Lecture notes on topological insulators

Ming-Che Chang

Department of Physics, National Taiwan Normal University, Taipei, Taiwan

(Dated: November 19, 2020)

Contents

I.	Re	eview of Bloch theory	1
	A.	Translation symmetry	1
	В.	Time reversal symmetry	2
		1. Spinless state	2
		2. Spin-1/2 state	3
		3. Kramer degeneracy	3
	C.	Rotation symmetry	4

References

I. REVIEW OF BLOCH THEORY

A. Translation symmetry

For a perfect crystal with discrete translation symmetry, the Hamiltonian is

$$H = \frac{p^2}{2m} + V_L(\mathbf{r}), \text{ with } V_L(\mathbf{r} + \mathbf{R}) = V_L(\mathbf{r}), \quad (1.1)$$

in which $V_L(\mathbf{r})$ is the potential of the atomic lattice, and \mathbf{R} is a lattice translation vector. Define a lattice translation operator $T_{\mathbf{R}}$ that acts on electronic states as follows,

$$T_{\mathbf{R}}\psi(\mathbf{r}) = \psi(\mathbf{r} + \mathbf{R}). \tag{1.2}$$

It can be shown that, because H has the translation symmetry,

$$T_{\mathbf{R}}H(\mathbf{r})\psi(\mathbf{r}) = H(\mathbf{r})T_{\mathbf{R}}\psi(\mathbf{r}).$$
 (1.3)

That is, $[T_{\bf R}, H] = 0$.

Because $T_{\mathbf{R}}$ commutes with $H(\mathbf{r})$, one can find their simultaneous eigenstates,

$$H\psi = \varepsilon\psi, \tag{1.4}$$

$$T_{\mathbf{R}}\psi = c_{\mathbf{R}}\psi, \tag{1.5}$$

where ε and $c_{\mathbf{R}}$ are eigenvalues of H and $T_{\mathbf{R}}$, and $|c_{\mathbf{R}}| = 1$. Furthermore, successive translations satisfy

$$T_{\mathbf{R}}T_{\mathbf{R}'} = T_{\mathbf{R}'}T_{\mathbf{R}} = T_{\mathbf{R}+\mathbf{R}'}.$$
 (1.6)

This leads to

$$c_{\mathbf{R}}c_{\mathbf{R}'} = c_{\mathbf{R}'}c_{\mathbf{R}} = c_{\mathbf{R}+\mathbf{R}'}. \tag{1.7}$$

To satisfy these equations, $c_{\mathbf{R}}$ needs to be an exponential, $c_{\mathbf{R}} = e^{i\mathbf{k}\cdot\mathbf{R}}$. Therefore,

$$H\psi_{\varepsilon\mathbf{k}} = \varepsilon\psi_{\varepsilon\mathbf{k}},\tag{1.8}$$

$$T_{\mathbf{R}}\psi_{\varepsilon\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{\varepsilon\mathbf{k}}.$$
 (1.9)

The simultaneous eigenstate of H and $T_{\mathbf{R}}$ is called the **Bloch state**.

If one writes the Bloch state in the following form,

$$\psi_{\varepsilon \mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\varepsilon \mathbf{k}}(\mathbf{r}), \tag{1.10}$$

then Eq. (1.9) gives

$$u_{\varepsilon \mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{\varepsilon \mathbf{k}}(\mathbf{r}).$$
 (1.11)

That is, a Bloch state is a plane wave times a **cell-periodic function** $u_{\varepsilon \mathbf{k}}(\mathbf{r})$. The latter contains, in one unit cell, all information of the Bloch state.

