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I. SURFACE STATE OF TOPOLOGICAL INSULATOR

In semiconductors, charge carriers are populated
around the minimal energy gap, say at k = 0. Therefore,
for most purpose, it is sufficient to know the effective
Hamiltonian near k = 0. Furthermore, since the Hamil-
tonian needs to respect the symmetry of the crystal, its
form is restricted. With these, we will determine the
low-energy effective Hamiltonian of the surface states.

A. Symmetry of Hamiltonian

Consider a crystal with point group symmetry G.
Write the representations for a group element g ∈ G in
real space, Hilbert space, and Fock space as g, Ug, andDg

respectively. Take rotation as an example, g is just the
usual 3×3 rotation matrix, Ug is the matrix that rotates
the bases of the Hamiltonian, and Dg rotates operators.
Under the operation of g, an annihilation operator trans-
forms as (Fang et al., 2013),

Dgcα(R)D−1
g =

∑
αβ

Uαβcβ(R
′), R′ = gR, (1.1)

in which α, β are orbital indices, R is a lattice vector,
and g is a 3× 3 matrix of transformation.

Fourier transformation gives

cα(k) =
1√
N

∑
R

cα(R)e−ik·R. (1.2)

FIG. 1 (a) Crystal structure of Bi2Se3. (b) Top view of the
(111)-surface. (c) Side view of the layered structure. Fig from
Qi and Zhang, 2011.

It transforms as

Dgcα(k)D
−1
g =

1√
N

∑
R

∑
αβ

Uαβcβ(R
′) e−ik·R︸ ︷︷ ︸

=e−ik′·R′

=
∑
αβ

Uαβcβ(k
′), k′ = gk. (1.3)

Suppose the Hamiltonian is,

H =
∑
α,β

Hαβ(k)c
†
α(k)cβ(k), (1.4)

then the invariance under symmetry transformation re-
quires

DgHD−1
g = H. (1.5)

It follows that,

UgH(k)U
−1
g = H(gk). (1.6)

B. Effective Hamiltonian of TI surface states

One can deduce the effective Hamiltonian for the sur-
face states based on the consideration of symmetry. As
an example, we consider the [111] surface state of Bi2Te3
(see Fig. 1). In addition to the TRS, there is also a C3v
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symmetry, which consists of a 3-fold rotation transfor-
mation C3 and a mirror transformation M : x → −x.

The operator for the 3-fold rotation is

C3 = eiπ/3σz . (1.7)

The mirror operation M needs to flip the signs of σy, σz,
but preserve the sign of σx. Note that a mirror reflection
in 3D equals an inversion followed by a 180◦ rotation.
Therefore, M2 = −1 for spin-1/2 electron (Kane, 2013).
These restrictions give

M = iσx (1.8)

The effective Hamiltonian is transformed as (Θ =
iσyK),

ΘH(k)Θ−1 = H(−k), (1.9)

C3H(k±)C
−1
3 = H(e∓i2π/3k±), (1.10)

MH(k±)M
−1 = H(−k∓), (1.11)

where k = (kx, ky). Write the 2× 2 Hamiltonian matrix
as

H(k) =

(
h(k) g(k)
g∗(k) −h(k)

)
, (1.12)

then time-reversal symmetry dictates that h(−k) =
−h(k), g(−k) = −g(k).
Rotation symmetry gives

h(k±) = h(e∓2πi/3k±); (1.13)

ei2π/3g(k±) = g(e∓2πi/3k±). (1.14)

Mirror symmetry gives

h(k±) = −h(−k∓); (1.15)

g(k±) = g∗(−k∓). (1.16)

To linear order of the momentum, it is not difficult to
see that h(k) = 0, g(k) = ik−. Therefore,

H(k) = ε0(k) + v(σxky − σykx). (1.17)

To the third order of momentum, it is left as an exercise
to show that

H(k) = ε0(k)+vk(σxky−σykx)+
λ

2

(
k3+ + k3−

)
σz, (1.18)

where vk = v0(1 + αk2). The energy dispersion is

ε±(k) = ε0(k)±
√
v2kk

2 + λ2k6 cos2(3θ), (1.19)

where θ = ∠(k, x̂). This would give a Fermi contour with
6-fold rotation symmetry (Fu, 2009), which is consistent
with observation (Xu et al., 2011).

1
µ

2
µ

µ

FIG. 2 (a) Dirac cone of the surface state. The chemical
potential can be below (µ1) or above (µ2) the Dirac point.
(b) The Dirac point can be opened by magnetization.

