂θ
êθ +

1

sin θ

∂

∂ϕ
êϕ

)
Uz(ϕ)Uy(θ)|m′⟩.

With the help of the following equations,

eiJyθeiJzϕi
∂

∂θ
e−iJzϕe−iJyθ = Jy, (1.80)

eiJyθeiJzϕi
∂

∂ϕ
e−iJzϕe−iJyθ = − sin θJx + cos θJz,(1.81)

one will get

A⃗ = Aθ êθ + Aϕêϕ, (1.82)

where

Aθ =
1

B
Jy, (1.83)

Aϕ =
1

B sin θ
(− sin θJx + cos θJz). (1.84)

Note that Aϕ blows up at θ = 0, π.

In the calculation above, the eigenstates |B̂,m⟩ =
Uz(ϕ)Uy(θ)|m⟩ are not single-valued if ϕ→ ϕ+ 2π. One
way to remedy this is to use (see Chruscinski and Jami-
olkowski, 2004),

|B̂,m⟩ = Uz(ϕ)Uy(θ)Uz(−ϕ)|m⟩ (1.85)

= eimϕUz(ϕ)Uy(θ)|m⟩. (1.86)
Also, at θ = 0, |B̂,m⟩ → |m⟩ without the ϕ-ambiguity.

Using this new basis, one would get

Aθ =
1

B


0 −i

√
3/2e−iϕ 0 0

i
√
3/2eiϕ 0 −ie−iϕ 0

0 ieiϕ 0 −i
√
3/2e−iϕ

0 0 i
√
3/2eiϕ 0

 ,

(1.87)
and

Aϕ =
1

B sin θ


3
2 (cos θ − 1) −

√
3
2 sin θe−iϕ 0 0

−
√
3
2 sin θeiϕ 1

2 (cos θ − 1) − sin θe−iϕ 0

0 − sin θeiϕ − 1
2 (cos θ − 1) −

√
3
2 sin θe−iϕ

0 0 −
√
3
2 sin θeiϕ − 3

2 (cos θ − 1)

 . (1.88)

Note that Aϕ now is finite at θ = 0 (but θ = π remains a singularity).
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FIG. 6 Typical structure energy levels near the primary gap
of semiconductors with direct energy gap.

The Berry connection for the degenerate |m| = 3/2
levels are (P3/2 is a projection operator)

A⃗(3/2)

= P3/2 (Aθ êθ + Aϕêϕ)P3/2 (1.89)

=
1

B sin θ

(
3
2 (cos θ − 1) 0

0 − 3
2 (cos θ − 1)

)
êϕ, (1.90)

which is diagonal (Abelian connection). Similarly, the
Berry connection for the degenerate |m| = 1/2 levels are

A⃗(1/2)

= P1/2 (Aθ êθ + Aϕêϕ)P1/2 (1.91)

=
1

B

(
0 −ie−iϕ

ieiϕ 0

)
êθ (1.92)

+
1

B sin θ

(
1
2 (cos θ − 1) − sin θe−iϕ

− sin θeiϕ − 1
2 (cos θ − 1)

)
êϕ,

which is not diagonal (non-Abelian connection).
The only non-zero component of the Berry curvature

Fkℓ(k, ℓ = r, θ, ϕ) is Fθϕ,

F
(3/2)
θϕ =

(
∇× A⃗(3/2)

)
r
− i[A

(3/2)
θ ,A

(3/2)
ϕ ] (1.93)

= −3

2

1

B2
σ3. (1.94)

It is left as an exercise for the readers to show this, and
that

F
(1/2)
θϕ =

3

2

1

B2
σ3. (1.95)

These Berry curvatures are the same for the two types of
basis in Eqs. (1.77), (1.85). Note that the Berry rotation

is the (path-ordered) line integral of A⃗, but not the area

integral of F⃗, since the Stokes theorem fails in the non-
Abelian case. Because of the extra ±3/2,±1/2 in the
diagonal elements of Aϕ in Eq. (1.88), for a circular path
with fixed θ, the Berry phases differ by a sign to those

calculated from Eq. (1.84). Eq. (1.88) is to be trusted
since it is based on single-valued snapshot states.

If you calculate the Berry curvature using
Eqs. (1.87),(1.88) directly without projection, then
the result would be zero. This can be explained as
follows: The Berry curvature in Eq. (1.68) can be
written as,

(Fαβ)kl = i⟨∂kα|∂lβ⟩ − i
∑
γ

⟨∂kα|γ⟩⟨γ|∂lβ⟩

− (k ↔ l). (1.96)

Without projecting the Berry connection to a subspace,
γ runs through bases of the whole Hilbert space. Thus,∑

γ |γ⟩⟨γ| = 1 and Fkl vanishes.

Two remarks are in order: First, the Berry phase would
result in splitting of the spectra of the nuclear quadrupole
resonance. Such a splitting has been confirmed in exper-
iment (Tycko, 1987). A recent attempt of detecting the
non-Abelian Berry rotation can be found in Li et al.,
2016. Also see (Sugawa et al., 2018).

