Topology in two hours

Ming-Che Chang
Department of Physics

- Winding number
- Gaussian curvature
- Anholonomy
- Euler characteristics
- Gauss-Bonnet theorem
- Hopf-Poincare theorem

Topology in vector field (Fluid flow, EM field ...)

- Winding number

A map from the path to the direction of vectors
$f: S^{1} \rightarrow S^{1}$

- Source, vortex, drain

In 2D, they all have w=1 and are deformable to each other (not so in 3D).

Winding number again（or，wrapping number）

Now，the vectors on a plane can point out of plane $w=1$

－By stereographic projection，a plane can be identified with a sphere
－A map from this sphere to the direction of vectors

$$
f: S^{2} \rightarrow S^{2}
$$

Such a localized spin texture is called a skyrmion史科子
Hypothetical structure of nucleons
（Skyrme，1962）
Hypothetical
structure of nucleons
（Skyrme，1962）

Basics of differential topology

－How do we define the curvature of a line（at point p ）？

Osculating circle of point p

－How do we define the curvature of a surface？

Fit the surface near p by a quadratic surface （ellipsoid，paraboloid， hyperboloid）

A quadratic surface must have two principal directions with maximum and minimum radii r_{1}, r_{2} ．They corre－ spond to two principle curvatures $k_{1}=1 / r_{1}, k_{2}=$ $1 / r_{2}$（up to a sign）．

```
主曲率
```


Two kinds of curvature

－Mean curvature
平均曲率
－Gaussian curvature

$$
H=k_{1}+k_{2}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \quad \begin{aligned}
& \text { Extrinsic } \\
& \text { 外在 }
\end{aligned}
$$

$$
G=k_{1} k_{2}=\frac{1}{r_{1} r_{2}}
$$

Intrinsic
内在

Without stretching／squeezing a surface（i．e．， the shortest distance between any 2 points remain the same），its G will not change．
 but not its intrinsic－geometry．

$\mathrm{H} \neq 0$

$\mathrm{G} \neq 0$

Mean curvature in physics

- Lagrange (1760)

A surface is bounded by a curve. What is the shape of the surface with the minimum area?

- Plateau (1829)

Such a surface can be simulated by a soap film

Energy of flim
\propto Surface tension
\propto Surface area
www.youtube.com/watch?v=jReQUm9EB9k
The minimal surface has zero mean curvature at every point!

Positive and negative Gaussian curvature

A torus 環面

The Remarkable Way We Eat Pizza -

 Youtube: Numberphile

- You cannot change Gaussian curvature without stretching/squeezing the surface.
- That is, without stretching your pizza, its G must remain zero, and one of the $k_{1,2}$ must be zero.

Theorema Egregium：Gaussian curvature can be determined （Gauss，1827）絕妙定理 entirely by measuring angles，distances and their rates on a surface．

Intrinsic definition of Gaussian curvature
－Parallel transport of a vector \boldsymbol{v} along a geodesic curve on a curved surface：
The angles between v and tangent vectors remain fixed．

anholonomy angle
－After circling a loop，v rotates by an angle（or defect angle）雐角 This kind of behavior is called anholonomy

Gaussian curvature at p can be defined as

$$
G \equiv \lim _{A \rightarrow 0} \frac{\alpha_{A}}{A}
$$

Anholonomy angle on a sphere

A general spُherical triangle,

Girard theorem (1626)
$A=r^{2}(\alpha+\beta+\gamma-\pi)$
$\Rightarrow \alpha_{A}=\frac{A}{r^{2}}$
$G \equiv \lim _{A \rightarrow 0} \frac{\alpha_{A}}{A}=\frac{1}{r^{2}}$

Anholonomy (or non-integrability) in physics

Rotation of polarization in an optical fiber

Berry phase of electron spin in a rotating magnetic field

Gauss map and Gaussian curvature

Total curvature

Total curvature of a closed surface is 4π, no matter how the surface is deformed

$$
\int_{M} d a G=\int_{M} d a \frac{d S_{a}}{d a}=4 \pi
$$

Total curvature is a topological invariant

Platonic solids，F．Maurolico（1537）
正多面體

Name	Image	Vertices \boldsymbol{V}	Edges E	Faces F	Euler characteristic： $V-E+F$
Tetrahedron		4	6	4	$\mathbf{2}$
Hexahedron or cube		8	12	6	$\mathbf{2}$
Octahedron		6	12	8	2
Dodecahedron		20	30	12	$\mathbf{2}$
Icosahedron		12	30	20	$\mathbf{2}$