C. Berry curvature near level crossing

The 2D surface states of 3D TI have Dirac points in en-
ergy spectrum, similar to those of graphene’s. A typical
TI surface state Hamiltonian near a Dirac point is

HSS = α(σ × k)z +O(k2) (1.20)

≃ h(k) · σ, (1.21)

where h(k) = αk × ẑ = α(ky,−kx, 0). Again te spins
of the electrons on the Fermi circles are parallel or anti-
parallel to the field h(k). Hence after circling the Fermi
circle once, an electron acquires a Berry phase γ± = ∓π
for upper/lower band.
As in graphene, the value of the Berry phase γC = π

is protected by time-reversal symmetry, and the Berry
curvature is a delta function

F±
z (k) = ∓πδ2(k). (1.22)

Due to the phase shift of π for a closed path, one expects
to see weak anti-localization, instead of weak local-
ization, in a graphene or a TI surface with disorders
(He et al., 2011). However, real samples are more com-
plicated. Depending on condition, both types of local-
ization can be observed (Lu and Shen, 2014; Tikhonenko
et al., 2009).
The Hall conductivity is given by,

σH =
e2

h

1

2π

(∫
filled

d2kF+
z +

∫
filled

d2kF−
z

)
. (1.23)

It’s not difficult to see that the Hall conductivity is zero,
no matter whether the chemical potential is located be-
low or above the Dirac point (see Fig. 2(a)).
The Dirac point can be opened by magnetic dopants

with magnetization m (see Fig. 2(b)),

HSS = α(σ × k)z +mσz, (1.24)

which has the Berry curvature,

F±
z = ∓ α2m

2(m2 + α2k2)3/2
. (1.25)
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FIG. 3 A cylindrical topological insulator in an uniform elec-
tric field has a circulating surface Hall current.

If the chemical potential is inside the energy gap, the Hall
conductivity is a half-integer,

σH =
e2

h

1

2π

∫
d2kF−

z =
1

2

e2

h
. (1.26)

Even though the TI has odd number of Dirac point on one
surface, the total number of Dirac point for all surfaces
should be even. Overall they would contribute an integer
Hall conductivity.

D. Electromagnetic response of surface state

1. Magneto-electric coupling

Consider a cylindrical bar of topological insulator as
shown in Fig. 3. Assuming that the Dirac point of the
SS is gapped by a TRS-breaking perturbation, and the
chemical potential is inside the gap, so that the SS has
half-integer Hall conductance. If one applies an electric
field along the z-axis of the cylinder, then on the surface
there would be a circulating Hall current jH = (e2/2h)E.
According to one of Ampere’s theorem (Zangwill, 2013),
the magnetic field produced by such a surface current is
equivalent to that of an effective magnetization along the
z-axis (in Gaussian units),

M =
1

c
jH =

e2

2hc
E. (1.27)

Notice that M is proportional to E, instead of B. This
is an example of magneto-electric coupling.
The thermodynamic potential for magneto-electric

coupling is U = −χijEiBj (see Sec. 51 of Landau and
Lifshitz, 1984). This gives

Pi = − ∂U

∂Ei
= χijBj , (1.28)

Mj = − ∂U

∂Bj
= χijEi. (1.29)

Further differentiation gives

χij =
∂Mj

∂Ei
=

∂Pi

∂Bj
, (1.30)

in which χij is not required to be symmetric. Following
Eq. (1.27), one has

P =
e2

2hc
B. (1.31)

For a heuristic explanation of the polarization induced by
a magnetic field, see related discussion in Nomura, 2013.
Such a magneto-electric coupling can be obtained by

adding a term Lθ to the Lagrangian density of electro-
magnetic field (Qi et al., 2009),

LEM =
1

8π
(E2 −B2) + Lθ − ρϕ+

1

c
j ·A, (1.32)

where

Lθ =
e2

2hc
E ·B = α

θ

4π2
E ·B, (1.33)

α = e2/ℏc is the fine structure constant, and the axion
angle θ = π. The coupling strength e2/2h has its origin
in the half-integer Hall effect.
We now introduce the 4-vector notation. Recall that

xµ = (ct,x), (1.34)

∂µ =

(
∂

c∂t
,− ∂

∂x

)
, (1.35)

jµ = (cρ, j), (1.36)

Aµ = (ϕ,A). (1.37)

The electromagnetic field tensor is (see Chaps 11, 12 of
Jackson, 1999),

Fµν ≡ ∂µAν − ∂νAµ (1.38)

=


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (1.39)

with a dual tensor,

F̃µν ≡ 1

2
ϵµνδσFδσ (1.40)

=


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 . (1.41)

It follows that,

FµνFµν = −2(E2 −B2), (1.42)

1

2
ϵµνδσFµνFδσ = −4E ·B. (1.43)

Therefore,

LEM = − 1

16π
FµνFµν + Lθ −

1

c
jµAµ, (1.44)
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FIG. 4 (a) A magnetic field induces electric charges on the
surface of a TI. (b) An electric field induces a Hall current on
the surface of a TI.

and the axion term is

Lθ = −α
θ

16π2

1

2
ϵµνδσFµνFδσ (1.45)

= −α
θ

16π2
ϵµνδσ∂µ(AνFδσ), (1.46)

which is a total derivative if the axion angle is uniform
throughout the whole space.

Using the Euler-Lagrange equation of motion,

∂LEM

∂Aν
− ∂µ

∂LEM

∂(∂µAν)
= 0, (1.47)

we have,

∂µ

(
Fµν + α

θ

π
F̃µν

)
=

4π

c
jν . (1.48)

Also, from Eq. (1.38), we have

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (1.49)

These two are Maxwell equations in relativistic covariant
form.