The Schrödinger equation for $u_{\varepsilon \mathbf{k}}$ is,

$$\tilde{H}_{\mathbf{k}}(\mathbf{r})u_{\varepsilon\mathbf{k}} = \varepsilon u_{\varepsilon\mathbf{k}},$$
 (1.12)

in which

$$\tilde{H}_{\mathbf{k}}(\mathbf{r}) \equiv e^{-i\mathbf{k}\cdot\mathbf{r}}H(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$$
 (1.13)

$$= \frac{1}{2m}(\mathbf{p} + \hbar \mathbf{k})^2 + V_L(\mathbf{r}). \tag{1.14}$$

Since $u_{\varepsilon \mathbf{k}}$ can be restricted to one unit cell (with periodic boundary condition), we expect it to have discrete energy eigenvalues ε_n $(n \in \mathbb{Z}^+)$ for each \mathbf{k} , and write

$$\tilde{H}_{\mathbf{k}}(\mathbf{r})u_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}u_{n\mathbf{k}}.$$
 (1.15)

The quantum numbers n and \mathbf{k} are called the **band index** and the **Bloch momentum**, and $\varepsilon_{n\mathbf{k}}$ are the energy dispersions of Bloch bands.

The Bloch state $\psi_{n\mathbf{k}}$ translates under **R** as (see Eq. (1.9)),

$$\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}(\mathbf{r}). \tag{1.16}$$

If one shifts the momentum k by a reciprocal lattice vector \mathbf{G} , then since $e^{i\mathbf{G}\cdot\mathbf{R}} = 1$ (for any \mathbf{R}),

$$\psi_{n\mathbf{k}+\mathbf{G}}(\mathbf{r}+\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}+\mathbf{G}}(\mathbf{r}).$$
 (1.17)

Since the two Bloch states $\psi_{n\mathbf{k}}$ and $\psi_{n\mathbf{k}+\mathbf{G}}$ satisfy the same Schrödinger equation (with $\varepsilon_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}+\mathbf{G}}$) and the same boundary condition (Eqs. (1.16)and (1.17)), they can differ (for non-degenerate states) at most by a phase factor $\phi(\mathbf{k})$. For convenience, one can choose the **periodic gauge** with $\phi(\mathbf{k}) = 0$, $\psi_{n\mathbf{k}+\mathbf{G}} = \psi_{n\mathbf{k}}$. Note that for a quantum phase with non-trivial topology (such as the quantum Hall phase), one can no longer set $\phi(\mathbf{k}) = 0$ for all \mathbf{k} . This is called the **topological obstruction** (see Chap. ??). In any case, $\psi_{n\mathbf{k}}$ (or $u_{n\mathbf{k}}$) in the first Brillouin zone should contain enough information of the electronic state.

FIG. 1 Time reversal Θ followed by $U(\delta t)$ (left) and $U(-\delta t)$ followed by time reversal Θ (right) result in the same state.

B. Time reversal symmetry

Time reversal operator Θ maps a state to its timereversed state (or, motion-reversed state),

$$|\alpha\rangle \to |\tilde{\alpha}\rangle = \Theta|\alpha\rangle.$$
 (1.18)

Naturally, if a dynamical system has time-reversal symmetry (TRS), then for a state $|\alpha\rangle$ evolving with $U(t)=e^{-iHt/\hbar}$, one expects (see Fig. 1)

$$U(t)\Theta|\alpha\rangle = \Theta U(-t)|\alpha\rangle.$$
 (1.19)

For an infinitesimal evolution $U(\delta t) \simeq 1 - iH\delta t/\hbar$, Eq. (1.18) leads to $-iH\Theta = \Theta iH$. If Θ is a unitary operator, then we have $-H\Theta = \Theta H$. That is, if a state has energy ε , then its time-reversed state has energy $-\varepsilon$. This causes the eigen-energies to be bottomless, which is unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or rotation, preserves the squared modulus $\langle \alpha | \alpha \rangle$ of a quantum state $|\alpha\rangle$ if the system under consideration has that symmetry. According to Wigner's study, an operator of transformation that preserves $|\langle \beta | \alpha \rangle|$ can only be either unitary or anti-unitary. Therefore, Θ must be an **anti-unitary operator**, which can be written as

$$\Theta = U_T K, \tag{1.20}$$

where U_T is a unitary operator, and K is a **complex conjugate operator**, Ki = -iK. As a result, if H has TRS, then

$$H\Theta = \Theta H. \tag{1.21}$$

Note: even though $[H,\Theta]=0$, there is no conserved quantity associated with TRS since $U(t)\Theta \neq \Theta U(t)$.

