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I. 3D TOPOLOGICAL INSULATOR

The analysis of the 2D TI can be generalized to 3D.
One can naively stack the 2D materials to form a 3D
structure (see Fig. 1). In early days, this has been at-
tempted to build a 3D quantum Hall system, but failed.
An essential reason is that there is no Chen number in
odd dimension. The situation is different for the case of
TI, where one can actually build a weak TI this way.

To simplify the discussion, consider a cubical BZ (see
Fig. 2). If the insulator has TRS, then k-state and −k-
state are TR conjugate. In particular, the points on the
xy plane map to themselves under time reversal. Accord-
ing to the Moore-Balents argument, this plane should
have a corresponding Z2 index. Using Fu and Kane’s
formula, it is given by

(−1)ν = δ1δ2δ3δ4 ≡ z0, (1.1)
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FIG. 1 (a) A 2D TI and its helical edge state. (b) Stacking
2D TIs to construct a 3D TI. The surface state is not as robust
as the edge state of a 2D TI. (c) and (d): Stacking the 2D TIs
along the other two directions. The helical edge states reside
on different sides of the 3D cubes.
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FIG. 2 The colored 2D planes in the 3D BZ are time rever-
sal invariant. That is, under a TR transformation, they are
mapped to themselves. There are all six of them. Each plane
can be assigned a Z2 topological number.

where δi =
∏
n∈ filled ζn(Λi) (see Fig. 2).

By symmetry, the ky-kz plane and the kz-kx plane also
have their own Z2 indices, x0 and y0. In addition, the
planes at front, right, and top side of the cube also map
to themselves under time reversal. So there are three
more Z2 indices, x+, y+, and z+. Overall there are 6 Z2

numbers.

However, these numbers are not independent of each
other,

x0x+ = y0y+ = z0z+ =

8∏
i=1

δi. (1.2)

Because of these two relations, there are only 4 indepen-
dent Z2 integers. One can choose, for example,

(z0z+, x+, y+, z+) or (ν0; ν1, ν2, ν3), (1.3)

where

(−1)ν0 =

8∏
i=1

δi, (1.4)

(−1)ν1 = δ2δ4δ6δ8, (1.5)

(−1)ν2 = δ3δ4δ7δ8 (1.6)

(−1)ν3 = δ5δ6δ7δ8. (1.7)

Among these 4 indices, ν0 is called strong TI index;
ν1, ν2, ν3 are called weak TI indices. The strong index
is intrinsic to the 3D TI, while the other 3 are, roughly
speaking, related to the stacking of 2D TIs along the x, y,
and z directions (see Fig. 1). These indices are discovered
by Moore and Balents, 2007, Fu et al., 2007, and Roy,
2009 at about the same time.
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FIG. 3 (a) Energy levels of a 1D spin pump with an open
edge, plotted as a function of time. The TR polarization Pθ
at t = 0, T/2 are indicated by white dot (if Pθ = 0) and
black dot (if Pθ = 1). (b) The energy dispersion of a 2D
insulator on x-z plane, which has an open edge along z. The
TR polarization at kx = 0, π are indicated by white dot (if
Pθ = 0) and black dot (if Pθ = 1). (c) Four examples of the
parity distributions at the TRIM (in the first octant of the
BZ) of 3D TIs. (d) The Fermi seas in surface BZs of the four
cases in (c). White and black dots at the corners show the
values of Pθ being 0 or 1 (mod 2) along kz (see text). The
grey areas are filled, and the white areas are empty. (Figs (c),
(d) from Fu and Kane, 2007)

A. Fermi circle of the surface state

To understand the implication of these δi-parities on
the eight corners, we can rely on the knowledge acquired
in the past two chapters. First, for a 1D spin pump, we
know that if ∆Pθ = Pθ(T/2) − Pθ(0) = 1 mod 2, then
an edge state would traverse the energy gap (Fig. 3(a)).
Similar traversing of an edge state across the energy gap
occurs in a 2D topological insulator (Fig. 3(b)).