2. Axion electrodynamics

When written in E,B fields, the Maxwell equations
are,

∇ ·
(
E+ α

θ

π
B

)
= 4πρ, (1.50)

∇×
(
B− α

θ

π
E

)
=

4π

c
j+

1

c

∂

∂t

(
E+ α

θ

π
B

)
,(1.51)

∇ ·B = 0, (1.52)

∇×E = −1

c

∂

∂t
B. (1.53)

One can move the axion terms to the right hand side of
the equations, such that

∇ ·E = 4π(ρ+ ρθ), (1.54)

∇×B =
4π

c
(j+ jθ) +

1

c

∂E

∂t
, (1.55)

where ρθ = − α

4π2
∇ · (θB) , (1.56)

jθ =
αc

4π2
∇× (θE) +

α

4π2

∂

∂t
(θB) .(1.57)

We put θ inside the differentiation, since it is not uniform
throughout the whole space: π inside a TI, but 0 outside.
Assume the semi-infinite space below xy-plane is oc-

cupied by a TI, such that θ(z) = πh(−z), where h(z) is
the Heaviside step function. If one applies an uniform
magnetic field along the z-axis (see Fig. 4(a)), then the
axion-induced effective charge is,

ρθ =
α

4π
δ(z)Bz. (1.58)

That is, there is a thin layer of charges on the surface of
the TI. This is consistent with Eq. (1.31).
On the other hand, if one applies an uniform electric

field parallel to the surface (see Fig. 4(b)), the the axion-
induced effective current density is,

jθ = −αc

4π
δ(z)ẑ ×E. (1.59)

That is, the is a thin layer of current on the surface of
the TI, perpendicular to the E-field. This is a Hall cur-
rent with Hall conductivity σH = αc/4π = e2/2h. Thus,
the axion term does produce correct electromagnetic re-
sponses of the TI surface state.
In the dynamical range, the magneto-electric coupling

would rotate the polarization plane of an optical wave
transmitted though (Faraday effect) and reflected from
(Kerr effect) the TI surface (Tse and MacDonald, 2010;
Wu et al., 2016). Such rotations are related to the surface
Hall current induced by the electric field of the optical
wave. Similar effect has been observed in graphene, be-
cause it can also have the surface Hall current (Crassee
et al., 2011).

3. Axion angle and Berry connection

The axion angle is a coarse-grained description of the
electromagnetic response of TI. Like electric permittivity
and magnetic permeability, it is a response function that
depends on material property. In principle, χij can be
calculated from the theory of response using Eq. (1.30).
This difficult task has been accomplished by Vanderbilt’s
group (Essin et al., 2010; Malashevich et al., 2010). They
showed that the general form of the magneto-electric
susceptibility is,

χij = χ̃ij + χθδij , (1.60)
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in which the second term, χθ = e2

2hc
θ
π , is related to the

magneto-electric coupling in previous section. The axion
angle is given as an integral of Berry connections,

θ =
1

4π

∫
BZ

d3k ϵabctr

(
Aa∂bAc −

2i

3
AaAbAc

)
. (1.61)

The trace is a sum over occupied energy bands, and

[Aa(k)]nn′ = i⟨unk|
∂

∂ka
|un′k⟩. (1.62)

It can be proved that, with TRS, the axion angle is de-
fined only up to 2πw,w ∈ Z.

The reason that the integrand of the axion angle is
the Chern-Simons term can be understood from the
perspective of dimensional reduction. That is, the 3D TI
can be considered as a descendent of the 4D quantum
Hall effect, which is characterized by the second Chern
number (Qi et al., 2008).

Exercise
1. Following the discussion in subsection B, generalize
the effective Hamiltonian of the TI surface state to the
third order of momentum,

H(k) = ε0(k)+vk(σxky−σykx)+
λ

2

(
k3+ + k3−

)
σz. (1.63)

2. For the 2DEG in an asymmetric quantum well, there
can be Rashba spin-orbit coupling. The Hamiltonian
is,

H(k) =
ℏ2k2

2m∗ + α (σ × k) · ẑ, (1.64)

where α is the strength of the Rashba coupling, and z is
the direction perpendicular to the 2DEG.
(a) Obtain and plot the energy spectrum E(|k|), which
has two paraboloids with a point degeneracy at k = 0.
(b) Find out the Berry curvature of the degenerate point.
3. Following Prob. 2.
(a) What is the Hall conductivity when the chemical po-
tential µ is higher or lower than the nodal energy?
(b) If the 2DEG is doped with magnetization m, then

H(k) =
ℏ2k2

2m∗ + α (σ × k) · ẑ +mσz. (1.65)

When the chemical potential is inside the gap, show that
(kF is the Fermi wave vector)

σH =
1

2

e2

h

(
1− m√

m2 + α2k2F

)
. (1.66)

4. (a) Starting from the Lagrangian density LEM , and
using the Euler-Lagrange equation, derive the Maxwell
equation in Eq. (1.48).
(b) Verify Eq. (1.49), which by the way is related to the
Bianchi identity in differential geometry.
(c) Show that the Maxwell equations in conventional
form are given as Eqs. (1.50), (1.51), (1.52), (1.53).
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