For states under TR, one has

$$\langle \tilde{\beta} | \tilde{\alpha} \rangle = \langle \alpha | \beta \rangle, \text{ or } \langle \beta | \alpha \rangle^*.$$
 (1.22)

Pf:

$$\langle \tilde{\beta} | \tilde{\alpha} \rangle = \langle UK\beta | UK\alpha \rangle$$
 (1.23)

$$= \langle K\beta | K\alpha \rangle^* \tag{1.24}$$

$$= \langle \beta | \alpha \rangle^* = \langle \alpha | \beta \rangle. \qquad QED \qquad (1.25)$$

For the matrix elements of an operator O, one has

$$\langle \tilde{\beta} | O | \tilde{\alpha} \rangle = \langle \alpha | \Theta^{-1} O^{\dagger} \Theta | \beta \rangle. \tag{1.26}$$

Pf: We would try not to use the dual operation of Θ explicitly. That is, Θ is only allowed to act on ket states. First define $|\tilde{\gamma}\rangle = O^{\dagger}|\tilde{\beta}\rangle$, or

$$\Theta|\gamma\rangle = O^{\dagger}\Theta|\beta\rangle,\tag{1.27}$$

then $\langle \tilde{\gamma} | = \langle \tilde{\beta} | O$, and

$$\langle \tilde{\beta} | O | \tilde{\alpha} \rangle = \langle \tilde{\gamma} | \tilde{\alpha} \rangle \tag{1.28}$$

$$= \langle \alpha | \gamma \rangle \tag{1.29}$$

$$= \langle \alpha | \Theta^{-1} O^{\dagger} \Theta | \beta \rangle. \qquad QED \qquad (1.30)$$

If an operator O transforms under time reversal as,

$$\Theta^{-1}O^{\dagger}\Theta = \pm O, \tag{1.31}$$

then $\langle \Theta \alpha | O | \Theta \alpha \rangle = \pm \langle \alpha | O | \alpha \rangle$.

1. Spinless state

Given a time-reversed state $|\tilde{\psi}\rangle = \Theta|\psi\rangle$, one expects

$$\langle \psi | \Theta^{-1} \mathbf{r} \Theta | \psi \rangle = \langle \psi | \mathbf{r} | \psi \rangle, \qquad (1.32)$$

$$\langle \psi | \Theta^{-1} \mathbf{p} \Theta | \psi \rangle = -\langle \psi | \mathbf{p} | \psi \rangle,$$
 (1.33)

Since this is valid for every time-reversed state, we demand

$$\Theta^{-1}\mathbf{r}\Theta = \mathbf{r},\tag{1.34}$$

$$\Theta^{-1}\mathbf{p}\Theta = -\mathbf{p}.\tag{1.35}$$

This also implies that the angular momentum operator $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ changes sign under TR.

A spin-less state is described by a scalar function, and this two relations can be satisfied with $\Theta = K$ (i.e. U = 1). Hence

$$\psi(\mathbf{r},t) \xrightarrow{TR} \Theta \psi(\mathbf{r},t) = \psi^*(\mathbf{r},t).$$
 (1.36)

Furthermore, given the Schrödinger equation,

$$H\psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r},t), \qquad (1.37)$$

its complex-conjugate counterpart is,

$$H\psi^*(\mathbf{r},t) = i\hbar \frac{\partial}{\partial (-t)} \psi^*(\mathbf{r},t). \tag{1.38}$$

That is $\psi^*(\mathbf{r},t)$ evolves to -t the same way as $\psi(\mathbf{r},t)$ evolves to t. Hence, $\psi^*(\mathbf{r},t)$ is indeed a time-reversed state.

