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I. REVIEW OF BLOCH THEORY
A. Translation symmetry

For a perfect crystal with discrete translation symme-
try, the Hamiltonian is

2
H = 2= +Vy(r), with Vi (r + R) = Vi, (x),

2m

(1.1)

in which V,(r) is the potential of the atomic lattice, and
R is a lattice translation vector. Define a lattice
translation operator Tgr that acts on electronic states
as follows,

Tri(r) = ¢(r + R).

It can be shown that, because H has the translation sym-
metry,

(1.2)

TrH(r)y(r) = H(r)Tri(r).

That is, [T, H] = 0.
Because Tr commutes with H(r), one can find their
simultaneous eigenstates,

Hy = ey,
TRq;[} = CRwa

where € and cr are eigenvalues of H and Tg, and |cr| =
1. Furthermore, successive translations satisfy

(1.3)

(1.4)
(1.5)

TRTR/ = TRITR = TR+R’~ (16)

This leads to
CRCR' = CR’CR — CR+R/- (17)

To satisfy these equations, cr needs to be an exponential,
cr = ¢ R Therefore,

stk =

Trtpex =

Ew6k7

eik-R,lpsk.

(1.8)
(1.9)

The simultaneous eigenstate of H and Tg is called the
Bloch state.
If one writes the Bloch state in the following form,

Per(r) = €™ ug(r), (1.10)
then Eq. (1.9) gives
ek (r + R) = uek(r). (1.11)

That is, a Bloch state is a plane wave times a cell-
periodic function u.k(r). The latter contains, in one
unit cell, all information of the Bloch state.

The Schrodinger equation for ue is,

Hi(r)uek = U, (1.12)

in which
Hy(r) = e ™®TH(r)ek® (1.13)
= L(p+hk)2+vL(r). (1.14)

2m

Since ucy can be restricted to one unit cell (with periodic
boundary condition), we expect it to have discrete energy
eigenvalues ¢,, (n € Z1) for each k, and write

ﬁk(r)unk = EnkUnk- (115)

The quantum numbers n and k are called the band in-
dex and the Bloch momentum, and ¢,k are the energy
dispersions of Bloch bands.

The Bloch state ),k translates under R as (see

Eq. (1.9)),
’lbnk(l‘ + R) = eik'ank(I‘).

If one shifts the momentum k by a reciprocal lattice
vector G, then since e’S'® =1 (for any R),

wnk-i-G (I‘ + R) = eiklank-i-G (I')

Since the two Bloch states 1,k and ,kiq satisfy the
same Schrodinger equation (with e,k = € t+q) and the
same boundary condition (Egs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor ¢(k). For convenience, one can choose the peri-
odic gauge with ¢(k) = 0, ¥pk+c = ¥nk. Note that for
a quantum phase with non-trivial topology (such as the
quantum Hall phase), one can no longer set ¢(k) = 0 for
all k. This is called the topological obstruction (see
Chap. ??). In any case, ¥,k (Or upy) in the first Brillouin
zone should contain enough information of the electronic
state.

(1.16)

(1.17)



FIG. 1 Time reversal © followed by U(dt) (left) and U(—dt)
followed by time reversal © (right) result in the same state.

B. Time reversal symmetry

Time reversal operator © maps a state to its time-
reversed state (or, motion-reversed state),
o) — |&) = O|a). (1.18)

Naturally, if a dynamical system has time-reversal sym-
metry (TRS), then for a state |«) evolving with U(t) =

e "t/ one expects (see Fig. 1)
U(t)O|a) = OU(-t)|a). (1.19)
For an infinitesimal evolution U(§t) ~ 1 — iHét/h,

Eq. (1.18) leads to —iH® = OiH. If © is a unitary
operator, then we have —HO© = ©H. That is, if a state
has energy ¢, then its time-reversed state has energy —e.
This causes the eigen-energies to be bottomless, which is
unreasonable (see Sakurai, 1985, p.272).

Time-reversal transformation, like translation or ro-
tation, preserves the squared modulus (a|a) of a quan-
tum state |a) if the system under consideration has that
symmetry. According to Wigner’s study, an operator of
transformation that preserves |(8|a)| can only be either
unitary or anti-unitary. Therefore, ©® must be an anti-
unitary operator, which can be written as

0 =UrK, (1.20)
where Ur is a unitary operator, and K is a complex
conjugate operator, Ki = —iK. As a result, if H has
TRS, then

HO = OH. (1.21)

Note: even though [H,®] = 0, there is no conserved
quantity associated with TRS since U(¢)© # QU ().
For states under TR, one has

