Diamagnetism and paramagnetism

- Langevin diamagnetism
- paramagnetism
- Hund's rules
- Lande g-factor
- Brillouin function
- crystal field splitting
atom
- quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism
free electron gas

M.C. Chang

Basics

- System energy

$$
E(H) \quad(E \rightarrow F=E-T S \text { if } T \neq 0)
$$

- magnetization density $M(H)=-\frac{1}{V} \frac{\partial E}{\partial H}$
- susceptibility

$$
\chi \equiv \frac{\partial M}{\partial H}=-\frac{1}{V} \frac{\partial^{2} E}{\partial H^{2}}
$$

Atomic susceptibility

$$
\begin{aligned}
H & =\sum_{i}\left(\frac{p_{i}^{2}}{2 m}+V_{i}\right)+\mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H}+\frac{e^{2}}{2 m c} \sum_{i} A_{i}^{2}, \quad \mu_{B}=\frac{e \hbar}{2 m c} \\
& =H_{0}+\Delta H
\end{aligned}
$$

Order of magnitude

- $\mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H} \approx \mu_{B} H \approx \hbar \omega_{c}$

$$
\approx 10^{-4} \mathrm{eV} \quad \text { when } H=1 \mathrm{~T}
$$

- $\vec{A}_{i}=\frac{H}{2}\left(-y_{i}, x_{i}, 0\right)$

$$
\begin{aligned}
\frac{e^{2}}{2 m c} \sum_{i} A_{i}^{2} & \approx\left(\frac{e H}{m c}\right)^{2} m a_{0}^{2}, \quad a_{0} \equiv \frac{\hbar^{2}}{m e^{2}} \\
& \approx \frac{\left(\hbar \omega_{c}\right)^{2}}{e^{2} / a_{0}} \approx 10^{-5} \text { of the linear term at } H=1 \mathrm{~T}
\end{aligned}
$$

- Perturbation energy (to 2nd order)

$$
\begin{aligned}
\Delta E_{n} & =\langle n| \Delta H|n\rangle+\sum_{n^{\prime} \neq n} \frac{\left.|\langle n| \Delta H| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}-E_{n^{\prime}}} \\
& =\mu_{B}\langle n| \vec{L}+g \vec{S}|n\rangle \cdot \vec{H}+\frac{e^{2}}{2 m c^{2}}\langle n| \sum_{i} A_{i}^{2}|n\rangle+\sum_{n^{\prime}}^{\prime} \frac{\left.\left|\langle n| \mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H}\right| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}-E_{n^{\prime}}}
\end{aligned}
$$

- Filled atomic shell
(applies to noble gas, NaCl -like ions...etc)
Ground state $|0\rangle$:

$$
\begin{aligned}
& \vec{L}|0\rangle=\vec{S}|0\rangle=0 \\
& \therefore \quad \Delta E=\frac{e^{2}}{8 m c^{2}} H^{2}\langle 0| \frac{2}{3} \sum_{i} r_{i}^{2}|0\rangle \quad \text { (for spherical charge dist) }
\end{aligned}
$$

For a collection of N ions,

$$
\chi=-\frac{N}{V} \frac{\partial^{2} \Delta E}{\partial H^{2}}=-\frac{e^{2}}{6 m c^{2}} \frac{N}{V}\langle 0| \sum_{i} r_{i}^{2}|0\rangle<0
$$

Larmor (or Langevin) diamagnetism

An atom with many electrons

- Without SO coupling

$$
H=\sum_{i}\left(\frac{p_{i}^{2}}{2 m}+V_{i}\right)+\frac{1}{2} \sum_{i j} V_{i j}
$$

- Maximally mutually commuting set $H, L^{2}, S^{2}, L_{z}, S_{z}$
- Eigenstates (including ground states)

$$
\left|\alpha, L, S, m_{L}, m_{S}\right\rangle
$$

- With SO coupling (weak)

$$
H=\sum_{i}\left(\frac{p_{i}^{2}}{2 m}+V_{i}\right)+\frac{1}{2} \sum_{i j} V_{i j}+\sum_{i} \lambda_{i} \vec{S}_{i} \cdot \vec{L}_{i}
$$