For the Hamiltonian in Eq. (1.1), $K^{-1}HK = H$ (note that $K^{-1} = K$). However, for a crystal in a magnetic field.

$$H = \frac{(\mathbf{p} - q\mathbf{A})^2}{2m} + V_L(\mathbf{r}), \tag{1.39}$$

where q = -e is the charge of an electron and **A** is the vector potential, we have

$$K^{-1}HK = \frac{(p+q\mathbf{A})^2}{2m} + V_L(\mathbf{r}) \neq H.$$
 (1.40)

That is, the magnetic field breaks the TRS, as expected. For a Bloch state, one has

$$\psi_{n\mathbf{k}}(\mathbf{r}) \to \Theta\psi_{n\mathbf{k}}(\mathbf{r}) = \psi_{n\mathbf{k}}^*(\mathbf{r}).$$
 (1.41)

Under a translation,

$$T_{\mathbf{R}}\psi_{n\mathbf{k}}^{*}(\mathbf{r}) = \psi_{n\mathbf{k}}^{*}(\mathbf{r} + \mathbf{R})$$

$$= e^{-i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}^{*}(\mathbf{r}).$$
(1.42)

If the state is not degenerate, then according to Eq. (1.9), $\psi_{n\mathbf{k}}^*(\mathbf{r})$ with the eigenvalue $e^{-i\mathbf{k}\cdot\mathbf{R}}$ could be identified as $\psi_{n-\mathbf{k}}(\mathbf{r})$. That is (see Sec. 16.3 of Dresselhaus *et al.*, 2008),

$$\psi_{n\mathbf{k}}^*(\mathbf{r}) = \psi_{n-\mathbf{k}}(\mathbf{r}). \tag{1.44}$$

2. Spin-1/2 state

For a state ψ with spin, in addition to Eqs. (1.34), (1.35), we also require the spin operator under TR to satisfy

$$\Theta^{-1}\mathbf{s}\Theta = -\mathbf{s}.\tag{1.45}$$

A spin-1/2 state is a two-component **spinor**, and the spin operators are **Pauli matrices**, $\mathbf{s} = \frac{\hbar}{2}\boldsymbol{\sigma}$. Obviously, $\Theta = K$ cannot satisfy Eq. (1.45), and a unitary rotation U (not operating on \mathbf{r} and \mathbf{p}) in $\Theta = UK$ is required.

From Eq. (1.45), one has

$$s_x \Theta = -\Theta s_x, \tag{1.46}$$

$$s_y \Theta = -\Theta s_y, \tag{1.47}$$

$$s_z\Theta = -\Theta s_z. \tag{1.48}$$

Using the standard representation for Pauli matrices, where only σ_y has complex matrix elements, we have

$$\sigma_x U = -U\sigma_x, \tag{1.49}$$

$$\sigma_y U = +U\sigma_y, \tag{1.50}$$

$$\sigma_z U = -U\sigma_z. \tag{1.51}$$

U is a 2×2 matrix (for spin-1/2 states), which can be expanded by Pauli matrices. Since U anti-commutes with $\sigma_{x,z}$, but commutes with σ_y , the equations above can be satisfied with $U = \sigma_y$, or $U = e^{i\delta}\sigma_y$, where δ is an arbitrary phase. A popular choice of $e^{i\delta}$ is -i. Thus,

$$\Theta = -i\sigma_y K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} K. \tag{1.52}$$

Other choices of $e^{i\delta}$ are allowed, such as +i or 1.

In general, for a state with spin j, which can be an integer or a half-integer,

$$\Theta = e^{-iJ_y\pi/\hbar}K,\tag{1.53}$$

in which J_y is a spin operator (Sakurai, 1985). For spin 1/2,

$$\Theta = e^{-is_y \pi/\hbar} K = -i\sigma_y K. \tag{1.54}$$

A Bloch state with spin-1/2 transforms as

$$\begin{pmatrix} \varphi_{\mathbf{k}1} \\ \varphi_{\mathbf{k}2} \end{pmatrix} \xrightarrow{TR} \Theta \begin{pmatrix} \varphi_{\mathbf{k}1} \\ \varphi_{\mathbf{k}2} \end{pmatrix} = \begin{pmatrix} -\varphi_{\mathbf{k}2}^* \\ +\varphi_{\mathbf{k}1}^* \end{pmatrix}. \tag{1.55}$$

Applying the time-reversal transformation twice gives $\Theta^2 = -1$.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying the TR transformation twice gives $\Theta^2 = 1$. However, if a particle has half-integer spin, then

$$\Theta^2 = -1. \tag{1.56}$$

This fact is crucial to the existence of the **Kramer degeneracy**: If a system has TRS and its spin is a *half-integer*, then eigenstates ψ and $\Theta\psi$ are degenerate and orthogonal to each other.

