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I. BERRY CURVATURE OF BLOCH STATES

A. Basics of Bloch state

For a perfect crystal with discrete translation symme-
try, the Hamiltonian is

H =
p2

2m
+ VL(r), with VL(r+R) = VL(r), (1.1)

in which VL(r) is the potential of the atomic lattice, and
R is a lattice translation vector. Define a lattice
translation operator TR that acts on electronic states
as follows,

TRψ(r) = ψ(r+R). (1.2)

It can be shown that, because H has the translation sym-
metry,

TRH(r)ψ(r) = H(r)TRψ(r). (1.3)

That is, [TR, H] = 0.
Because TR commutes with H(r), one can find their

simultaneous eigenstates,

Hψ = εψ, (1.4)

TRψ = cRψ, (1.5)

where ε and cR are eigenvalues of H and TR, and |cR| =
1. Furthermore, successive translations satisfy

TRTR′ = TR′TR = TR+R′ . (1.6)

This leads to

cRcR′ = cR′cR = cR+R′ . (1.7)

To satisfy these equations, cR needs to be an exponential,
cR = eik·R. Therefore,

Hψεk = εψεk, (1.8)

TRψεk = eik·Rψεk. (1.9)

The simultaneous eigenstate ofH and TR is called Bloch
state.
If one writes the Bloch state in the following form,

ψεk(r) = eik·ruεk(r), (1.10)

then Eq. (1.9) gives

uεk(r+R) = uεk(r). (1.11)

That is, a Bloch state is a plane wave times a cell-
periodic function uεk(r). The latter contains, in one
unit cell, all information of the Bloch state ψεk.
The Schrödinger equation for uεk is,

H̃k(r)uεk = εuεk, (1.12)

in which

H̃k(r) ≡ e−ik·rH(r)eik·r (1.13)

=
1

2m
(p+ ℏk)2 + VL(r). (1.14)

Since uεk can be restricted to one unit cell (with periodic
boundary condition), we expect it to have discrete energy
eigenvalues εn (n ∈ Z+) for each k, and write

H̃k(r)unk = εnkunk. (1.15)

The quantum numbers n and k are called band index
and Bloch momentum, and εnk are the energy disper-
sions of Bloch bands.
The Bloch state ψnk translates under R as (see

Eq. (1.9)),

ψnk(r+R) = eik·Rψnk(r). (1.16)

If one shifts the momentum k by a reciprocal lattice
vector G, then since eiG·R = 1 (for any R),

ψnk+G(r+R) = eik·Rψnk+G(r). (1.17)

Since the two Bloch states ψnk and ψnk+G satisfy the
same Schrödinger equation (with εnk = εnk+G) and the
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same boundary condition (Eqs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor ϕ(k). For convenience, one can choose the peri-
odic gauge with ϕ(k) = 0, ψnk+G = ψnk. Note that
for a quantum phase with non-trivial topology (such as
the quantum Hall state), one can no longer set ϕ(k) = 0
for all k. This is called topological obstruction (see
Chap. I). In any case, ψnk (or unk) in the first Brillouin
zone should contain enough information of the electronic
state.

The Bloch momentum plays the role of the slowly vary-
ing parameter, so the Berry connection for band-n is

An(k) = i⟨unk|
∂

∂k
|unk⟩. (1.18)

The Berry curvature is

Fn(k) = ∇k ×An(k) (1.19)

= i⟨∂unk
∂k

| × |∂unk
∂k

⟩. (1.20)

Under time reversal, the Bloch states transform as

ψnk → Θψnk = ψ∗
nk. (1.21)

The transformed cell-periodic functions satisfy[
(p− ℏk)2

2m
+ VL(r)

]
u∗nk = εnku

∗
nk. (1.22)

If the system has time-reversal symmetry, then the
Schrödinger equation has to be invariant under the trans-
formation. This shows that

unk(r) → Θunk(r) = u∗n−k(r). (1.23)

Therefore,

An(k) → i⟨u∗n−k|
∂

∂k
|u∗n−k⟩ (1.24)

= −i⟨un−k|
∂

∂k
|un−k⟩ = An(−k)

