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I. REVIEW OF BLOCH THEORY

A. Translation symmetry

For a perfect crystal with discrete translation symme-
try, the Hamiltonian is

H =
p2

2m
+ VL(r), with VL(r + R) = VL(r), (1.1)

in which VL(r) is the potential of the atomic lattice, and
R is a lattice translation vector. Define a lattice
translation operator TR that acts on electronic states
as follows,

TRψ(r) = ψ(r + R). (1.2)

It can be shown that, because H has the translation sym-
metry,

TRH(r)ψ(r) = H(r)TRψ(r). (1.3)

That is, [TR, H] = 0.
Because TR commutes with H(r), one can find their

simultaneous eigenstates,

Hψ = εψ, (1.4)

TRψ = cRψ, (1.5)

where ε and cR are eigenvalues of H and TR, and |cR| =
1. Furthermore, successive translations satisfy

TRTR′ = TR′TR = TR+R′ . (1.6)

This leads to

cRcR′ = cR′cR = cR+R′ . (1.7)

To satisfy these equations, cR needs to be an exponential,
cR = eik·R. Therefore,

Hψεk = εψεk, (1.8)

TRψεk = eik·Rψεk. (1.9)

The simultaneous eigenstate of H and TR is called the
Bloch state.

If one writes the Bloch state in the following form,

ψεk(r) = eik·ruεk(r), (1.10)

then Eq. (1.9) gives

uεk(r + R) = uεk(r). (1.11)

That is, a Bloch state is a plane wave times a cell-
periodic function uεk(r). The latter contains, in one
unit cell, all information of the Bloch state.

The Schrödinger equation for uεk is,

H̃k(r)uεk = εuεk, (1.12)

in which

H̃k(r) ≡ e−ik·rH(r)eik·r (1.13)

=
1

2m
(p + ~k)2 + VL(r). (1.14)

Since uεk can be restricted to one unit cell (with periodic
boundary condition), we expect it to have discrete energy
eigenvalues εn (n ∈ Z+) for each k, and write

H̃k(r)unk = εnkunk. (1.15)

The quantum numbers n and k are called the band in-
dex and the Bloch momentum, and εnk are the energy
dispersions of Bloch bands.

The Bloch state ψnk translates under R as (see
Eq. (1.9)),

ψnk(r + R) = eik·Rψnk(r). (1.16)

If one shifts the momentum k by a reciprocal lattice
vector G, then since eiG·R = 1 (for any R),

ψnk+G(r + R) = eik·Rψnk+G(r). (1.17)

Since the two Bloch states ψnk and ψnk+G satisfy the
same Schrödinger equation (with εnk = εnk+G) and the
same boundary condition (Eqs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor φ(k). For convenience, one can choose the peri-
odic gauge with φ(k) = 0, ψnk+G = ψnk. Note that for
a quantum phase with non-trivial topology (such as the
quantum Hall phase), one can no longer set φ(k) = 0 for
all k. This is called the topological obstruction (see
Chap. ??). In any case, ψnk (or unk) in the first Brillouin
zone should contain enough information of the electronic
state.
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FIG. 1 Time reversal Θ followed by U(δt) (left) and U(−δt)
followed by time reversal Θ (right) result in the same state.

B. Time reversal symmetry

Time reversal operator Θ maps a state to its time-
reversed state (or, motion-reversed state),

|α〉 → |α̃〉 = Θ|α〉. (1.18)

Naturally, if a dynamical system has time-reversal sym-
metry (TRS), then for a state |α〉 evolving with U(t) =
e−iHt/~, one expects (see Fig. 1)

U(t)Θ|α〉 = ΘU(−t)|α〉. (1.19)

For an infinitesimal evolution U(δt) ' 1 − iHδt/~,
Eq. (1.18) leads to −iHΘ = ΘiH. If Θ is a unitary
operator, then we have −HΘ = ΘH. That is, if a state
has energy ε, then its time-reversed state has energy −ε.
This causes the eigen-energies to be bottomless, which is
unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or ro-
tation, preserves the squared modulus 〈α|α〉 of a quan-
tum state |α〉 if the system under consideration has that
symmetry. According to Wigner’s study, an operator of
transformation that preserves |〈β|α〉| can only be either
unitary or anti-unitary. Therefore, Θ must be an anti-
unitary operator, which can be written as

Θ = UTK, (1.20)

where UT is a unitary operator, and K is a complex
conjugate operator, Ki = −iK. As a result, if H has
TRS, then

HΘ = ΘH. (1.21)

Note: even though [H,Θ] = 0, there is no conserved
quantity associated with TRS since U(t)Θ 6= ΘU(t).