Pf. Since $H\Theta = \Theta H$, so if ψ is an eigenstate with energy ε , $H\psi = \varepsilon \psi$, then

$$H\Theta\psi = \Theta H\psi = \varepsilon \Theta \psi. \tag{1.57}$$

That is, $\Theta\psi$ is also an eigenstate with energy ε . Furthermore, using the identity $\langle \beta | \alpha \rangle = \langle \tilde{\alpha} | \tilde{\beta} \rangle$, one has

$$\langle \psi | \Theta \psi \rangle = \langle \Theta(\Theta \psi) | \Theta(\psi) \rangle$$
 (1.58)

$$= -\langle \psi | \Theta \psi \rangle, \tag{1.59}$$

in which $\Theta^2 = -1$ has been used to get the second equation. Therefore, $\langle \psi | \Theta \psi \rangle = 0$. QED.

For example, if a Bloch state $\psi_{n\mathbf{k}\uparrow}$ has energy $\varepsilon_{n\mathbf{k}\uparrow}$, then its time-reversed state $\Theta\psi_{n\mathbf{k}\uparrow} = -\psi_{n-\mathbf{k}\downarrow}$ (see Eq. (1.55)) has energy $\varepsilon_{n-\mathbf{k}\downarrow}$, and with time reversal symmetry $\varepsilon_{n\mathbf{k}\uparrow} = \varepsilon_{n-\mathbf{k}\downarrow}$ (Kramer degeneracy). For a solid with space inversion symmetry, one has $\varepsilon_{n-\mathbf{k}s} = \varepsilon_{n\mathbf{k}s}$ ($s=\uparrow$ or \downarrow). When the solid has *both* symmetries, there is a two-fold degeneracy at each \mathbf{k} -point,

$$\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n\mathbf{k}-s}.$$
 (1.60)

An energy band thus has a *global* two-fold degeneracy over the whole Brillouin zone.

On the other hand, if there is TRS but no space inversion symmetry, so that $\varepsilon_{n-\mathbf{k}s} \neq \varepsilon_{n\mathbf{k}s}$, then the two-fold degeneracy at a **k**-point is not guaranteed, except at the

FIG. 2 (a) The TRIM are shown as black and white dots in the first Brillouin zone. Only four of them (black dots) are independent. (b) The Bloch energy levels of a system with time-reversal symmetry but without space-inversion symmetry.

k-point that differs from $-\mathbf{k}$ by a reciprocal lattice vector \mathbf{G} .

$$\mathbf{k} = -\mathbf{k} + \mathbf{G}.\tag{1.61}$$

These k-points are called time-reversal-invariant momenta (TRIM), see Fig. 2(a). At a TRIM,

$$\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n,-\mathbf{k}+\mathbf{G},-s} = \varepsilon_{n\mathbf{k}-s}.$$
 (1.62)

Typical TRIM are located at the corners of a BZ, $\mathbf{k} = \mathbf{G}/2$. They play important roles in the theory of **topological insulator**.

Note: For a crystal without space-inversion symmetry, we often still have $\varepsilon_{n\mathbf{k}} = \varepsilon_{n-\mathbf{k}}$ (Fig. 2(b)). This is due to the fact that, with time-reversal symmetry, $\varepsilon_{n\mathbf{k}s} = \varepsilon_{n-\mathbf{k}-s}$. In the absence of spin-orbit interaction (SOI), $\varepsilon_{n-\mathbf{k}-s} = \varepsilon_{n-\mathbf{k}s}$ and we have a symmetric energy spectrum with global two-fold degeneracy. A SOI breaks the two-fold degeneracy (except at TRIM), but the energy spectrum still looks symmetric because of the Kramer degeneracy.

