Topology in two hours

Ming-Che Chang Department of Physics

- Winding number
- Gaussian curvature
- Anholonomy
- Euler characteristics
- Gauss-Bonnet theorem
- Hopf-Poincare theorem

Topology in vector field (Fluid flow, EM field ...)

• Winding number

A map from the path to the direction of vectors

 $f:S^1\to S^1$

Fig from Kurik and Lavrentovich, 1988

• Source, vortex, drain

In 2D, they all have w=1 and are deformable to each other (not so in 3D).

Basics of differential topology

A quadratic surface must have two principal directions with maximum and minimum radii r_1, r_2 . They correspond to two **principle curvatures** $k_1 = 1/r_1, k_2 = 1/r_2$ (up to a sign). $\pm \oplus \mathbb{R}$

7

Two kinds of curvature

- Mean curvature 平均曲率
- Gaussian curvature

Without stretching/squeezing a surface (i.e., the shortest distance between any 2 points remain the same), its G will not change.

Figure 3.6 Bending a sheet of paper changes its extrinsic but not its intrinsic—geometry.

Mean curvature in physics

• Lagrange (1760)

A surface is bounded by a curve. What is the shape of the surface with the minimum area?

• Plateau (1829)

Such a surface can be simulated by a soap film

www.youtube.com/watch?v=jReQUm9EB9k

The minimal surface has zero mean curvature at every point!

Energy of flim

- \propto Surface tension
- \propto Surface area

wordpress.discretization.de/geometryprocessingandapplicationsws19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/

The Remarkable Way We Eat Pizza -Youtube: *Numberphile*

- You cannot change Gaussian curvature without stretching/squeezing the surface.
- That is, without stretching your pizza, its G must remain zero, and one of the $k_{1,2}$ must be zero.

Theorema Egregium: (Gauss, 1827) 絕妙定理

Gaussian curvature can be determined entirely by measuring angles, distances and their rates on a surface.

Intrinsic definition of Gaussian curvature

 Parallel transport of a vector v along a geodesic curve on a curved surface: The angles between v and tangent vectors remain fixed.

• After circling a loop, **v** rotates by an angle

anholonomy angle (or defect angle)

虧角

This kind of behavior is called anholonomy

12

Gaussian curvature at *p* can be defined as

Anholonomy (or *non-integrability*) in physics

Rotation of polarization in an optical fiber

Berry phase of electron spin in a rotating magnetic field

Gauss map and Gaussian curvature

Total curvature of a closed surface is 4π , *no matter how the surface is deformed*

$$\int_{M} da \ G = \int_{M} \partial a \ \frac{dS_{a}}{\partial a} = 4\pi$$

Total curvature is a topological invariant

Platonic solids, F. Maurolico (1537)

正多面體

Name	Image	Vertices V	Edges <i>E</i>	Faces F	Euler characteristic: V - E + F
Tetrahedron		4	6	4	2
Hexahedron or cube	1	8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

Beyond regular polyhedron Euler (1758)

- This number is independent of the ways of division, so it's a property of the surface itself.
- Furthermore, it does not change under continuous deformation, so it's a topological invariant.

Euler characteristic of a surface
$$\chi(M) = 2(1-g)$$

of holes
 $\chi = 2$ $\chi = 0$ $\chi = -2$ $\chi = -4$

In general, for a surface M with dimension D, we can divide it into a patchwork of cells, and define

$$\chi(M) = \sum_{k=0}^{D} (-1)^k \beta_k,$$
 (B8)

where β_k is the number of k-simplexes. k-22

For a surface (D=2), $\chi(M) = \beta_0 - \beta_1 + \beta_2$

Gauss-Bonnet theorem (for 2D surface)

- connecting *local curvature* with *global topology*
- Closed surface

$$\frac{1}{2\pi}\int_M da \ G = \chi(M)$$

The most beautiful theorem in differential topology

• Open surface

$$\frac{1}{2\pi} \left[\int_M da \ G + \int_{\partial M} d\ell \kappa_g \right] = \chi(M, \partial M)$$

Anholonomy in geometry and quantum state

Geometry

Quantum state

- PT condition
- anholonomy
- curvature
- Topo number

- V_1 1 V_2
- Anholonomy angle
- Gaussian curvature
- Euler characteristic

$$\chi = \frac{1}{2\pi} \int_{S} da \ G$$

- $i\langle\psi|\dot{\psi}\rangle = 0$
- Berry phase
- Berry curvature
- Chern number

$$C = \frac{1}{2\pi} \int_{M} da \ \Omega$$

- Chern number refers to the topological number of *fiber bundle space*
- Fiber bundle space \approx inner DOF x spacetime

Spin ... etc

陳省身

What is a fiber bundle 纖維束

Simplest examples:

- Trivial fiber bundle
- (= a product space)

base

Ref: *Fiber bundles and quantum theory*, by Bernstein and Phillips, Sci. Am. 1981

• **Nontrivial** fiber bundle Möbius band

Fiber bundles in physics

System	Base space	Fiber space
EM without monopole	Spacetime	• U(1) trivial
EM with monopole	Spacetime	• U(1) nontrivial
Electro-weak theory	Spacetime	• U(1)xSU(2)
QCD	Spacetime	• SU(3)
Abelian Berry phase	 Parameter manifold 	• U(1) -
Non-Abelian Berry phase	Parameter manifold Space.	• U(N)
	Brillouin zone etc	Lie groups

Winding number again

Index of a point defect

Fig from Jonas Kibelbek

Hopf-Poincare theorem

- Connecting index of point defect with topology

A "proof" of Hopf-Poincare theorem

Youtube course: *Topology & Geometry*, by Tadashi Tokieda 時枝正

Put a source on a vertex, a saddle point on an edge, and a sink on a face

$$\sum_{i} \operatorname{ind}(\mathbf{v}_{i}) = (+1)\beta_{0} + (-1)\beta_{1} + (+1)\beta_{2}$$
$$= \chi(M) \qquad \qquad \chi(M) = \sum_{k=0}^{D} (-1)^{k}\beta_{k}$$

Vector field on a torus

Berry connection $\mathbf{A}(\mathbf{k})$ as a vector field in BZ