(Bla) = (alB), or (Bla)*. (1.22)
Pf.
(Blay = (UKB|UKa) (1.23)
= (KB|Ka)* (1.24)
= (Bloy" ={(a[B). QED  (1.25)

For the matrix elements of an operator O, one has

(Bl0la) = (a0 "OT0)8). (1.26)

Pf. ' We would try mot to use the dual operation of ©
explicitly. That is, © is only allowed to act on ket states.
First define |7) = Of|3), or

Oly) = 0'e|s), (1.27)
then (5| = (3|0, and
(Blolay = (yla) (1.28)
= (aly) (1.29)
= (a|®@7'0'0|8). QED  (1.30)

If an operator O transforms under time reversal as,
o~'o'e = +0, (1.31)

then (Oa|0]|0a) = £(a|O|a).

1. Spinless state

Given a time-reversed state [¢)) = ©¢)), one expects

wloT'rely) = (¥lrly),
(WlO™'POlY) = —(¥lplv),

(1.32)
(1.33)

Since this is valid for every time-reversed state, we de-
mand

0 r® = r,
O 'p® = —p.

(1.34)
(1.35)

This also implies that the angular momentum operator
L =r x p changes sign under TR.

A spin-less state is described by a scalar function, and
this two relations can be satisfied with © = K (i.e. U =
1). Hence

W(r,1) 3 Op(r, 1) = ¢ (r,b). (1.36)
Furthermore, given the Schrédinger equation,
0
Hw(rvt) = Zha?ﬂ(r,t), (137)
its complex-conjugate counterpart is,
Hy*(r,t) = ih 4 P*(r,t) (1.38)
T TO(-t) T '

That is *(r,t) evolves to —t the same way as ¥(r,t)
evolves to t. Hence, ¢*(r,t) is indeed a time-reversed
state.

For the Hamiltonian in Eq. (1.1), K "'HK = H (note
that K~! = K). However, for a crystal in a magnetic
field,

(p—qA)?

H:
2m

+ Vi (r), (1.39)



where ¢ = —e is the charge of an electron and A is the
vector potential, we have

(p+qA)?

K 'HK =
2m

+ Vi(r) # H. (1.40)
That is, the magnetic field breaks the TRS, as expected.

For a Bloch state, one has

Unk(r) = OUni(r) = b (r). (1.41)

Under a translation,
Tripi(r) = ¢ (r+R) (1.42)
= Ry (1), (1.43)

If the state is not degenerate, then according to Eq. (1.9),

* () with the eigenvalue e =R could be identified as
Yn—x(r). That is (see Sec. 16.3 of Dresselhaus et al.,
2008),

Y1 (r) = Yy i (r). (1.44)

2. Spin-1/2 state

For a state ¢ with spin, in addition to Eqs. (1.34),
(1.35), we also require the spin operator under TR to
satisfy

0 's0 = —s. (1.45)
A spin-1/2 state is a two-component spinor, and the
spin operators are Pauli matrices, s = %U. Obviously,
O = K cannot satisfy Eq. (1.45), and a unitary rotation
U (not operating on r and p) in © = UK is required.
From Eq. (1.45), one has

5,0 = —Os,, (1.46)
5,0 = —0Osy, (1.47)
5,0 = —0Os,. (1.48)

Using the standard representation for Pauli matrices,
where only o, has complez matrix elements, we have

o, U = =Uoy, (1.49)
o,U = +Uoy, (1.50)
o,U = —Uo,. (1.51)

U is a 2 x 2 matrix (for spin-1/2 states), which can be
expanded by Pauli matrices. Since U anti-commutes with
0,2, but commutes with o,, the equations above can
be satisfied with U = oy, or U = ei‘;ay, where § is an
arbitrary phase. A popular choice of €? is —i. Thus,

0 = —io,K = (0 -1 ) K. (1.52)

1 0

Other choices of €% are allowed, such as +i or 1.

In general, for a state with spin j, which can be an
integer or a half-integer,
0= Wm/hE, (1.53)

in which J, is a spin operator (Sakurai, 1985). For spin
1/2,

O=c¢ K = —jg,K. (1.54)
A Bloch state with spin-1/2 transforms as
(‘p“)ﬂ@(%l):(‘%?). (1.55)
Pk2 VK2 K1

Applying the time-reversal transformation twice gives
0?2 = —1.

