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I. CHARGE POLARIZATION, ANOMALOUS QUANTUM
HALL EFFECT

In addition to the quantum Hall effect, Berry phase
is essential to the calculation of charge polarization. It
could also be a key ingredient in anomalous Hall effect.
We illustrate these connections in this chapter.

A. Modern theory of charge polarization

The electric polarization P of a finite crystal depends
crucially on the charge accumulation near surfaces, and
thus cannot be defined as a bulk property. On the other
hand, for an infinite crystal, the calculation of P, which
is the expectation value of qr, diverges.

For a crystal with periodic boundary condition (PBC),
P is generically not well defined. The reason is that,
in a periodic solid, the electric polarization depends on
one’s choice of the unit cell (see Fig. 1). The theory
of electric polarization in conventional textbooks applies
only to solids consisting of well localized charges, such as
ionic or molecular solids (Clausius-Mossotti theory).
It fails, for example, in a covalent solid with bond charges
such that no natural unit cell can be defined.
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FIG. 1 For an infinite lattice, or a lattice with periodic bound-
ary condition, the polarization is ill-defined. It depends on the
choice of the unit cells.

A crucial observation made by R. Resta is that, even
though the value of P may be ambiguous, its change is
well defined (Resta, 1992). It was soon pointed out by
King-Smith and Vanderbilt that ∆P has a deep connec-
tion with the Berry phase of the Bloch state (King-Smith
and Vanderbilt, 1993).

To illustrate the modern theory of polarization, let’s
consider a one-dimensional (1D) lattice with periodic
boundary condition. There are N lattice points located
at R` = `a (` ∈ Z), and a is the lattice constant. The
Fourier transformation of the Bloch state ψnk = eikxunk
is called the Wannier state,

|nR`〉 =
1√
N

π/a∑
k=−π/a

e−ikR` |ψnk〉, (1.1)

which is localized near a lattice point R`. The Bloch
states form an orthonormal basis,

〈ψn′k′ |ψnk〉 = δnn′δkk′ . (1.2)

Likewise, the Wannier states are also orthonormal to each
other,

〈n′R′|nR〉 = δnn′δRR′ . (1.3)

Like Bloch states,the Wannier states {|nR〉,∀ R} form
a complete set of bases. A crucial difference is that the
former is extended in space, while the latter is localized.
With the Wannier states, one can avoid the problem of
divergence when calculating the electric polarization.

In an insulator, electric polarization can be related to
the charge center of the Wannier function,

P = q
∑

filled n

〈n0|x|n0〉, q = −e (1.4)

=
q

N

∑
n

∑
kk′

〈unk′ |e−ik
′x 1

i

∂

∂k

(
eikx

)
|unk〉 (1.5)

=
q

N

∑
n

∑
kk′

〈unk′ |ei(k−k
′)xi

∂

∂k
|unk〉. (1.6)

Decompose the x-integral as a sum of N unit-cell inte-
grals, and write x = ma+ x̃ (x̃ ∈ [0, a]), it can be shown
that (see Nomura, 2013, p.85)

〈unk′ |ei(k−k
′)xi

∂

∂k
|unk〉 = Nδk,k′〈unk|i

∂

∂k
|unk〉cell (1.7)

= δk,k′〈unk|i
∂

∂k
|unk〉, (1.8)
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FIG. 2 The domain of Bloch momentum k and parameter λ
is similar to a BZ of a two dimensional lattice.

where 〈· · · 〉cell integrates over only one unit cell, and
N〈· · · 〉cell = 〈· · · 〉 is used in the second equation. There-
fore,

P =
q

N

∑
n

∑
k

〈unk|i
∂

∂k
|unk〉 (1.9)

= qa
∑
n

∫ π/a

−π/a

dk

2π
An(k). (1.10)

Under a gauge transformation, |u′nk〉 = eiχnk |unk〉,
where χnk is single-valued (mod 2π), the polarization
contributed from band-n becomes,

P ′n = Pn − qa
χnπ/a − χn−π/a

2π
. (1.11)

Single-valuedness of χnk gives χnk+2π/a = χnk + 2πma
(m ∈ Z), therefore,

P ′n = Pn − qma. (1.12)

The polarization could change by qma under a gauge
transformation. That is, only the fractional part of Pn
(and P ) is gauge invariant.