Fn(k) → ∇k ×An(−k) = −Fn(−k) (1.25)

Similarly, if the crystal has space-inversion symmetry,
then under the transformation,

unk(r) → un−k(−r). (1.26)

It follows that

An(k) → i⟨un−k|
∂

∂k
|un−k⟩ = −An(−k), (1.27)

Fn(k) → ∇k × [−An(−k)] = Fn(−k). (1.28)

Therefore, if a crystal has both symmetries (and if the
energy level is not degenerate), then Fn(k) = 0 for all
k, and one does not need to worry about the Berry cur-
vature. Note: One-dimensional system is an exception.
There can be Berry phase even if the system has both
symmetries (more in next Lect).

B. Electric response of Bloch state

If the Berry curvature does exist, then it could influ-
ence the electron transport. For example, under an elec-
tric field E, the velocity of an electron in Bloch state ψnk

is

vn(k) =
1

ℏ
∂εnk
∂k

+
e

ℏ
E× Fn(k). (1.29)

This expression is valid if the electric field is weak so
that inter-band transitions can be ignored. That is, an
electron stays in the same energy band. This is called
one-band approximation, which is the same as the
adiabatic approximation.
Pf: Choose a time-dependent gauge for the electric field,
E = −∂A/∂t, A = −Et, then the Hamiltonian becomes,

H̃E
k0

=
(p+ ℏk0 − eEt)2

2m
+ VL(r) = H̃k(t), (1.30)

where k(t) = k0 − eEt/ℏ. For a weak field, to the zeroth
order adiabatic approximation, one only needs to replace
|unk⟩ with |unk(t)⟩, and

H̃k(t)|unk(t)⟩ = εnk(t)|unk(t)⟩. (1.31)

To the first-order (see Prob. 1),

|u(1)nk⟩ = |unk⟩ − iℏ
∑

n′ (̸=n)

|un′k⟩⟨un′k| ∂∂t |unk⟩
εnk − εn′k

, (1.32)

in which all of the k’s are k(t)’s. Note that since

⟨unk|u(1)nk⟩ = 1, an electron stays at the same energy level
to this order.
To the first order, the velocity

vn(k) = ⟨ψ(1)
nk |

p

m
|ψ(1)

nk ⟩ (1.33)

= ⟨u(1)nk |
p+ ℏk
m

|u(1)nk⟩ (1.34)

= ⟨u(1)nk |
∂H̃k

ℏ∂k
|u(1)nk⟩. (1.35)

Substitute Eqs. (1.32) into (1.35), one will get

vn(k) = ⟨unk|
∂H̃k

ℏ∂k
|unk⟩ (1.36)

− i
∑

n′( ̸=n)

(
⟨unk|∂H̃k

∂k |un′k⟩⟨un′k|∂unk

∂t ⟩
εnk − εn′k

− c.c.

)
.

Before proceeding further, some identities are required.
First, starting from

⟨unk|un′k⟩ = δnn′ , (1.37)

take the derivative ∂/∂k to get

⟨∂unk
∂k

|un′k⟩ = −⟨unk|
∂un′k

∂k
⟩. (1.38)
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FIG. 1 The dependence of Hall resistivity (in red) on mag-
netic field shows quantized plateaus at ρxy = h/(ie2), where
i is an integer. The resistivity at plateaus can be determined
with very high precision. Thus, in 1990, h/e2 is defined to be
25.812807 kΩ.

Second, from the equation,

⟨unk|H̃k|un′k⟩ = εnkδnn′ , (1.39)

take the derivative ∂/∂k to get

⟨unk|
∂H̃k

∂k
|un′k⟩ = (εnk − εn′k) ⟨

∂unk
∂k

|un′k⟩

+
∂εnk
ℏ∂k

δnn′ . (1.40)

With the help of Eqs. (1.38) and (1.40), the velocity
can be written as,

vn(k)

=
∂εnk
ℏ∂k

− i

(〈
∂unk
∂k

|∂unk
∂t

〉
−
〈
∂unk
∂t

|∂unk
∂k

〉)
(1.41)

=
∂εnk
ℏ∂k

− k̇× Fn. (1.42)

Since k̇ = −(e/ℏ)E, the second term is (e/ℏ)E × Fn.
QED.