- Maximally mutually commuting set $H, L^{2}, S^{2}, J^{2}, J_{z}$
- Eigenstates (including ground states)
$\left|\alpha, L, S, J, m_{J}\right\rangle$
- single electron ground states

Degeneracy $D=d$

- N -electron ground states
- Without e-e interaction

- With e-e interaction
 levels
Ground states
w/o SO: labeled by L,S D=(2L+1)(2S+1)
w/ SO: labeled by L,S,J D=(2J+1)

Ground state of an atom with unfilled shell (no H field yet!):

- Atomic quantum numbers n, l, m_{l}, m_{s}
- Energy of an electron depends on $n, l\left(\right.$ no $\left.m_{l}, m_{s}\right)$
- Degeneracy of electron level $\varepsilon_{n, l}: 2(2 /+1)$
- If an atom has N (non-interacting) valence electrons, then the
degeneracy of the "atomic" ground state (with unfilled $\varepsilon_{n, l}$ shell) is $C_{N}^{2(2 l+1)}$
e-e interaction will lift this degeneracy partially, and then
- the atom energy is labeled by the conserved quantities L and S, each is $(2 L+1)(2 S+1)$-fold degenerate
- SO coupling would split these states further, which are labeled by J (later).

What's the values of S, L, and J for the atomic ground state?
Use the Hund's rules (1925),

1. Choose the max value of S that is consistent with the exclusion principle
2. Choose the max value of L that is consistent with the exclusion principle and the 1st rule

To reduce Coulomb repulsion, electron spins like to be parallel, electron orbital motion likes to be in high $m_{\text {}}$, state. Both help disperse the charge distribution.

Example: 2 e's in the p-shell $\left(I_{1}=I_{2}=1, s_{1}=s_{2}=1 / 2\right)$
(a) $(1,1 / 2)$
(b) $(0,1 / 2)$
(c) $(-1,1 / 2)$
(a') $(1,-1 / 2)$
(b') $(0,-1 / 2)$
(c') $(-1,-1 / 2)$
$\mathrm{C}_{2}{ }_{2}$ ways to put these 2 electrons in 6 slots

- Spectroscopic notation:
${ }^{2 S+1} X_{J}(X=S, P, D \ldots)$
${ }^{1} S_{0},{ }^{3} P_{0,1,2},{ }^{1} D_{2}$ are o.k.; ${ }^{3} S_{0},{ }^{1} P_{1},{ }^{3} D_{3}$ are not.
(It's complicated. See Eisberg and Resnick App. K for more details)

- Ground state is ${ }^{3} P_{0,1,2}$,

Energy levels of Carbon atom			
Configuration	Term	J	Level (cm^{-1})
$2 s^{2} 2 p^{2}$	${ }^{3} \mathrm{~F}$	0	0.00000
		1	16. 41671
		2	43.41350
$2 s^{2} 2 p^{2}$	${ }^{1} \mathrm{D}$	2	10192.66
$2 s^{2} 2 p^{2}$	${ }^{1} S_{S}$	0	21648.02

physics.nist.gov/PhysRefData/Handbook/Tables/carbontable5.htm
$(2 L+1) \times(2 S+1)=9$-fold degenerate

- There is also the 3rd Hund's rule related to SO coupling (details below)

Review of SO coupling

- An electron moving in a static E field feels an effective B field

$$
\vec{B}_{e f f}=\vec{E} \times \frac{\vec{v}}{c}
$$

- This B field couples with the electron spin

$$
\begin{array}{rlrl}
H_{S O} & =-\vec{\mu} \cdot \overrightarrow{B_{e f f}} \\
& =-\left(\frac{q}{m c} \vec{S}\right) \cdot\left(\vec{E} \times \frac{\vec{v}}{c}\right), & \vec{E}=-\hat{r} \frac{d \phi}{d r} \text { for central force, } \phi=+\frac{e}{r} \\
& =\left(\frac{q}{m^{2} c^{2}} \frac{d \phi}{r d r}\right) \vec{S} \cdot \vec{L} & & (\times 1 / 2 \text { for Thomas precession, 1927) } \\
\equiv & \lambda \vec{S} \cdot \vec{L} & & \lambda>0 \text { for less than half-filled (electron-like) } \\
= & \frac{\lambda}{2}\left(J^{2}-L^{2}-S^{2}\right) & & \lambda<0 \text { for more than half-filled (hole-like) } \\
& & (2 L+1) \times(2 S+1) \text { degeneracy is further lifted to become } \\
& (2 J+1) \text {-fold degeneracy }
\end{array}
$$