We now consider 3D topological insulator. In Fig. 3(c),
four examples of the cumulative parity distributions at
TRIM are shown. The product of all 8 parities gives
(−1)ν0 . The product of four cumulative parities on the
ky-kz plane at kx = π gives (−1)ν1 , and so on. This way,
one can get the four indices (ν0; ν1, ν2, ν3) shown on top
of the figures.

Next, cut the TI open with a surface perpendicular
to the z-axis. Fig. 3(d) shows the 2D surface BZ of the
surface state (SS) on the kx-ky plane.The parities πi on
corners are the products of two parities along the kz-
direction. Write π1 = (−1)Pθ1 , where Pθ1 is the TR
polarization at (kx, ky) = 0 of a 1D sub-system along the
z-direction; similarly π2 = (−1)Pθ2 . The kx or ky plays
the role of the time in the Fu-Kane spin pump (Fig. 3(a)).
Therefore, when ∆Pθ = Pθ2 − Pθ1 = 1 mod 2, or π1π2 =
−1 (e.g., see the 2nd figure from the left in Fig. 3(d)).

FIG. 4 Phase transition of topological insulator and accom-
panied changes. BiTlSe is a trivial insulator when δ < 0.47.
All of the parities at the corners are positive, and each Bloch
state can have two spins. There is a band inversion when
δ = 0.47, causing the parity at the origin to change sign. As
a result, the material becomes a topological insulator. It now
has helical edge states, in which the direction of spin is locked
with the direction of momentum (see the ARPES data in dark
insets). Fig from Xu et al., 2011

There is one (or an odd number of) edge state traversing
the energy gap from kx = 0 to π, crossing the chemical
potential µ at a Fermi point, similar to Fig. 3(b)). On
the other hand, since π1π3 = 1, there is no (or an even
number of) edge state crossing µ. The Fermi point at
ky = 0 becomes a Fermi line when one scans over ky.

Therefore, once we know the four parities πi, the topol-
ogy of the Fermi circle in the 2D surface BZ can be deter-
mined (assuming the energy dispersion of a SS crosses the
Fermi level only once): between a black dot (odd parity)
and a white dot (even parity), there must be a Fermi line
separating filled states from empty states. One can check
that the Fermi circles in Fig. 3(d) do follow this rule. The
Fermi sea encloses one or more black dots, which are also
the locations of Dirac points (in 2D momentum space).

Fig. 4 sums up nicely what we have learned so far.
When the compound BiTlSe undergoes a phase transi-
tion from an ordinary insulator to a strong TI, the band
inversion, the change of parity at TRIM, and the helical
surface states with spin-momentum locking all emerge
simultaneously.

In general, a strong TI would have odd number of Dirac
points, and odd pairs of helical SS. On the other hand,
a weak TI always have even number of Dirac points, and
even pairs of helical SS. The Dirac point of a weak TI is
fragile. Take the one with indices (0; 011) as an example:
Suppose that due to surface reconstruction, a unit cell
is doubled along the y-direction. As a result, the surface
BZ would be folded back along the ky-direction. The two
black dots now could couple with each other and open the
Dirac point.
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FIG. 5 (a) For a lattice with an edge dislocation, the Burgers
vector is perpendicular to the line of dislocation. (b) For a
lattice with screw dislocation, the Burgers vector is parallel
to the line of dislocation.

Note that even though for a strong TI, there are odd
number of Dirac points on one surface, there are more
Dirac points on the opposite side of the TI. When counted
together, a 3D TI would still have even number of Dirac
points from its surface states.

BiSb is the first experimentally confirmed 3D topolog-
ical insulator (Hsieh et al., 2008). Subsequently, many
more have been predicted and verified (Bansil et al.,
2016). An ideal TI would be one that is an insulator with
large band gap. But this is hard to come by, because the
inversion of energy gap is often a result of spin-orbit cou-
pling, which is not easy to be enhanced. More comments
on topological materials can be found in Sec. I.D below.