The velocity that depends on the Berry curvature is
perpendicular to the direction of the applied E field. It
first appeared in the study of anomalous Hall effect
in Karplus and Luttinger, 1954, although not in the lan-
guage of Berry curvature. This velocity proportional to
the Berry curvature is sometimes called anomalous ve-
locity.

Under the one-band approximation, Eq. (1.42) remains
valid in the presence of a magnetic field B, but its deriva-
tion is not as easy. The semiclassical equations of
motion for an electron in band-n are,{

ṙ =
∂εmnk

ℏ∂k − k̇× Fn,

ℏk̇ = −eE− eṙ×B.
(1.43)

in which εmnk = εnk −mn(k) ·B is the energy shifted by
magnetic moment mn(k) (Chang and Niu, 1996; Sun-
daram and Niu, 1999).

C. Quantum Hall effect

The anomalous velocity plays a key role in the theory of
Quantum Hall effect (QHE) and Quantum anoma-
lous Hall effect (QAHE). We discuss the former in this
section, and the latter in a later Lecture. For an early
history regarding the discovery of the classical Hall effect,
see Leadstone, 1979.
Consider a 2D electron gas (2DEG) lying on the x-y

plane, such as the 2DEG in MOSFET, semiconductor
heterojunction, graphene, or other 2D materials. Un-
der a strong magnetic field Bẑ, the Landau levels of the
2DEG usually have non-zero Chern numbers. With a
Berry curvature Fz along z-direction, the current den-
sity along x-direction is,

Jx = − e

L2

∑
nk

f(εnk)vnx(k) (1.44)

= − e

L2

∑
nk

f(εnk)
∂εnk
ℏ∂kx

(1.45)

− e2

ℏ
∑
n

1

L2

∑
k

f(εnk)Fnz(k)Ey, (1.46)

where L2 is the area of the 2DEG, and f(εnk) is the
Fermi-Dirac distribution function. The first term is the
current density in equilibrium, which is obviously zero.
The second term contributes to the Hall current.
Note that the magnetic field B in Eq. (1.43) does not

appear in this calculation, since it is responsible for the
generation of the Landau levels and has been accounted
for.
At temperature T = 0, if N energy bands (Landau

sub-bands, to be precise) are filled, then the Hall con-
ductivity is,

σxy = −e
2

ℏ
1

L2

∑
n,k

Fnz(k) (1.47)

= −e
2

h

N∑
n=1

(
1

2π

∫
BZ

d2kFnz(k)

)
. (1.48)

The integral over the Brillouin zone inside the parenthesis
is an integer (see Eq. (1.61)). It is a topological quantity
(Thouless et al., 1982) called the first Chern number,

C
(n)
1 =

1

2π

∫
BZ

d2kFnz(k) ∈ Z. (1.49)

Therefore, an insulator with N filled bands would have

a quantized quantum Hall conductance (
∑N

n=1 C
(n)
1 )e2/h

(Fig. 1), independent of the details of energy bands.
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FIG. 2 (a) Gauge-N has a string of singularity along −z-axis.
(b) An atlas with two patches of gauge is singularity-free.

The quantum Hall effect is first discovered accidentally
by Klitzing et al., 1980 in 2DEG. It has henceforth been
observed in two-dimensional materials such as graphene
and WSe2 (a Transition Metal Dichalcogenide), among
others. In order to have the QHE or the QAHE, the
system has to be two-dimensional, since the topological
Chern number is defined only in even dimensions. Also,
the time-reversal symmetry needs to be broken, either
by magnetic field or by magnetization. Finally, there
has to be energy bands with nonzero Chern numbers
that are completely filled. In practice, we usually need
a low-temperature environment to avoid thermal excita-
tions across the energy gap, and a high magnetic field
to enlarge the energy gap (again to avoid thermal exci-
tations). If the gap energy is much larger than thermal
energy, then it is possible to have a room-temperature
QHE (Novoselov et al., 2007).