Hund's 3rd rule:

- if less than half-filled, then J=|L-S| has the lowest energy
- if more than half-filled, then $\mathrm{J}=\mathrm{L}+\mathrm{S}$ has the lowest energy
${ }^{3} P_{0}$ is the ground state in previous example

$t=\operatorname{spin} \frac{1}{2} ; \downarrow=$ spin $-\frac{1}{2}$.

Paramagnetism of an atom with unfilled shell

1) Ground state is nondegenerate ($\mathrm{J}=0$)
2) Ground state is degenerate $(J \neq 0)$

Van Vleck PM
Then the $1^{\text {st }}$ order term almost always >> the 2 nd order terms.

$$
\vec{m}=-\mu_{B}(\vec{L}+2 \vec{S})=-\mu_{B}(\vec{J}+\vec{S})
$$

- Heuristic argument: J is fixed, L and S rotate around J, maintaining the triangle. So the magnetic moment is given by the component of $L+2 S$ parallel to J,

$$
\begin{aligned}
\vec{S}_{/ /} & =\frac{\vec{J} \cdot \vec{S}}{J^{2}} \vec{J}=\frac{\vec{J}}{2 J^{2}}\left(J^{2}-L^{2}+S^{2}\right) \\
& =\frac{\vec{J}}{2 J(J+1)}[J(J+1)-L(L+1)+S(S+1)]
\end{aligned}
$$

$$
\therefore \vec{m}_{e f f}=-g_{J} \mu_{B} \vec{J}
$$

Lande g-factor (1921)

- $\Delta E\left(m_{J}\right)=g_{J} \mu_{B} m_{J} H$, so $\chi=0$?

No! these $2 \mathrm{~J}+1$ levels are closely packed $(<k T)$, so $F(H)$ is nonlinear (next page).

Langevin paramagnetism

$$
Z=\sum_{m_{J}=-J}^{J} e^{-E\left(m_{J}\right) / k_{B} T}, \quad \Delta E\left(m_{J}\right)=g_{J} \mu_{B} m_{J} H(\sim 1 K \text { at } H=1 \mathrm{~T})
$$

$$
F=E-T S=-k_{B} T \ln Z
$$

$$
M=-\frac{N}{V} \frac{\partial F}{\partial H}=\frac{N}{V} g_{J} \mu_{B} J B_{J}\left(\frac{g_{J} \mu_{B} J H}{k_{B} T}\right)
$$

where $B_{J}(x) \equiv \frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{2 J+1}{2 J} x\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{x}{2 J}\right)$

- $k_{B} T \ll g_{J} \mu_{B} J H \quad(x \gg 1)$ Brillouin

$$
M=\frac{N}{V} g_{J} \mu_{B} J, \quad \chi=0
$$

- $k_{B} T \gg g_{J} \mu_{B} J H \quad(x \ll 1)$
$B_{J}(x) \sim \frac{J+1}{3 J} x$

$$
M=\frac{N}{V}\left(g_{J} \mu_{B}\right)^{2} \frac{J(J+1)}{3 k_{B} T} H
$$

$$
\chi(T)
$$

- at room T, χ (para) $\sim 500 \chi$ (dia) calculated earlier
- Curie's law $\chi=C / T$ (note: not good for $\mathrm{J}=0$)

$$
C=\frac{N}{V} \frac{\left(\mu_{B} p\right)^{2}}{3 k}, \text { where } p=g_{J} \sqrt{J(J+1)}
$$

effective Bohr magneton number

- Before ionization, La: $5 p^{6} 6 s^{2} 5 d^{1}$; Ce: $5 p^{6} 6 s^{2} 4 f^{2} \ldots$

3d-shell (transition metal ions)