1. Zak phase

Note that the integral in Eq. (1.10) is nothing but the
Berry phase around the BZ divided by 2π,

P = qa
∑
n

γn
2π
. (1.13)

The Berry phase of 1D Bloch state is first studied by
Zak, 1989 and is called Zak phase. In addition to being
gauge dependent, the value of Zak phase is also coor-
dinate dependent (see Prob. 1), but the relative phases
between energy bands are fixed.

For a 1D lattice with space inversion symmetry, if the
origin is at a symmetric point, then the Zak phase can
only be 0 or π, and Pn can only be 0 or qa/2. This can
be understood as follows: It was shown earlier that if the
lattice has space inversion symmetry, then (see Eq. (??))

An(−k) = −An(k). (1.14)

Therefore, after the inversion,

Pn → P ′n = qa

∫ π/a

−π/a

dk

2π
An(−k) = −Pn. (1.15)

Since Pn is allowed to have the freedom of changing by
qma, the constraint given by the inversion symmetry is

Pn = −Pn mod qa (1.16)

→ Pn = 0 or q
a

2
mod qa. (1.17)

Put it in another way, for a lattice with space-inversion
symmetry, the charge center 〈n0|x|n0〉 in a unit cell can
only be at 0 or a/2. That is, on top of a lattice point or
in the middle between two lattice points.

On the other hand, if there is no inversion symmetry,
then γn (and Pn) can be any value. An experimental
confirmation of the Zak phase with cold atoms can be
found in Atala et al., 2013.

2. Quantized charge pump

Even though Pn is gauge dependent, the change of po-
larization ∆Pn under an adiabatic and continuous defor-
mation is gauge invariant and well-defined. From here
on we consider only one filled band, and use λ to label
the degree of ion displacement (with respect to ions of
opposite charge). It varies from 0 to 1 as the ions shift
adiabatically from an initial position to a final position.

The difference of polarizations between these two
states is,

P (λ2)− P (λ1) = qa

∫ π/a

−π/a

dk

2π
[A(k, λ2)−A(k, λ1)] .

(1.18)
The parameter λ defines a second dimension in addition
to k. We can choose the parallel transport gauge (see
Chap ??), such that along the λ-direction,

〈unk|
∂

∂λ
|unk〉 = 0, (1.19)

then ∆P can be written as a (counter-clockwise) line
integral around the rectangle in Fig. 2,

∆P = − qa
2π

∮
dk ·A(k), k ≡ (k, λ) (1.20)

= − qa
2π

∫
d2kFz(k), (1.21)

where Fz(k) = ∂kAλ − ∂λAk, and Aλ = i〈uk|∂λ|uk〉.
If λ(1) = λ(0), then the rectangle is similar to a BZ,

where opposite edges habor the same states. Therefore,
the integral of the Berry curvature is an integer (×2π),
and

∆P = qaC1. (1.22)



3

δ > 0

δ < 0

FIG. 3 Two different locations of double bonds in trans-
polyacetylene.

That is, under a cyclic parametric variation, the charge
transport is “quantized”. This fact can be utilized
to build a quantized charge pump (Thouless et al.,
1982). However, be aware that even though the quanti-
zation is precise in the adiabatic limit, it is no longer so
if the pumping is fast.

The analysis above is based on one-particle states in
1D. But the same scheme can be extended to real solids
with electronic interactions in three dimensions. An es-
sential alteration is to replace the one-particle states by
the Kohn-Sham orbitals in the density functional
theory (King-Smith and Vanderbilt, 1993).

B. Rice-Mele model

To illustrate the parametric charge pumping, we con-
sider a dimerized 1D lattice (Rice and Mele, 1982),

H =

2N∑
i=1

(
t0 + (−1)iδ

) (
c†i ci+1 + h.c.

