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I. ELECTROMAGNETIC RESPONSE OF SURFACE
STATE

A. Magneto-electric coupling

Consider a cylindrical bar of topological insulator as
shown in Fig. 1. Assuming that the Dirac point of the
SS is gapped by a TRS-breaking perturbation, and the
chemical potential is inside the gap, so that the SS has
half-integer Hall conductance. If one applies an electric
field along the z-axis of the cylinder, then on the surface
there would be a circulating Hall current jH = (e2/2h)E.
According to one of Ampere’s theorem (Zangwill, 2013),
the magnetic field produced by such a surface current is
equivalent to that of an effective magnetization along the
z-axis (in Gaussian units),

M =
1

c
jH =

e2

2hc
E. (1.1)

Notice that M is proportional to E, instead of B. This
is an example of magneto-electric coupling.

The thermodynamic potential for magneto-electric
coupling is U = −χijEiBj (see Sec. 51 of Landau and
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FIG. 1 A cylindrical topological insulator in an uniform elec-
tric field has a circulating surface Hall current.

Lifshitz, 1984). This gives

Pi = − ∂U
∂Ei

= χijBj , (1.2)

Mj = − ∂U

∂Bj
= χijEi. (1.3)

Further differentiation gives

χij =
∂Mj

∂Ei
=
∂Pi
∂Bj

, (1.4)

in which χij is not required to be symmetric. Following
Eq. (1.1), one has

P =
e2

2hc
B. (1.5)

For a heuristic explanation of the polarization induced by
a magnetic field, see related discussion in Nomura, 2013.

Such a magneto-electric coupling can be obtained by
adding a term Lθ to the Lagrangian density of electro-
magnetic field (Qi et al., 2009),

LEM =
1

8π
(E2 −B2) + Lθ − ρφ+

1

c
j ·A, (1.6)

where

Lθ =
e2

2hc
E ·B = α

θ

4π2
E ·B, (1.7)

α = e2/~c is the fine structure constant, and the axion
angle θ = π. The coupling strength e2/2h has its origin
in the half-integer Hall effect.

We now introduce the 4-vector notation. Recall that

xµ = (ct,x), (1.8)

∂µ =

(
∂

c∂t
,− ∂

∂x

)
, (1.9)

jµ = (cρ, j), (1.10)

Aµ = (φ,A). (1.11)

The electromagnetic field tensor is (see Chaps 11, 12 of
Jackson, 1999),

Fµν ≡ ∂µAν − ∂νAµ (1.12)

=

 0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (1.13)
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with a dual tensor,

F̃µν ≡ 1

2
εµνδσFδσ (1.14)

=

 0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 . (1.15)

It follows that,

FµνFµν = −2(E2 −B2), (1.16)

1

2
εµνδσFµνFδσ = −4E ·B. (1.17)

Therefore,

LEM = − 1

16π
FµνFµν + Lθ −

1

c
jµAµ, (1.18)

and the axion term is

Lθ = −α θ

16π2

1

2
εµνδσFµνFδσ (1.19)

= −α θ

16π2
εµνδσ∂µ(AνFδσ), (1.20)

which is a total derivative if the axion angle is uniform
throughout the whole space.

Using the Euler-Lagrange equation of motion,

∂LEM
∂Aν

− ∂µ
∂LEM
∂(∂µAν)

= 0, (1.21)

we have,

∂µ

(
Fµν + α

θ

π
F̃µν

)
=

4π

c
jν . (1.22)

Also, from Eq. (1.12), we have

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (1.23)

These two are Maxwell equations in relativistic covariant
form.

B. Axion electrodynamics

When written in E,B fields, the Maxwell equations
are,

∇ ·
(

E + α
θ

π
B

)
= 4πρ, (1.24)

∇×
(

B− α θ
π

E

)
=

4π

c
j +

1

c

∂

∂t

(
E + α

θ

π
B

)
,(1.25)

∇ ·B = 0, (1.26)

∇×E = −1

c

∂

∂t
B. (1.27)

Θ=π B

+   +   +   +   +

+   +   +   +   +

+   +   +   +   +

Θ=π E
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FIG. 2 (a) A magnetic field induces electric charges on the
surface of a TI. (b) An electric field induces a Hall current on
the surface of a TI.