B. Weak topological indices

As we have mentioned earlier, a weak TI with indices
(0; 0, 0, 1) can be considered as layers of 2D TIs stacked
along the z-axis. For general weak indices, one can define

Mν = ν1
g1

2
+ ν2

g2

2
+ ν3

g3

2
, (1.8)

in which gi are basis of reciprocal lattice vectors, then
the 2D-TI layers are stacked along the Mν direction.

Even though a weak 3D TI has fragile 2D surface
states, it can have robust 1D states along a line of dislo-
cation. In Fig. 5, one can see that due to a line of disloca-
tion along t, a loop that is closed in a perfect crystal now
can no longer be closed. The vector of displacement B
is called a Burgers vector. For an edge dislocation,
B ⊥ t; for a screw dislocation, B ‖ t.

It is shown by Ran et al., 2009 that, if

B ·Mν = π (mod 2π), (1.9)

then there is a pair of helical edge states along the line of
dislocation (Fig. 6). For example, consider a cubic lattice

1D edge 

state

FIG. 6 In a 3D weak TI with screw dislocation, each plane
can be considered as a 2D insulator with a cut ending at the
line of dislocation. Near the cut, the opposing edge channels
from adjacent planes cancel with each other. As a result, the
edge electrons would move down the line of dislocation.

with indices (0; 0, 0, 1), then Mν = g3/2 = π/aẑ, where a
is the lattice constant. If there is a screw dislocation with
B = aẑ (see Fig. 5(b)), then B ·Mν = π, and there are
1D helical states along the line of dislocation. If B = ax̂
or aŷ (for edge dislocation), then there is no edge state
in this weak TI.

This criterion applies to both strong and weak TIs.
For example, if ν0 = 1, but Mν = 0, then none of the
dislocation lines would have helical edge states.

C. Bulk-edge correspondence

Surface (or edge) state has been a recurring theme in
this course. At the interface between two materials with
different quantum topological phases, the interface states
are bound to exist. This is called the bulk-edge corre-
spondence. So far, we have discussed the domain-wall
state in SSH model, the chiral edge state in quantum
Hall system, the edge state in Fu-Kane spin chain, and
the helical edge states in 2D and 3D TIs. We will see
more examples of surface state later, when new topolog-
ical phases are encountered.

Even though a general proof is lacking, such a bulk-
edge correspondence is generally believed to be true (for
non-interacting systems). This property can roughly be
understood as follows: In the sense of Thomas-Fermi ap-
proximation, energy gap can be defined locally and vary
with location. Near the interface between two different
topological phases, the energy gap needs to close (e.g.,
for band inversion), otherwise the topological phase could
not change. As a result, there must be a gapless region
near the interface (or surface) for electrons to dwell on.

A remark: For a quantum topological phase to change,
the energy gap needs be closed. Such a statement is valid
only if the symmetry of the system remains unchanged.
If the symmetry changes, then can pass from one phase
to the other without closing the gap (Ezawa et al., 2013).
For example, consider the SSH model,

H = (t− + t+ cos k)σx + t+ sin k σy +mσz, (1.10)
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FIG. 7 In the parameter space of (δ,m), the SSH model is
gapless only at a single point (0, 0).

where t± = t ± δ, δ is the dimerization parameter (see
Prob. 2 of Chap ??). The energy spectrum is

E± = ±
√
t2 cos2

k

2
+ δ2 sin2 k

2
+m2. (1.11)

When m = 0, H has both TRS and particle-hole sym-
metry. To get from the phase with δ > 0 to the one with
δ < 0, we need to cross the gapless point (δ,m) = (0, 0),
see Fig. 7. However, if m 6= 0, then H has no TRS
and the energy bands are gapped. In this case, one can
go from a phase with δ > 0 (m = 0) to a phase with
δ < 0 (m = 0) via a path with non-zero m, such that the
energy gap remains open during the transit.