)
−

2N∑
i=1

(−1)i∆c†i ci,

(1.23)
where t0 is the hopping amplitude between nearest neigh-
bors, ±δ modulate the hopping strength, ±∆ are the on-
site potentials for staggered sublattices, and c2N+1 = c1
(PBC). The famous Su-Shrieffer-Heeger model (Su
et al., 1979) for polyacetylene is a special case of the
Rice-Mele model with ∆ = 0 (see Fig. 3).

Since the lattice is dimerized, it is convenient to write
ci=2j−1 as cj , ci=2j as dj , and double the size of the unit
cell. The Hamiltonian becomes,

H =

N∑
j=1

t−

(
c†jdj + h.c.

)
+

N∑
j=1

∆c†jcj (1.24)

+

N∑
j=1

t+

(
c†j+1dj + h.c.

)
−

N∑
j=1

∆d†jdj ,

where t± ≡ t0 ± δ. Expand cj and dj ,

cj =
1√
N

∑
k

eijakck, (1.25)

dj =
1√
N

∑
k

eijakdk, (1.26)

where N is the total number of unit cells, and a is the
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FIG. 4 (a) The trajectory of h(k) evolves in the order of 1, 2,
3, 4, when t = 0, T/4, T/2, 3T/4. (b) The evolution of electric
polarization for the 4 steps in (a).

lattice constant, then

H =
∑
k

(c†k, d
†
k)

(
∆ t− + t+e

−iak

t− + t+e
+iak −∆

)(
ck
dk

)
=
∑
k

(c†k, d
†
k)H(k)

(
ck
dk

)
. (1.27)

One can write H(k) = h(k) · σ, in which

h(k) = (t− + t+ cos ka, t+ sin ka,∆) . (1.28)

The band energies are

ε±(k) = ±
(

∆2 + 4t20 cos2 ka

2
+ 4δ2 sin2 ka

2

)1/2

.

(1.29)
The two energy bands touch at (ka, δ,∆) = (±π, 0, 0).

Note that the Hamiltonian H has the same structure as
the one for the spin-1/2 system in Eq. (??). h(k) plays
the role of the magnetic field, and the two sublattices
play the roles of the spin up/down degrees of freedom.
Therefore, the Berry phase due to variation of parameters
equals half of the solid angle extended by a closed path
in the h-space.

First, consider the SSH model with ∆ = 0: If t+ > t−
(i.e. δ > 0), then when k runs across the first BZ, the
trajectory of h encircles the origin (path-1 in Fig. 4(a)).
On the other hand, if t+ < t− (δ < 0), then h follows
path-3 that does not encircle the origin. Hence, the Berry
phases for paths 1, 3 are π, 0 respectively. They indicate
two different topological phases.

We now consider a cyclic variation,

(δ(t),∆(t)) =

(
δ0 cos 2π

t

T
,∆0 sin 2π

t

T

)
. (1.30)

When t evolves through a period T , h(k) (k ∈ [0, 2π/a])
traverses paths 1, 2, 3, 4 and back to 1 in Fig. 4(a). After
a full cycle, the polarization P = qaγ/2π changes by qa
(mod qa), and a quantized charge q could be transported
with a distance a (Fig. 4(b)). Experimental confirma-
tions of the charge pumping related to the Rice-Mele
model can be found in Lohse et al., 2015, and Nakajima
et al., 2016.
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FIG. 5 Distribution of h(k) vectors in the BZ. Only the signs
of hz(k) are shown.

C. Qi-Wu-Zhang model

In this section, we introduce a simple 2D model pro-
posed by Qi, Wu and Zhang to illustrate the connection
between Berry phase and quantized Hall conductivity (Qi
et al., 2006). The fermions are living on a 2D square lat-
tice, and each lattice point is allowed to have two degrees
of freedom (quasi-spin). The quasi-spin refers to the va-
lence band with p-orbitals and the conduction band with
s-orbitals. The QWZ Hamiltonian is given as,

H(k) = H0 + Hm + Hhy, (1.31)

H0 = ε0(k) +

t

(
2− cos kxa− cos kya 0

0 −(2− cos kxa− cos kya)

)
,

Hm = m

(
1 0
0 −1

)
,

Hhy = λ

(
0 sin kxa− i sin kya

sin kxa+ i sin kya 0

)
.