One can move the axion terms to the right hand side of
the equations, such that

∇ ·E = 4π(ρ+ ρθ), (1.28)

∇×B =
4π

c
(j + jθ) +

1

c

∂E

∂t
, (1.29)

where ρθ = − α

4π2
∇ · (θB) , (1.30)

jθ =
αc

4π2
∇× (θE) +

α

4π2

∂

∂t
(θB) .(1.31)

We put θ inside the differentiation, since it is not uniform
throughout the whole space: π inside a TI, but 0 outside.

Assume the semi-infinite space below xy-plane is oc-
cupied by a TI, such that θ(z) = πh(−z), where h(z) is
the Heaviside step function. If one applies an uniform
magnetic field along the z-axis (see Fig. 2(a)), then the
axion-induced effective charge is,

ρθ =
α

4π
δ(z)Bz. (1.32)

That is, there is a thin layer of charges on the surface of
the TI. This is consistent with Eq. (1.5).

On the other hand, if one applies an uniform electric
field parallel to the surface (see Fig. 2(b)), the the axion-
induced effective current density is,

jθ = −αc
4π
δ(z)ẑ ×E. (1.33)

That is, the is a thin layer of current on the surface of
the TI, perpendicular to the E-field. This is a Hall cur-
rent with Hall conductivity σH = αc/4π = e2/2h. Thus,
the axion term does produce correct electromagnetic re-
sponses of the TI surface state.

Due to the magneto-electric coupling on a TI surface,
an electric charge near the surface would induce an image
dyon – a particle with both electric and magnetic charges
(Fig. 3). The magnetic field (outside the TI) generated
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A point charge

A dyon
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FIG. 3 A point charge outside a TI (a dielectric) has an image
charge. The radial electric field also induces Hall current on
the surface, which produces a magnetic field that is emanated
in effect from an image magnetic monopole.

by the image monopole (inside the TI) is in fact due to
the surface Hall current induced by the electric charge
outside. For more details, see Qi et al., 2009; Wilczek,
1987.

In the dynamical range, the magneto-electric coupling
would rotate the polarization plane of an optical wave
transmitted though (Faraday effect) and reflected from
(Kerr effect) the TI surface (Tse and MacDonald, 2010;
Wu et al., 2016). Such rotations are related to the surface
Hall current induced by the electric field of the optical
wave. Similar effect has been observed in graphene, be-
cause it can also have the surface Hall current (Crassee
et al., 2011).

In general, an EM wave with circular polarization pass-
ing through a 2DEG (along the normal direction, see
Fig. 4) has the transmission coefficient (Chiu et al., 1976),

t± =
2n1

n1 + n2 + 4π
c σ±

= |t±|eiθ± , (1.34)

in which σ± = σxx + iσxy, and the angle of Faraday
rotation is given as,

θF =
1

2
(θ+ − θ−). (1.35)

If σxx ' 0, the imaginary part of σxy is small, and
4πσxy/c� n1, n2, then

θF '
4π

c

σxy
n1 + n2

. (1.36)

For a graphene suspended in air (n1 = n2 = 1) with
quantum Hall conductance σxy = νe2/h, ν ∈ Z, we have

θF ' να, α =
e2

~c
. (1.37)

That is, the visual transparency of graphene is deter-
mined by the fine structure constant (Nair et al., 2008).