D. Gauge choice of Bloch state

Before discussing the gauge choice of Bloch state, let
us look back at a simpler example: the spin-1/2 system
in ??. Recall that there are two types of basis:
|n̂,±⟩ in Eq. (??), which have the ϕ-ambiguity at θ = π;
|n̂,±⟩′ = e∓iϕ|n̂,±⟩, which have the ϕ-ambiguity at θ =
0.

The Berry connection of the first basis is

AN
± (B) = ∓ 1

2B

1− cos θ

sin θ
êϕ. (1.50)

It is singular along the axis of θ = π (see Fig. 2(a)),
because of the ϕ-ambiguity mentioned above. However,

the Berry curvature F± = ∓ 1
2

B̂
B2 is well behaved along

θ = π.
On the other band, the Berry connection for the second

basis is

AS
±(B) = ± 1

2B

1 + cos θ

sin θ
êϕ. (1.51)

It is singular along the axis of θ = 0. Both AN
± and AS

±
have the same Berry curvature F±.

In Fig. 2(a), we see a loop C1 near the north pole, and
a loop C2 near the south pole. The area inside C1 is
designated as S1; the area outside is S̄1. Similarly the
area inside C2 is S2, outside is S̄2. It is not difficult to
see that,∮

C2

dℓ ·AN
± =

∫
S̄2

d2a · F± ̸=
∫
S2

d2a · F±. (1.52)

The LHS approaches 2π as C2 shrinks to zero; while the
last integral approaches 0. The inequalities arise because
the Stokes theorem fails if A is singular in the domain of
surface integration. That is, to ensure the validity of the
Stokes theorem, the area of integration cannot contain
singular points. That is why we need to choose S̄2 for
the loop C2.
It is possible to remove the string of singularity if both

types of gauges are used (Wu and Yang, 1975): people
living on the northern hemisphere uses gauge-N , while
people living on the southern hemisphere uses gauge-S
(see Fig. 2(b)). So both tribes of people feel no singu-
larity. However, they need to switch gauges near the
equator with the gauge transformation,

AS
±(B) = AN

± (B)± ∂ϕ

∂B
. (1.53)

In this case, the Stokes theorem can be applied for an
integration over the whole sphere,∫

S2

d2a · F±

=

∫
SN

d2a · ∇ ×AN
± +

∫
SS

d2a · ∇ ×AS
± (1.54)

=

∮
Cϵ

dℓ ·AN
± +

∮
C−ϵ

dk ·AS
± (1.55)

=

∮
C0

dℓ ·
(
AN

± −AS
±
)

(1.56)

= ∓
∮
C0

dℓ · ∂ϕ
∂B

= ∓2π. (1.57)

In the line integrals, C±ϵ are loops near the equator at
angles θ = π/2± ϵ, and C0 is the equator with the same
orientation as Cϵ.
Like the spin-1/2 system, the quantum Hall system

also has non-trivial topology, and their Bloch states
have similar non-trivial gauge structure. What is spe-
cial about the QH Bloch state is that there exist nodal
points in the BZ, where unki

= 0. Similar to the south
pole in Fig. 2(a), the phase is ambiguous at ki, and the
Berry connection An(k) is singular there (see Fig. 3(a)).
Assume there is only one singular point, then the line in-
tegral of An(k) around a small loop C enclosing k1 (and
divided by 2π) equals the first Chern number (similar
to the loop C2 in Fig. 2(a)). It is sometimes called the
vorticity of the singular point.
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FIG. 3 (a) Gauge-I has a singularity at the red dot on the
right side of the BZ. (b) An atlas with two patches of gauge
is singularity-free. Gauge-I has a singularity on the right;
gauge-II has one on the left.