Hm is a mass term that opens an energy gap, and Hhy is
the hybridization between s- and p-orbitals.

In short,

H(k) = ε0(k) + h(k) · σ, (1.32)

where

h(k) =

λ sin kxa, λ sin kya,m+ t

2∑
j=1

(1− cos kja)

 .

(1.33)
The eigen-energies are,

ε±(k) = ε0(k)± |h(k)|. (1.34)

For simplification, we will set t, a = 1. It is not difficult

h(k)

dkx

dky

d2S

T2

h

BZ

dΩ

S1
2

FIG. 6 Mapping a small area d2k in the 2D BZ to a small
area d2S on the surface of h(k). Its solid angle dΩ is equal to

the area of ĥ · d2S projected on a unit sphere S2
1 .

to see that,

k0 = 0→ ε±(k0) = ε0 ±m, (1.35)

k0 = (π, 0), (0, π)→ ε±(k0) = ε0 ± |m+ 2|,(1.36)

k0 = (π, π)→ ε±(k0) = ε0 ± |m+ 4|. (1.37)

The energy gap closes at m = 0,−2, and −4. We will see
that the topology of the Bloch states changes at these
critical points, when the energy gap closes.

The distribution of the h(k) vectors in the BZ changes
when an energy gap closes, see Fig. 5. Depending on the
value of m, there are four different regimes:
1) m > 0 : hz(k) > 0 over the whole BZ.
2) −2 < m < 0 : hz(k) < 0 near k = 0.
3) −4 < m < −2 : hz(k) > 0 near k = (π, π) (and its
equivalent points).
4) m < −4 : Hz(k) < 0 over the whole BZ.

The h in Eq. (1.32) is the “magnetic field” for the
quasi-spin. In case (1), the magnetic field only sweeps
over the northern hemisphere when k scans over the BZ.
According to the analysis in ??, we need only one gauge
AN (k) for the whole BZ. Therefore, the topology is ex-
pected to be trivial and the Hall conductivity σH = 0.

In cases (2) and (3), hz changes sign, so that h sweeps
through the whole sphere, and two gauges, AN and AS

are required to avoid the singularity. Therefore the topol-
ogy is non-trivial and σH 6= 0.

Case (4) is similar to Case (1), but h sweeps over the
southern hemisphere only. The topology is again trivial
and σH = 0.

The simple picture presented above can be verified by
actual calculation of σH . First, we show that (Nomura,
2013)

F±z (k) = ∓ 1

2h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.38)
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Pf: The Berry connections in k-space are,

A±` (k) = i〈h,±| ∂
∂k`
|h,±〉 (1.39)

=
∂hα
∂k`

i〈h,±| ∂
∂hα
|h,±〉 (1.40)

=
∂hα
∂k`

a±α (h), (1.41)

where a± are the Berry connections in h-space. There-
fore, the Berry curvatures in k-space are,

F±z (k) =
∂A±y
∂kx

− ∂A±x
∂ky

(1.42)

=
∂

∂kx

(
∂hβ
∂ky

a±β

)
− ∂

∂ky

(
∂hα
∂kx

a±α

)
(1.43)

=
∂hα
∂kx

∂hβ
∂ky

(
∂a±β
∂hα

− ∂a±α
∂hβ

)
(1.44)

=
∂hα
∂kx

∂hβ
∂ky

εαβγf
±
γ (1.45)

= ∓ 1

2h3
h · ∂h

∂kx
× ∂h

∂ky
, (1.46)

in which f±γ = ∓hγ/2h3 are the Berry curvatures in h-
space. End of proof.