C. Axion angle and Berry connection

The axion angle is a coarse-grained description of the
electromagnetic response of TI. Like electric permittivity

n1

n2

2DEG or graphene xy
σ

FIG. 4 An EM wave passing through a 2DEG, such as the
one in graphene or on the surface of a TI, that is sandwiched
between materials with refractive indices n1, n2.

and magnetic permeability, it is a response function that
depends on material property. In principle, χij can be
calculated from the theory of response using Eq. (1.4).
This difficult task has been accomplished by Vanderbilt’s
group (Essin et al., 2010; Malashevich et al., 2010). They
showed that the general form of the magneto-electric
susceptibility is,

χij = χ̃ij + χθδij , (1.38)

in which the second term, χθ = e2

2hc
θ
π , is related to the

magneto-electric coupling in previous section. The axion
angle is given as an integral of Berry connections,

θ =
1

4π

∫
BZ

d3k εabctr

(
Aa∂bAc −

2i

3
AaAbAc

)
. (1.39)

The trace is a sum over occupied energy bands, and

[Aa(k)]nn′ = i〈unk|
∂

∂ka
|un′k〉. (1.40)

The reason that the integrand of the axion angle is
the Chern-Simons term can be understood from the
perspective of dimensional reduction. That is, the 3D TI
can be considered as a descendent of the 4D quantum
Hall effect, which is characterized by the second Chern
number. We will explore more about this in Chap. ??.

The axion angle is defined only up to 2πw,w ∈ Z. This
is proved as follows: Under a gauge transformation (U is
an unitary matrix),

Aa → A′a = U†AaU + iU†∂aU, (1.41)

it is left as an exercise to show that,

θ → θ′ = θ +
1

12π

∫
BZ

d3k εabctr
(
U†∂aUU

†∂bUU
†∂cU

)
.

(1.42)
The second term is an integer multiple of 2π, which we
now prove (Nomura, 2013).

For simplicity, we consider SU(2) gauge transforma-

tion, U = ei
φ
2 n̂·σ. Following Nomura’s note, write

U(k) = cos
φ(k)

2
+ in̂ · σ sin

φ(k)

2
(1.43)

≡ imµ(k)σµ, (1.44)
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where (no need to worry about upper/lower index here)

mµ =

(
cos

φ

2
, nx sin

φ

2
, ny sin

φ

2
, nz sin

φ

2

)
,m2

µ = 1,(1.45)

σµ = (1/i, σx, σy, σz). (1.46)

With the help of tr(σµσ
†
νσρσ

†
λ) = 2εµνρλ, it can be shown

that,

1

24π2

∫
BZ

d3k εabctr
(
U†∂aUU

†∂bUU
†∂cU

)
(1.47)

=
1

24π2

∫
BZ

d3k εabctr
(
U∂aU

†∂bU∂cU
†) (1.48)

=
1

12π2

∫
BZ

d3k εabcεµνρλmµ∂amν∂bmρ∂cmλ (1.49)

=
1

2π2

∫
BZ

d3k εµνρλmµ∂1mν∂2mρ∂3mλ. (1.50)

This integral is the winding number w of the mapping
T 3 → SU(2) ' S3 (e.g., see Sec. 34 of Gottfried, 1989).
Therefore, the axion angle can change by 2πw under a
gauge transformation. It is well defined only within the
interval [0, 2π].

Recall that in the Qi-Wu-Zhang model (Sec. ??), we
have the winding number of the mapping T 2 → S2. Here
the mapping is T 3 → S3. The mapping T 4 → S4 will
be encountered in the next chapter while we discuss the
second Chern number.

In general, if N energy levels are filled, then the gauge
rotation in Eq. (1.47) should be U(N). The winding
number of the mapping S3 → U(N) = U(1)× SU(N) is
related to the homotopy group,

π3(U(N)) = π3(SU(N)). (1.51)

The U(1) factor disappears Since U(1) ' S1, and
π3(S1) = 0. It is known that

π3(SU(N)) = Z for N ≥ 2. (1.52)

Therefore, we should still get an integer. When the base
space is a T 3, instead of S3, the U(1) phase would con-
tribute another integer. But overall Eq. (1.47) should
still be an integer.