D. Topological crystalline insulator and beyond

In addition to TRS, the topology of an insulator can
also be protected by crystalline symmetry. These are
called topological crystalline insulator (TCI). As we
have learned, T 2 = −1 plays a crucial role in TI. In a
TCI, this is not required and T 2 = 1 is allowed. That is,
electron spin, as well as spin-orbit coupling, is no longer
essential to the topology.

The crystalline symmetry can be mirror symmetry, ro-
tation symmetry (from 3-fold rotation, 4-fold rotation
etc), or more general types of spatial symmetry. Fu, 2011
studied a tetragonal crystal with 4-fold rotation symme-
try (Fig. 8(a)). His theory is briefly sketched below.

The operator for C4 rotation is U = ei
π
2 Lz , which has

eigenvalues +1,−1,+i, and −i. The TR operator is T =
K for spinless electron, and T 2 = 1. There are 4 special
momenta ki’s in the 3D BZ that are invariant under U
and T (Fig. 8(b)), which play a role similar to the TRIM.

First, since [H(ki), U ] = 0 at the 4 ki’s, energy eigen-
states can be labelled by the eigenvalues of U . Second,
ki’s are invariant under TR,

TH(ki)T
−1 = H(−ki) = H(ki). (1.12)

Together with T−1 = T , this implies that H(ki) must be
real-valued. Thus one can always choose its eigenvalues
to be real. That is, complex eigenvalues +i,−i of U must
appear in pair. This pair of states form a 2D irreducible
real representation, which is similar to a Kramer pair.
For this pair, we have U2 = −1 and (UT )2 = −1.

Define the sewing matrix,

vmn(ki) = 〈um(ki)|UT |un(ki)〉, (1.13)

FIG. 8 (a) Tetragonal lattice with two different atoms in the
unit cell. (b) Four high symmetry points in a BZ. Fig. from
Fu, 2011.

where ki is one of the special momenta. The topological
invariant ν0 is given by,

(−1)ν0 = (−1)ΓM (−1)AZ , (1.14)

where

(−1)νk1k2 = exp

(
i

∫ k2

k1

dk · tr A(k)

)
pf[v(k2)]

pf[v(k1)]
, (1.15)

where A(k) is the non-Abelian Berry connection. The
Z2 integer ν0 is invariant under gauge transformation.
When ν0 = 1, we have a TCI with robust surface state
on the surface that respects the rotation symmetry.

The surface states need to cross each other at ki, sim-
ilar to the SS in a topological insulator. However, some
other aspects of the SS are different. For example, their
energy dispersion near the crossing point is quadratic in
Fu’s example, instead of linear. Also, the number of
Dirac points on a surface can be even, instead of odd.
Note that even though the gapless Dirac point is pro-
tected by the UT symmetry, the rotation symmetry could
be damaged by structural deformation.

In some other TCIs, the TR symmetry can be dis-
pensed with, so that only the crystalline symmetry is at
play. The first experimentally confirmed TCI is SnTe
(Hsieh et al., 2012), which is protected by a mirror sym-
metry.

This discovery opens up a floodgate to topological ma-
terials, since there are hundreds of crystalline symmetry
groups. With the help of the so-called symmetry-based
indicators (Po et al., 2017) or elementary band repre-
sentations (Bradlyn et al., 2017), researchers can search
through the database of materials to find out candidates
of topological materials. See Gibney, 2018, Tang et al.,
2019, and Queiroz and Stern, 2020 for some updates.

A related development is the discovery of higher-
order TCIs. They have conducting SS protected by
topology along edges (2nd order), or corners (3rd order)
of the topological material. Also, see Parameswaran and
Wan, 2017 and the references therein.

The topology in TI and TCI are protected by time-
reversal symmetry and crystalline symmetry. They
belong to a larger class of topological phases called
symmetry-protected topological (SPT) phases.
The famous Haldane phase of odd-integer spin chain
is another example of the SPT phase. It is protected by
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SO(3) spin symmetry. In addition, there are also topolog-
ical phases not related to (and protected by) symmetry,
such as the fractional quantum Hall state.
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