C. Rotation symmetry

A crystal can be invariant under a rotation with respect to a lattice point. Because of the rotation, a position vector \mathbf{r} changes to \mathbf{r}' ,

$$\mathbf{r} \to \mathbf{r}' = \mathsf{R}\mathbf{r},\tag{1.63}$$

where R is the rotation matrix. A quantum state ψ changes as,

$$\psi(\mathbf{r}) \to \psi'(\mathbf{r}) = \psi(\mathsf{R}^{-1}\mathbf{r}) = D_R\psi(\mathbf{r}), \quad (1.64)$$

or
$$|\psi'\rangle = D_R |\psi\rangle$$
. (1.65)

where D_R is a rotation operator. We have used a *passive* rotation $R^{-1}\mathbf{r}$ to simulate an active rotation of ψ .

After rotation, an operator O changes to O', and we demand that

$$\langle \psi' | O | \psi' \rangle = \langle \psi | O' | \psi \rangle.$$
 (1.66)

Thus,

$$O \to O' = D_R^{\dagger} O D_R. \tag{1.67}$$

For example, a Hamiltonian transforms as,

$$H' = D_D^{\dagger} H D_B. \tag{1.68}$$

The Hamiltonian is invariant under rotation, H' = H, if H commutes with D_R .

The Schrödinger equation for cell-periodic state is,

$$\tilde{H}_{\mathbf{k}}(\mathbf{r}, \mathbf{p})u_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}}u_{\mathbf{k}}(\mathbf{r}),$$
 (1.69)

where

$$\tilde{H}_{\mathbf{k}} = \frac{p^2}{2m} + \frac{\mathbf{p} \cdot \mathbf{k}}{m} + \frac{k^2}{2m} + V_L(\mathbf{r}). \tag{1.70}$$

After rotation (Kittel, 1963),

$$\tilde{H}_{\mathbf{k}}(\mathsf{R}^{-1}\mathbf{r},\mathsf{R}^{-1}\mathbf{p})u_{\mathbf{k}}(\mathsf{R}^{-1}\mathbf{r}) = \varepsilon_{\mathbf{k}}u_{\mathbf{k}}(\mathsf{R}^{-1}\mathbf{r}).$$
 (1.71)

Since p^2 and k^2 are invariant under rotation, and

$$\mathbf{k} \cdot \mathsf{R}^{-1} \mathbf{p} = \mathsf{R} \mathbf{k} \cdot \mathbf{p},\tag{1.72}$$

we have

$$\tilde{H}_{R\mathbf{k}}(\mathbf{r}, \mathbf{p})D_R u_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}} D_R u_{\mathbf{k}}(\mathbf{r}).$$
 (1.73)

If a Hamiltonian is invariant under D_R ,

$$D_R^{\dagger} \tilde{H}_{\mathsf{R}\mathbf{k}} D_R = \tilde{H}_{\mathbf{k}}, \tag{1.74}$$

then its Bloch energy is invariant under the rotation.

In general, symmetry operations on a crystal consist of translation, rotation, mirror reflection, space inversion, or their combinations. These operations form a **space group**. Rotation, mirror reflection, and space inversion leaves a point fixed. These operations form a **point group**.

Exercise

1. Suppose Q = UK is an anti-unitary operator, prove that Q^2 can only be +1 or -1.

Hint: Since performing time reversal twice would get us back to the original state, differing at most by a phase factor, we can assume $Q^2 = e^{i\delta}$. Check the consistency between mathematical operations to find out $e^{i\delta}$.

2. Show that, if an operator O transforms as,

$$\Theta O \Theta^{-1} = O^{\dagger}, \tag{1.75}$$

and $\Theta^2 = -1$, then $\langle \psi | O | \Theta \psi \rangle = 0$.

For example, if an electron is scattered by a scalar potential $V(\mathbf{r})$, then to the first-order approximation (**Born approximation**), the scattering amplitude for ψ being scattered to its time-reversal state is zero.

References

Dresselhaus, M. S., G. Dresselhaus, and A. Jorio, 2008, *Group Theory* (Springer-Verlag Berlin Heidelberg).

Kittel, C., 1963, Quantum theory of solids (Wiley).

Sakurai, J. J., 1985, *Modern quantum mechanics* (Benjamin-Cummings Publishing Company).