D. Time reversal symmetry and space inversion symmetry

1. Time reversal symmetry

If an insulator has time reversal invariance, then its
axion angle can only be 0 or π. This is a reflection of
the Z2 classification discussed in Chaps. ?? and ??. The
proof is as follows (Wang et al., 2010):
Recall that in Chap. ??, we have

~A(−k) = w(k)~A∗(k)w†(k)− iw(k)
∂

∂k
w†(k), (1.53)

where

|u−kα〉 =
∑
β

w∗αβ(k)|Θukβ〉. (1.54)

Therefore,

θ =
1

4π

∫
BZ

d3k εabctr

(
Aa∂bAc −

2i

3
AaAbAc

)
−k

(1.55)

...

= − 1

4π

∫
BZ

d3k εabctr

(
A∗a∂bA

∗
c +

2i

3
A∗aA

∗
bA
∗
c

)
k

+
1

12π

∫
BZ

d3k εabctr
(
w∂aw

†w∂bw
†w∂cw

†) . (1.56)

The first term is −θ∗ = −θ, since θ is real. Therefore,
we have

θ =
1

24π

∫
BZ

d3k εabctr
(
w∂aw

†w∂bw
†w∂cw

†) . (1.57)

This looks the same as the integral in Eq. (1.47), except
that the w here is a U(2) matrix (assuming there are
only 2 energy levels). As shown in Wang et al., 2010, the
U(1) factor does not lead to non-integrable phase, and
we are left with a SU(2) matrix. Thus, like Eq. (1.47),
this integral is the winding number of the mapping T 3 →
SU(2) ' S3. As a result,

θ = 0, π mod 2π. (1.58)

In general, for 2N energy levels, the 2N × 2N sewing
matrix m can be decomposed as a direct sum of N SU(2)
matrices (multiplied by a U(1) phase). Each block con-
tributes an integer winding number, so the conclusion
remains the same (Wang et al., 2010).

2. Space inversion symmetry

One can define a sewing matrix for space inversion,

sαβ(k) = 〈u−kα|Π|ukβ〉, (1.59)

or

|u−kα〉 =
∑
β

s∗αβ(k)Π|ukβ〉. (1.60)

It relates ~A(−k) and ~A(k) as follows (see the homework
of Chap ??, or Sec. 14.3 of Bernevig and Hughes, 2013),

~A(−k) = −s(k)~A(k)s†(k)− is(k)
∂

∂k
s†(k), (1.61)

One may wonder if there is a similar Z2 invariant as-
sociated with the SI. Indeed, one can show that, in the
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presence of SI, θ can only be 0 or π, as in the case with
TRS:

θ =
1

4π

∫
BZ

d3k εabctr

(
Aa∂bAc −

2i

3
AaAbAc

)
−k

(1.62)

...

= − 1

4π

∫
BZ

d3k εabctr

(
Aa∂bAc −

2i

3
AaAbAc

)
k

+
1

12π

∫
BZ

d3k εabctr
(
s∂as

†s∂bs
†s∂cs

†) . (1.63)

Again the first term is −θ, so we would reach the same
conclusion as the TRS case above.

However, unlike TRS, an insulator with SIS and
θ = π does not have robust surface state, since the
surface itself breaks the SIS. As we have mentioned in
Chap ??, other crystalline symmetries can protect a
topological phase. This forms the subject of topologi-
cal crystalline insulator (Fu, 2011; Hsieh et al., 2012).

Exercise
1. (a) Starting from the Lagrangian density LEM , and
using the Euler-Lagrange equation, derive the Maxwell
equation in Eq. (1.22).
(b) Verify Eq. (1.23), which by the way is related to the
Bianchi identity in differential geometry.
(c) Show that the Maxwell equations in conventional
form are given as Eqs. (1.24), (1.25), (1.26), (1.27).
2. Show that, under the gauge transformation,

Aa → A′a = U†AaU + iU†∂aU, (1.64)

where U is an unitary matrix, the axion angle changes
as,

θ → θ′ = θ +
1

12π

∫
BZ

d3k εabctr
(
U†∂aUU

†∂bUU
†∂cU

)
.
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