For states under TR, one has

〈β̃|α̃〉 = 〈α|β〉, or 〈β|α〉∗. (1.22)

Pf:

〈β̃|α̃〉 = 〈UKβ|UKα〉 (1.23)

= 〈Kβ|Kα〉∗ (1.24)

= 〈β|α〉∗ = 〈α|β〉. QED (1.25)

For the matrix elements of an operator O, one has

〈β̃|O|α̃〉 = 〈α|Θ−1O†Θ|β〉. (1.26)

Pf: We would try not to use the dual operation of Θ
explicitly. That is, Θ is only allowed to act on ket states.
First define |γ̃〉 = O†|β̃〉, or

Θ|γ〉 = O†Θ|β〉, (1.27)

then 〈γ̃| = 〈β̃|O, and

〈β̃|O|α̃〉 = 〈γ̃|α̃〉 (1.28)

= 〈α|γ〉 (1.29)

= 〈α|Θ−1O†Θ|β〉. QED (1.30)

If an operator O transforms under time reversal as,

Θ−1O†Θ = ±O, (1.31)

then 〈Θα|O|Θα〉 = ±〈α|O|α〉.

1. Spinless state

Given a time-reversed state |ψ̃〉 = Θ|ψ〉, one expects

〈ψ|Θ−1rΘ|ψ〉 = 〈ψ|r|ψ〉, (1.32)

〈ψ|Θ−1pΘ|ψ〉 = −〈ψ|p|ψ〉, (1.33)

Since this is valid for every time-reversed state, we de-
mand

Θ−1rΘ = r, (1.34)

Θ−1pΘ = −p. (1.35)

This also implies that the angular momentum operator
L = r× p changes sign under TR.

A spin-less state is described by a scalar function, and
this two relations can be satisfied with Θ = K (i.e. U =
1). Hence

ψ(r, t)
TR−→ Θψ(r, t) = ψ∗(r, t). (1.36)

Furthermore, given the Schrödinger equation,

Hψ(r, t) = i~
∂

∂t
ψ(r, t), (1.37)

its complex-conjugate counterpart is,

Hψ∗(r, t) = i~
∂

∂(−t)
ψ∗(r, t). (1.38)

That is ψ∗(r, t) evolves to −t the same way as ψ(r, t)
evolves to t. Hence, ψ∗(r, t) is indeed a time-reversed
state.

For the Hamiltonian in Eq. (1.1), K−1HK = H (note
that K−1 = K). However, for a crystal in a magnetic
field,

H =
(p− qA)2

2m
+ VL(r), (1.39)
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where q = −e is the charge of an electron and A is the
vector potential, we have

K−1HK =
(p+ qA)2

2m
+ VL(r) 6= H. (1.40)

That is, the magnetic field breaks the TRS, as expected.
For a Bloch state, one has

ψnk(r)→ Θψnk(r) = ψ∗nk(r). (1.41)

Under a translation,

TRψ
∗
nk(r) = ψ∗nk(r + R) (1.42)

= e−ik·Rψ∗nk(r). (1.43)

If the state is not degenerate, then according to Eq. (1.9),
ψ∗nk(r) with the eigenvalue e−ik·R could be identified as
ψn−k(r). That is (see Sec. 16.3 of Dresselhaus et al.,
2008),

ψ∗nk(r) = ψn−k(r). (1.44)

2. Spin-1/2 state

For a state ψ with spin, in addition to Eqs. (1.34),
(1.35), we also require the spin operator under TR to
satisfy

Θ−1sΘ = −s. (1.45)

A spin-1/2 state is a two-component spinor, and the
spin operators are Pauli matrices, s = ~

2σ. Obviously,
Θ = K cannot satisfy Eq. (1.45), and a unitary rotation
U (not operating on r and p) in Θ = UK is required.

From Eq. (1.45), one has

sxΘ = −Θsx, (1.46)

syΘ = −Θsy, (1.47)

szΘ = −Θsz. (1.48)

Using the standard representation for Pauli matrices,
where only σy has complex matrix elements, we have

σxU = −Uσx, (1.49)

σyU = +Uσy, (1.50)

σzU = −Uσz. (1.51)

U is a 2 × 2 matrix (for spin-1/2 states), which can be
expanded by Pauli matrices. Since U anti-commutes with
σx,z, but commutes with σy, the equations above can
be satisfied with U = σy, or U = eiδσy, where δ is an
arbitrary phase. A popular choice of eiδ is −i. Thus,

Θ = −iσyK =

(
0 −1
1 0

)
K. (1.52)

Other choices of eiδ are allowed, such as +i or 1.

In general, for a state with spin j, which can be an
integer or a half-integer,

Θ = e−iJyπ/~K, (1.53)

in which Jy is a spin operator (Sakurai, 1985). For spin
1/2,

Θ = e−isyπ/~K = −iσyK. (1.54)

A Bloch state with spin-1/2 transforms as(
ϕk1

ϕk2

)
TR−→ Θ

(
ϕk1

ϕk2

)
=

(
−ϕ∗k2
+ϕ∗k1

)
. (1.55)

Applying the time-reversal transformation twice gives
Θ2 = −1.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying
the TR transformation twice gives Θ2 = 1. However, if
a particle has half-integer spin, then

Θ2 = −1. (1.56)

This fact is crucial to the existence of the Kramer de-
generacy: If a system has TRS and its spin is a half-
integer, then eigenstates ψ and Θψ are degenerate and
orthogonal to each other.
Pf: Since HΘ = ΘH, so if ψ is an eigenstate with energy
ε, Hψ = εψ, then

HΘψ = ΘHψ = εΘψ. (1.57)

That is, Θψ is also an eigenstate with energy ε.
Furthermore, using the identity 〈β|α〉 = 〈α̃|β̃〉, one has

〈ψ|Θψ〉 = 〈Θ(Θψ)|Θ(ψ)〉 (1.58)

= −〈ψ|Θψ〉, (1.59)

in which Θ2 = −1 has been used to get the second equa-
tion. Therefore, 〈ψ|Θψ〉 = 0. QED.