Similarly, the singularity can be removed with multiple
patches of gauge (Kohmoto, 1985): If uInk are eigenstates
of the Schrödinger equation, then

uIInk = eiχnkuInk (1.58)

are also eigenstates. The phase factor eiχnk needs to be
a single-valued function in k, but is otherwise arbitrary.
Their Berry connections are related by

AII
n (k) = AI

n(k)−
∂χn(k)

∂k
. (1.59)

Assume gauge-I has a singularity on the right of the
BZ; gauge-II has a singularity on the left of the BZ (see
Fig. 3(b)). Then we can adopt gauge-I on the left side,
and gauge-II on the right side, so that there is no sin-
gularity throughout the whole BZ. Again when crossing
the boundary C between different patches, one needs to
switch gauges using Eq. (1.59). The single-valuedness of
χk along the boundary would guarantee that the Berry
curvature integrated over the whole BZ (and divided by
2π) is an integer value C1 times 2π,∫

BZ

d2k · Fn

=

∫
left

d2k · ∇ ×AI
n +

∫
right

d2k · ∇ ×AII
n

=

∮
C

dk ·
(
AI

n −AII
n

)
(1.60)

=

∮
C

dk · ∂χn

∂k
= 2π × integer. (1.61)

If there are multiple singularities for a single gauge, than
more patches need be used, but the procedure remains
essentially the same.

In addition to the two gauge choices above, one can
also fix the phase of the Bloch state using the parallel
transport gauge (see Thouless, 1984):〈

ukx0

∣∣∣∣ ∂∂kx
∣∣∣∣ukx0

〉
= 0, (1.62)〈

ukxky

∣∣∣∣ ∂∂ky
∣∣∣∣ukxky

〉
= 0. (1.63)

kx

ky BZ

FIG. 4 Paths of parallel transport are indicated by lines with
arrows.

The first equation defines the phase of the states (of a
band n) on the kx-axis; the second equation defines the
phase along a line with fixed kx (see Fig. 4). As a result,
the phases of any two states in the BZ have a definite
relation. Be aware that the phases defined by the parallel
transport gauge are not necessarily single-valued.
The states on opposite sides of the BZ boundaries

represent the same physical state. Therefore, they can
only differ by a k-dependent phase factor. Following
Eqs. (1.62) and (1.63), we can choose

ukx+gx,ky
= ukxky

, (1.64)

ukx,ky+gy = eiδ(kx)ukxky
, (1.65)

where gx and gy are the basis of reciprocal lattice vec-
tors. That is, the states on the opposite sides of the ver-
tical boundaries have the same phase. The same cannot
also be true for the horizontal boundaries, otherwise the
topology will be too trivial to accommodate the quantum
Hall conductivity.

Periodicity of the BZ requires that

δ(kx + gx) = δ(kx) + 2π × integer. (1.66)

In order for the integral (1/2π)
∮
∂BZ

dk ·A(k) (which is
nonzero only along the upper horizontal boundary) to give
the Hall conductivity C1h/e

2, the integer in Eq. (1.66)
obviously has to be equal to C1.

Following the periodicity condition in Eq. (1.66), one
can choose the phase to be,

δ(kx) = δ̃(kx) + C1kxa1, (1.67)

where δ̃(kx+ gx) = δ̃(kx) is periodic in kx, but otherwise
remains arbitrary, a1 is a lattice constant.

In summary, when the Bloch states have non-trivial
topology, the phases of the Bloch states cannot be
defined uniquely and smoothly over the whole BZ. There
are either points of phase ambiguity, or lines where
phases are not single-valued, so that the vorticity of the
whole BZ can be non-zero (Soluyanov and Vanderbilt,
2012). This is the topological obstruction mentioned
earlier.
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Exercise
1. To derive Eq. (1.32), first write

|Ψ(t)⟩ =
∑
m

eiγm(t)e−
i
ℏ
∫ t
0
dt′εmk(t′)am(t)|umk⟩

=
∑
m

e−
i
ℏ
∫ t
0
dt′εmk(t′)am(t)|ũmk⟩, (1.68)

in which am(t) vary slowly with time. This is a multi-
level generalization of Eq. (??) in Chap 2. Recall that
|ũmk⟩ ≡ eiγm(t)|umk⟩ satisfies the parallel transport con-
dition (see Prob. 2.1),

⟨ũmk|
∂

∂t
|ũmk⟩ = 0. (1.69)

(a) Use the Schrödinger equation H|Ψ(t)⟩ = i∂|Ψ(t)⟩/∂t
and show that,

dam(t)

dt
= −e− i

ℏ
∫ t
0
dt′(εnk−εmk)⟨ũmk|

∂

∂t
|ũnk⟩. (1.70)

(b) Assume the exponential factor oscillates much faster
than the bracket, so that the latter can be treated as
static. Integrate the equation above to get Eq. (1.32).
Note: If the non-integrable phases γm(t) are not involved
in a dynamical process, then they can be ignored and
|ũmk⟩ are simplified as |umk⟩.
Ref: Appendix of Xiao et al., 2010.