3. Kramer degeneracy

In general, if a particle has integer spin, then applying
the TR transformation twice gives ©% = 1. However, if
a particle has half-integer spin, then

0% =-1. (1.56)

This fact is crucial to the existence of the Kramer de-
generacy: If a system has TRS and its spin is a half-
integer, then eigenstates ¢ and ©v are degenerate and
orthogonal to each other.
Pf. Since HO = OH, so if ¢ is an eigenstate with energy
e, Hiy = ey, then

HOY = OHY = 0. (1.57)
That is, ©1 is also an eigenstate with energy e.
Furthermore, using the identity (8|a) = (&|3), one has

(oY) = (6(6v)[0(v)) (1.58)
= —(¥|0y), (1.59)
in which ©2 = —1 has been used to get the second equa-

tion. Therefore, (1|©y) = 0. QED.

For example, if a Bloch state 1,k+ has energy epir,
then its time-reversed state Oy = —¢p_k; (see
Eq. (1.55)) has energy €,k , and with time reversal sym-
metry e,k = €n—k) (Kramer degeneracy). For a solid
with space inversion symmetry, one has €, ks = €nks
(s =t or |). When the solid has both symmetries, there
is a two-fold degeneracy at each k-point,

Enks = En—k—s = Enk—s- (160)
An energy band thus has a global two-fold degeneracy
over the whole Brillouin zone.

On the other hand, if there is TRS but no space inver-
sion symmetry, so that €, ks # €nks, then the two-fold
degeneracy at a k-point is not guaranteed, except at the
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FIG. 2 (a) The TRIM are shown as black and white dots in
the first Brillouin zone. Only four of them (black dots) are
independent. (b) The Bloch energy levels of a system with
time-reversal symmetry but without space-inversion symme-
try.

k-point that differs from —k by a reciprocal lattice vector
G

)

k=-k+G. (1.61)

These k-points are called time-reversal-invariant mo-
menta (TRIM), see Fig. 2(a). At a TRIM,

Enks = €n—k—s = €n,—k+G,—s — Enk—s- (162)

Typical TRIM are located at the corners of a BZ, k =
G/2. They play important roles in the theory of topo-
logical insulator.

Note: For a crystal without space-inversion symme-
try, we often still have e,x = e,_k (Fig. 2(b)). This
is due to the fact that, with time-reversal symmetry,
€nks = En_k_s. In the absence of spin-orbit interac-
tion (SOI), €,—x—s = €n—ks and we have a symmetric
energy spectrum with global two-fold degeneracy. A SOI
breaks the two-fold degeneracy (except at TRIM), but
the energy spectrum still looks symmetric because of the
Kramer degeneracy.

C. Rotation symmetry

A crystal can be invariant under a rotation with re-
spect to a lattice point. Because of the rotation, a posi-
tion vector r changes to r’,

r — 1 =Rr, (1.63)

where R is the rotation matrix. A quantum state 1)
changes as,

U(r) = ¢'(r) = $(R™'r) = Dgi(r),  (1.64)

or |¢) = Dgly). (1.65)

where Dp is a rotation operator. We have used a passive
rotation R™'r to simulate an active rotation of 1.

After rotation, an operator O changes to O’, and we
demand that

(Y'|O1") = (|O"]). (1.66)

Thus,

0 — 0" = DLODg. (1.67)

For example, a Hamiltonian transforms as,

H' = DLHDg. (1.68)

The Hamiltonian is invariant under rotation, H' = H, if
H commutes with Dpg.
The Schrodinger equation for cell-periodic state is,

Hy(r,p)uk(r) = exux(r), (1.69)
where
~ P p-k Kk
Hio= g+ 5= 4 o 4 Vi), (1.70)
After rotation (Kittel, 1963),
Hy(R™'r,R7'p)u (R7'r) = eeur (R 'r). (1.71)

Since p? and k2 are invariant under rotation, and

k-R'p=Rk-p, (1.72)
we have
Hgy(r, p)Druk(r) = ex Druy(r). (1.73)
If a Hamiltonian is invariant under Dg,
DY HrDg = Hy, (1.74)

then its Bloch energy is invariant under the rotation.

In general, symmetry operations on a crystal consist of
translation, rotation, mirror reflection, space inversion,
or their combinations. These operations form a space
group. Rotation, mirror reflection, and space inversion
leaves a point fixed. These operations form a point

group.
Exercise

1. Suppose @ = UK is an anti-unitary operator, prove
that Q2 can only be +1 or —1.

Hint: Since performing time reversal twice would get us
back to the original state, differing at most by a phase
factor, we can assume Q? = e, Check the consistency
between mathematical operations to find out e®.

2. Show that, if an operator O transforms as,

000~ = Of,

and ©% = —1, then (|0|©y) = 0.

For example, if an electron is scattered by a scalar po-
tential V (r), then to the first-order approximation (Born
approximation), the scattering amplitude for 1 being
scattered to its time-reversal state is zero.

(1.75)
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