For example, if a Bloch state ψnk↑ has energy εnk↑,
then its time-reversed state Θψnk↑ = −ψn−k↓ (see
Eq. (1.55)) has energy εn−k↓, and with time reversal sym-
metry εnk↑ = εn−k↓ (Kramer degeneracy). For a solid
with space inversion symmetry, one has εn−ks = εnks
(s =↑ or ↓). When the solid has both symmetries, there
is a two-fold degeneracy at each k-point,

εnks = εn−k−s = εnk−s. (1.60)

An energy band thus has a global two-fold degeneracy
over the whole Brillouin zone.

On the other hand, if there is TRS but no space inver-
sion symmetry, so that εn−ks 6= εnks, then the two-fold
degeneracy at a k-point is not guaranteed, except at the
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FIG. 2 (a) The TRIM are shown as black and white dots in
the first Brillouin zone. Only four of them (black dots) are
independent. (b) The Bloch energy levels of a system with
time-reversal symmetry but without space-inversion symme-
try.

k-point that differs from −k by a reciprocal lattice vector
G,

k = −k + G. (1.61)

These k-points are called time-reversal-invariant mo-
menta (TRIM), see Fig. 2(a). At a TRIM,

εnks = εn−k−s = εn,−k+G,−s = εnk−s. (1.62)

Typical TRIM are located at the corners of a BZ, k =
G/2. They play important roles in the theory of topo-
logical insulator.

Note: For a crystal without space-inversion symme-
try, we often still have εnk = εn−k (Fig. 2(b)). This
is due to the fact that, with time-reversal symmetry,
εnks = εn−k−s. In the absence of spin-orbit interac-
tion (SOI), εn−k−s = εn−ks and we have a symmetric
energy spectrum with global two-fold degeneracy. A SOI
breaks the two-fold degeneracy (except at TRIM), but
the energy spectrum still looks symmetric because of the
Kramer degeneracy.

C. Rotation symmetry

A crystal can be invariant under a rotation with re-
spect to a lattice point. Because of the rotation, a posi-
tion vector r changes to r′,

r→ r′ = Rr, (1.63)

where R is the rotation matrix. A quantum state ψ
changes as,

ψ(r)→ ψ′(r) = ψ(R−1r) = DRψ(r), (1.64)

or |ψ′〉 = DR|ψ〉. (1.65)

where DR is a rotation operator. We have used a passive
rotation R−1r to simulate an active rotation of ψ.

After rotation, an operator O changes to O′, and we
demand that

〈ψ′|O|ψ′〉 = 〈ψ|O′|ψ〉. (1.66)
Thus,

O → O′ = D†RODR. (1.67)

For example, a Hamiltonian transforms as,

H ′ = D†RHDR. (1.68)

The Hamiltonian is invariant under rotation, H ′ = H, if
H commutes with DR.

The Schrödinger equation for cell-periodic state is,

H̃k(r,p)uk(r) = εkuk(r), (1.69)

where

H̃k =
p2

2m
+

p · k
m

+
k2

2m
+ VL(r). (1.70)

After rotation (Kittel, 1963),

H̃k(R−1r,R−1p)uk(R−1r) = εkuk(R−1r). (1.71)

Since p2 and k2 are invariant under rotation, and

k · R−1p = Rk · p, (1.72)

we have

H̃Rk(r,p)DRuk(r) = εkDRuk(r). (1.73)

If a Hamiltonian is invariant under DR,

D†RH̃RkDR = H̃k, (1.74)

then its Bloch energy is invariant under the rotation.
In general, symmetry operations on a crystal consist of

translation, rotation, mirror reflection, space inversion,
or their combinations. These operations form a space
group. Rotation, mirror reflection, and space inversion
leaves a point fixed. These operations form a point
group.

Exercise

1. Suppose Q = UK is an anti-unitary operator, prove
that Q2 can only be +1 or −1.
Hint: Since performing time reversal twice would get us
back to the original state, differing at most by a phase
factor, we can assume Q2 = eiδ. Check the consistency
between mathematical operations to find out eiδ.
2. Show that, if an operator O transforms as,

ΘOΘ−1 = O†, (1.75)

and Θ2 = −1, then 〈ψ|O|Θψ〉 = 0.
For example, if an electron is scattered by a scalar po-

tential V (r), then to the first-order approximation (Born
approximation), the scattering amplitude for ψ being
scattered to its time-reversal state is zero.
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