Suppose the lower band is completely filled, and the
upper band is empty, then

σH =
e2

h

1

2π

∫
BZ

d2kF−z (k) (1.47)

=
e2

h

1

4π

∫
BZ

d2k
1

h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.48)

In the integrand, ĥ ·
(
∂h
∂kx

dkx

)
×
(
∂h
∂ky

dky

)
is actually

the area ĥ · d2S on the h-surface in Fig. 6. After being
divided by h2, it becomes the solid angle dΩ extended by
that area. Since the BZ is a closed surface (a 2D torus,
or T 2), under a continuous mapping, it would map to a
closed surface in h-space (see Fig. 7). The integral in
Eq. (1.48) gives the total solid angle extended by that
h-surface. For a closed surface, it must be an integer
multiple of 4π, thus

σH = w
e2

h
,w ∈ Z. (1.49)

The integer w, which is equal to the first Chern num-
ber C1, is the number of times the h-surface wraps over
a unit sphere S2

1 . It characterizes the topology of the
mapping (and the Bloch states) and is called the wind-
ing number (or wrapping number). We emphasize that
w is an integer only if the base space is a close surface
(in this case, T 2), which requires the valence band to be
completely filled (that is, an insulator).

The quantized Hall conductance in the QWZ model is
a result of the “magnetization” m, not an external mag-
netic field (as in the case of the quantum Hall effect). It

FIG. 7 The line segment kx ∈ [−π, π] in a BZ would map to
a closed loop in h-space. As one sweeps the line segment from
ky = −π to ky = 0, the loop in h-space sweeps out a torus-
like structure, as shown in the figures. Further advancement
of ky from 0 to π would map out another half of the torus
(not shown for the sake of clarity). The winding number w
depends on whether the origin is enclosed in the torus-like
structure or not. In (a) and (d) (for m < −4 and m > 0),
the origin is outside of the surface, so w=0. In (b) and (c)
(for m = −3 and m = −1), the winding numbers are −1 and
+1 respectively (not easily seen, though). [These figures are
from Asbóth et al., 2013]

is called alternatively as the quantum anomalous Hall
effect (QAHE). Their difference is that, in the QHE, the
electron orbitals are quantized due to the external mag-
netic field; in the QAHE there is no orbital quantization,
but only spin re-orientation due to m. A recent confir-
mation of the QAHE can be found in Chang et al., 2013.

One could apply an external magnetic field to the QAH
insulator (aka Chern insulator). Then there will be
orbital quantization and Landau levels in energy spec-
trum. Interested readers can consult p. 103 of Bernevig
and Hughes, 2013 for more details.

D. Edge state in the Qi-Wu-Zhang model

Topological materials (insulators) have an important
property: their surface states are stable against perturba-
tions. They can be destroyed only if the energy gap of the
bulk bands closes so that the topology of the electronic
states is trivialized. In general, the interface between two
materials with different topologies would have robust in-
terface states. A heuristic explanation is as follows: to
go from one material to another, the spatial-dependent
energy gap (in the sense of the Thomas-Fermi approx-
imation) needs to close near the interface, otherwise it
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FIG. 8 (a) A topological phase occupies the left side of the
space. (b) A finite sample with two boundaries. The edge
states move in a definite direction along an edge.

is simply impossible for the topology to change. This
gapless region is where the surface states reside.

Take the 2D QWZ model as an example. Divide the
space to two parts where

m(x)

{
> 0 for x > 0,
< 0 for x < 0,

(1.50)

so that there is a 1D boundary along the y-axis (see
Fig. 8(a)). For simplicity, consider only the small k limit,

H(k) = ε0 +

(
m λ(kx − iky)

λ(kx + iky) −m

)
+O(k2).

(1.51)
The exact profile of m(x) does not matter, as long as
it is monotonic and smooth (compared to the electron
wavelength λ). To solve for the surface states, one needs
to re-quantize the Hamiltonian using the substitution
k→ 1

i
∂
∂r , such that

H(p) = ε0 +

 m(x) λ
(

1
i
∂
∂x −

∂
∂y

)
λ
(

1
i
∂
∂x + ∂

∂y

)
−m(x)

 . (1.52)

The x-directions extend to infinity on both ends, and
PBC is imposed along the y-direction.

We now solve the differential equation,

H(p)ψ(x, y) = εψ(x, y). (1.53)

Use the method of separation of variables and write

ψ(x, y) = φ1(x)φ2(y). (1.54)

Since the y-direction is invariant under translation, a
trivial solution is φ2(y) = eikyy, a plane wave. There-
fore, the equation for φ1(x) is,(

m(x) λ
i

(
∂
∂x + ky

)
λ
i

(
∂
∂x − ky

)
−m(x)

)
φ1(x) = εe(ky)φ1(x).