Beyond regular polyhedron
Euler（1758）

$$
\chi=V-E+F=2-4+4=2
$$

$$
\chi=V-E+F=4-8+4=0
$$

－This number is independent of the ways of division， so it＇s a property of the surface itself．
－Furthermore，it does not change under continuous deformation，so it＇s a topological invariant．

Euler characteristic of a surface

$$
\chi(M)=2(1-g)
$$

In general, for a surface M with dimension D, we can divide it into a patchwork of cells, and define

$$
\begin{equation*}
\chi(M)=\sum_{k=0}^{D}(-1)^{k} \beta_{k} \tag{B8}
\end{equation*}
$$

where β_{k} is the number of k-simplexes. k-單體

For a surface $(\mathrm{D}=2), \quad \chi(M)=\beta_{0}-\beta_{1}+\beta_{2}$

Gauss-Bonnet theorem (for 2D surface)

- connecting local curvature with global topology
- Closed surface

$$
\frac{1}{2 \pi} \int_{M} d a G=\chi(M)
$$

The most beautiful theorem in differential topology

- Open surface

$$
\frac{1}{2 \pi}\left[\int_{M} d a G+\int_{\partial M} d \ell \kappa_{g}\right]=\chi(M, \partial M)
$$

Anholonomy in geometry and quantum state

Geometry
－PT condition
－anholonomy
－curvature
－Topo number

－Anholonomy angle
－Gaussian curvature
－Euler characteristic

$$
\chi=\frac{1}{2 \pi} \int_{S} d a G
$$

Quantum state
－Berry phase
－Berry curvature
－Chern number
$C=\frac{1}{2 \pi} \int_{M} d a \Omega$
－Chern number refers to the topological number of fiber bundle space
－Fiber bundle space \approx inner DOF x spacetime
Spin ．．．etc

陳省身

What is a fiber bundle 緎維束

Simplest examples：
－Trivial fiber bundle （＝a product space）

Fiber bundle

Ref：Fiber bundles and quantum theory，by Bernstein and Phillips，Sci．Am． 1981
－Nontrivial fiber bundle
Möbius band

Fiber bundles in physics

System	Base space	Fiber space
- EM without monopole	- Spacetime	- $U(1)$ trivial
- EM with monopole	- Spacetime	- $\mathrm{U}(1)$ nontrivial 7
- Electro-weak theory	- Spacetime	- $\mathrm{U}(1) \mathrm{xSU}(2)$
- QCD	- Spacetime	- $\mathrm{SU}(3)$
- Abelian Berry phase	- Parameter manifold	- $U(1)$
- Non-Abelian Berry phase	- Parameter manifold	- $\mathrm{U}(\mathrm{N})$
	Space, Brillouin zone ... etc	Lie groups

Winding number again
Index of a point defect

Fig from Jonas Kibelbek

Hopf-Poincare theorem

- Connecting index of point defect with topology

$$
\sum_{i} \operatorname{ind}\left(v_{i}\right)=\chi(M)
$$

Winding
number

On a sphere $\sum_{m a(m)=2}$

Hairy ball theorem

A ball with stiff, straight porcupine-like quills emanating out from it

A start at combing the ball so that the quills lie flat agavist the ball.

Yikes! One quill sticks out.

A＂proof＂of Hopf－Poincare theorem

Youtube course：Topology \＆Geometry，by Tadashi Tokieda時枝正

Put a source on a vertex，a saddle point on an edge， and a sink on a face

$\begin{aligned} \sum_{i} \operatorname{ind}\left(\mathbf{v}_{i}\right) & =(+1) \beta_{0}+(-1) \beta_{1}+(+1) \beta_{2} \\ & =\chi(M)\end{aligned}$

$$
\chi(M)=\sum_{k=0}^{D}(-1)^{k} \beta_{k}
$$

Vector field on a torus

$\sum_{i} \operatorname{ind}\left(v_{i}\right)=\chi\left(T^{2}\right)=0$

Application: Brillouin zone as a torus (1D, 2D, 3D)

Berry connection $\mathbf{A}(\boldsymbol{k})$ as a vector field in BZ