Second, the quadrupole coupling Hamiltonian is sim-
ilar to the effective Hamiltonian of heavy holes (m =
±3/2) and light holes (m = ±1/2) near k = 0 in a
semiconductor (Fig. 6). Under the four-band approxima-
tion, and neglecting anisotropy, the four-band Luttinger
Hamiltonian is (see, e.g., Winkler, 2003),

H =
ℏ2

2m

[(
γ1 +

5

2
γ2

)
k2 − 2γ2

(
k · J⃗

)2]
, (1.97)

where γ1,2 are material-dependent parameters. The first
term is multiplied by an identity matrix and has no ef-
fect on the Berry connection and curvature. The second
term is essentially the same as the one in Eq. (1.74), if
B is replaced by k. Therefore, this system has exactly
the same Berry connection and Berry curvatures listed
in Eqs. (1.87),(1.88),(1.94), and (1.95) (Murakami et al.,
2003).

E. Numerical computation of Berry phase

Numerical computation of Berry rotation using
Eq. (1.48) can be implemented as follows (King-Smith
and Vanderbilt, 1993): Divide a closed path C into
N steps with points λ0,λ1, · · · ,λN−1, and λN = λ0

(Fig. 7). For each step, one has[
eidλ·A⃗(λℓ)

]
αβ

≃ δαβ + idλ ·Aαβ(λℓ) (1.98)

= ⟨αλℓ|βλℓ⟩ − dλ · ⟨αλℓ|
∂

∂λ
|βλℓ⟩

= ⟨αλℓ|βλℓ⟩+ dλ · ⟨ ∂
∂λ

αλℓ|βλℓ⟩

≃ ⟨αλℓ+1|βλℓ⟩. (1.99)
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FIG. 7 Discretize a closed loop of path in parameter space.

Thus (with the summation convention),

Γαβ(C) = ⟨αλ0|βN−1λN−1⟩ · · · ⟨β2λ2|β1λ1⟩⟨β1λ1|βλ0⟩.
(1.100)

When written in matrices, we have the Berry rotation,

Γ(C) = MN−1 · · ·M1M0, (1.101)

where (Mℓ)αβ = ⟨αλℓ+1|βλℓ⟩. (1.102)

A diagonalized unitary matrix is of the form,

Γ(C) =

 eiγ1 · · · 0
...

. . .
...

0 · · · eiγD

 . (1.103)

It follows that,

det Γ(C) = ei
∑D

α=1 λα (1.104)

= det
(
ΠN−1

ℓ=0 Mℓ

)
. (1.105)

The total Berry phase would be,

D∑
α=1

λα = Im ln det
(
ΠN−1

ℓ=0 Mℓ

)
. (1.106)

Exercise
1. Replace the single-valued snapshot states |n,λ⟩
with |n,λ⟩′ = eiγn(t)|n,λ⟩, which are not necessarily
single-valued. Show that

′⟨n,λ| ∂
∂t

|n,λ⟩′ = 0. (1.107)

A state that evolves under such a restriction is said to
be parallel transported. A state that moves under such a
parallel transport condition acquires a Berry phase
γn(C) after a cycle C.
2. For a spin-1/2 electron in a magnetic field B =
Bn̂, n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), the eigenstates are,

|n̂,+⟩ =

(
cos θ

2

eiϕ sin θ
2

)
, |n̂,−⟩ =

(
−e−iϕ sin θ

2

cos θ
2

)
.

(a) Show that the Berry connections are,

A±(B) = ∓ 1

2B

1− cos θ

sin θ
êϕ.

(b) Show that the Berry curvatures are,

F±(B) = ∓1

2

B̂

B2
.

3. An electron moving in a magnetic field B(r, t) has the
Hamiltonian,

H =
p2

2m
+B(r, t) · σ. (1.108)

Suppose the eigenstates of the Zeeman term are |n,B(r)⟩,

B(r, t) · σ|n,B(r, t)⟩ = εn|n,B(r, t)⟩, (1.109)

expand the wave function of the moving electron as,

|Ψ⟩ =
∑
n=±

ψn(r, t)|n,B⟩. (1.110)

From the Schrödinger equation, H|Ψ⟩ = iℏ∂|Ψ⟩/∂t, show
that,[

1

2m
(p− ℏAn)

2
+ ℏVn + εn

]
ψn = iℏ

∂ψn

∂t
, (1.111)

in which

An(r, t) = +i⟨n,B| ∂
∂r

|n,B⟩, (1.112)

Vn(r, t) = −i⟨n,B| ∂
∂t

|n,B⟩. (1.113)

The off-diagonal coupling between |+⟩ and |−⟩ has been
ignored (this is all right for a smooth magnetic field).
That is, the effective Hamiltonian for the particle mo-

tion acquires a Berry potential An and a scalar potential
Vn. Such potentials would result in forces (proportional
to Berry curvatures) that act on the electron.
For example, the B field here can be an effective mag-

netic field from a spin texture, such as a magnetic
skyrmion (see Nagaosa and Tokura, 2013). An elec-
tron moving near a magnetic skyrmion would feel such
forces.
4. For a spin-3/2 quadrupole coupling with a magnetic
field, the projected Berry connections for the |m| = 3/2
sector and the |m| = 1/2 sector are,

A⃗(3/2) =
1

B sin θ

(
3
2 (cos θ − 1) 0

0 − 3
2 (cos θ − 1)

)
êϕ,

A⃗(1/2) =
1

B

(
0 −ie−iϕ

ieiϕ 0

)
êθ

+
1

B sin θ

(
1
2 (cos θ − 1) − sin θe−iϕ

− sin θeiϕ − 1
2 (cos θ − 1)

)
êϕ.
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Show that the Berry curvatures are,

F
(3/2)
θϕ = −3

2

1

B2
σ3,

F
(1/2)
θϕ = +

3

2

1

B2
σ3.
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