(1.55)
We can take a guess at a solution that is localized near
the boundary,

φ1(x) = e−
1
λ

∫ x
0
dx′m(x′)

(
a
b

)
. (1.56)

It can be verified as an eigenstate with eigenvalue
εe(ky) = λky if (a, b) = (1, i). Furthermore, it decays
to zero at x� 0 and x� 0, and has a peak at x = 0.

On the other hand, if

m(x)

{
> 0 for x < 0,
< 0 for x > 0,

(1.57)

then

φ1(x) = e
1
λ

∫ x
0
dx′m(x′)

(
1
−i

)
. (1.58)

is a localized eigenstate with εe(ky) = −λky.
Therefore, in a sample with finite width (see

Fig. 8(b)), the electrons on the right edge move with
velocity 1

~
∂εe
∂ky

= λ/~; the ones on the left move with

velocity −λ/~. They are called chiral edge states. The
two edges can be treated as independent only if the strip
is wide enough (compared to the decay length of the edge
state) so that the edge states on two sides do not couple
with each other. In the small ky limit, the energy disper-
sion εe(ky) of the edge states are linear in ky. This is not
so for larger ky’s, where numerical calculation is required.

Exercise
1. The value of Zak phase depends on the choice of the
origin. Under a shift of the origin,

ψk(x)→ ψ′k(x) = ψk(x− d). (1.59)

This leads to

uk(x)→ u′k(x) = uk(x− d)e−ikd. (1.60)

Show that

γ → γ′ = γ + 2π
d

a
, (1.61)

where a is the lattice constant.
2. The h(k) of SSH model traces out a loop in the h-
space when k runs through the first Brillouin zone.
(a) Show that the following expression gives the winding
number of the loop around the origin,

w =
1

2π

∫
BZ

dk
1

h2
ẑ · h× dh

dk
. (1.62)

(b) The SSH Hamiltonian can be written as,

H(k) =

(
0 Q(k)

Q∗(k) 0

)
. (1.63)

Find out Q(k) and show that the following expression
also gives the winding number of h(k) around the origin,

w =
i

2π

∫
BZ

dk
d

dk
lnQ(k). (1.64)

3. Assume a SSH chain has two domains: δ(x) = −δ0 < 0
for x� 0, δ(x) = δ0 for x� 0, and δ(x) varies smoothly
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and monotonically from −δ0 to δ0 in between. We will
find out a localized state that is trapped in this domain
wall.
(a) The low-energy states are located near ka = ±π.
Write k as π/a + q, and expand H(k) to linear order in
q. This is the Hamiltonian in the continuum limit.
(b) Replace q with (1/i)∂/∂x to requantized the H in (a),
and find out the eigenstate ψ0(x) with zero energy.
Note: This problem is first studied in Jackiw and Rebbi,
1976. A recent experimental study can be found in Meier
et al., 2016.
4. In Prob. 3 of Chap 2, we derived the effective Hamil-
tonian of an electron moving in a non-uniform magnetic
field B(r, t) = B0m̂(r, t),[

1

2m
(p− ~An)

2
+ ~Vn + εn

]
ψn = i~

∂ψn
∂t

, (1.65)

where Vn and An can be found there.
(a) Show that an electron with spin up/down feels an
effective electromagnetic field,

Ẽα = ∓1

2
m̂ · ∂m̂

∂rα
× ∂m̂

∂t
, (1.66)

B̃γ = ∓1

4
εαβγm̂ ·

∂m̂

∂rα
× ∂m̂

∂rβ
. (1.67)

As a result, an electron with velocity v is subject to a
force ~(Ẽ + v × B̃).
(b) A magnetic skyrmion is a topological spin texture
in magnetic materials. Because of the exchange inter-
action, the spin texture has an effective magnetic field
that can be identified with the B(r, t)-field above. Show
that a skyrmion moving rigidly (without change of shape)
with velocity vs generates an effective electric field that
is transverse to the direction of motion,

Ẽ = −vs × B̃, (1.68)

where B̃ is the effective magnetic field of a static
skyrmion.
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