2. Under the one-band approximation, the effective
Lagrangian of a Bloch wavepacket in an external elec-
tromagnetic field can be obtained by using the time-
dependent variational principle. Here we merely take the
effective Lagrangian as the starting point for subsequent
derivations:

L(r,k; ṙ, k̇) (1.71)

= ℏk · ṙ+ ℏk̇ ·A(k)− eṙ ·Ae(r) + eϕe − εm(r,k),

where A(k) is the Berry connection, ϕe(r) and Ae(r) are
the electromagnetic potentials, and εm = ε(k)−m(k)·B.

Treating both r and k as generalized coordinates, using
the Euler-Lagrange equation to derive the equations of

motion,

ℏk̇ = −eE− eṙ×B, (1.72)

ℏṙ =
∂εm

∂k
− ℏk̇× F, (1.73)

where B = ∇r ×Ae(r), and F = ∇k ×A(k).
For simplicity, assume that the electron is moving

in the xy-plane and the magnetic field is along the z-
direction. It would not be difficult to see that the equa-
tions of motion remain valid in more general situations.

REFERENCES

Chang, Ming-Che, and Qian Niu (1996), “Berry phase, hyper-
orbits, and the hofstadter spectrum: Semiclassical dynam-
ics in magnetic bloch bands,” Phys. Rev. B 53, 7010–7023.

Karplus, Robert, and J. M. Luttinger (1954), “Hall effect in
ferromagnetics,” Phys. Rev. 95, 1154–1160.

Klitzing, K v, G. Dorda, and M. Pepper (1980), “New method
for high-accuracy determination of the fine-structure con-
stant based on quantized hall resistance,” Phys. Rev. Lett.
45, 494–497.

Kohmoto, Mahito (1985), “Topological invariant and the
quantization of the hall conductance,” Annals of Physics
160 (2), 343–354.

Leadstone, G S (1979), “The discovery of the hall effect,”
Phys. Educ. 14 (6), 374–379.

Novoselov, K S, Z. Jiang, Y. Zhang, S. V. Morozov, H. L.
Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim,
and A. K. Geim (2007), “Room-temperature quantum hall
effect in graphene,” Science 315 (5817), 1379–1379.

Soluyanov, Alexey A, and David Vanderbilt (2012), “Smooth
gauge for topological insulators,” Phys. Rev. B 85, 115415.

Sundaram, Ganesh, and Qian Niu (1999), “Wave-packet dy-
namics in slowly perturbed crystals: Gradient corrections
and berry-phase effects,” Phys. Rev. B 59, 14915–14925.

Thouless, D J (1984), “Wannier functions for magnetic sub-
bands,” Journal of Physics C: Solid State Physics 17 (12),
L325.

Thouless, DJ, Mahito Kohmoto, MP Nightingale, and
M Den Nijs (1982), “Quantized hall conductance in a two-
dimensional periodic potential,” Phys. Rev. Lett. 49 (6),
405.

Wu, Tai Tsun, and Chen Ning Yang (1975), “Concept of non-
integrable phase factors and global formulation of gauge
fields,” Phys. Rev. D 12, 3845–3857.

Xiao, Di, Ming-Che Chang, and Qian Niu (2010), “Berry
phase effects on electronic properties,” Rev. Mod. Phys.
82, 1959–2007.

https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959

	Lecture notes on topological insulators
	Contents
	Berry curvature of Bloch states
	Basics of Bloch state
	Electric response of Bloch state
	Quantum Hall effect
	Gauge choice of Bloch state

	References