$\begin{aligned} & \text { ELEMENT } \\ & \text { (AND } \\ & \text { IONIZATION) } \end{aligned}$	basic ELECTRON CONFIGURATION	GROUNDSTATE TERM	$\begin{gathered} \mathrm{CA} \\ (J=S) \end{gathered}$	culated ${ }^{b} p$ $(J=\|L \pm S\|)$	MEASURED ${ }^{\text {c }}$ p
$\mathrm{Ti}^{\text {3 }}$	$3 d^{1} 45^{2}$	${ }^{2} D_{3 / 2}$		1.55	-
V^{4+}	$3 d^{1}$	${ }^{2} D_{3 / 2}$		1.55	1.8
$\mathbf{V}^{\mathbf{3 +}}$	$3 d^{2}$	${ }^{3} F_{2}$		1.63	2.8
$\mathrm{V}^{\mathbf{2 +}}$	$3 d^{3}$	${ }^{4} F_{3 / 2}$		0.77	3.8
Cr^{3+}	$3 d^{3}$	${ }^{4} F_{3 / 2}$		0.77	? 3.7
Mn^{4+}	$3 d^{3}$	${ }^{4} F_{3 / 2}$		0.77	4.0
Cr^{2+}	$3 d^{4}$	${ }^{5} D_{0}$		0	4.8
Mn^{3+}	$3 d^{4}$	${ }^{5} D_{0}$		0	5.0
$\mathrm{Mn}^{\mathbf{+}}$	$3 d^{5}$	${ }^{6} S_{5 / 2}$		5.92	5.9
Fe^{3+}	$3 d^{5}$	${ }^{6} S_{S / 2}$		5.92	5.9
Fe^{2+}	$3 d^{6}$	${ }^{5} D_{4}$		6.70	5.4
$\mathrm{Co}^{\mathbf{2 +}}$	$3 d^{7}$	${ }^{4} \mathrm{~F}_{9 / 2}$		6.54	4.8
Ni^{2+}	$3 d^{8}$	${ }^{3} \mathrm{~F}_{4}$		5.59	3.2
Cu^{2+}	$3 d^{9}$	${ }^{2} D_{5 / 2}$		3.55	1.9
- Curie's law is still good, but p is mostly wrong					
- Much better improvement if we let $J=S$					

p_{x}

p_{y}
p_{y}

In a crystal, crystal field may be more important than the LS coupling

- Different symmetries would have different splitting patterns.

淬滅

Quench of orbital angular momentum

- Due to crystal field, energy levels are now labeled by L (not J)
- Orbital degeneracy not lifted by crystal field may be lifted by

1) LS coupling, or 2) Jahn-Teller effect, or both.

Spontaneous
lattice distortion

- The stationary state ψ of a non-degenerate level can be chosen
as real when $t \rightarrow-t$,

$$
\psi \rightarrow \psi^{*}(=\psi \text { if nondegenerate })
$$

-

$$
\langle\psi| \vec{L}|\psi\rangle=\langle\psi| \vec{r} \times \frac{\hbar}{i} \nabla|\psi\rangle \text { is purely imaginary }
$$

but $\langle\psi| \vec{L}|\psi\rangle$ has to be real also

$$
\therefore\langle\psi| \vec{L}|\psi\rangle=0
$$

$$
\left(\langle\psi| L^{2}|\psi\rangle \text { can still be non-zero }\right)
$$

- for 3d ions, crystal field > SO interaction
- for 4 f ions, SO interaction > crystal field (because 4 f is hidden inside $5 p$ and $6 s$ shells)
- for 4d and 5d ions that have stronger SO interaction, the 2 energies maybe comparable and it's more complicated.
- Langevin diamagnetism
- paramagnetism
- Hund's rules
- Lande g-factor
- Brillouin function
- crystal field splitting
- quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and

Landau diamagnetism

Adiabatic demagnetization (proposed by Debye, 1926)

- The first method to reach below 1 K

$$
\begin{aligned}
& Z=\sum_{m_{J}=-J}^{J} e^{-E\left(m_{J}\right) / k T}, \quad \text { assume } E\left(m_{J}\right) \propto H \\
& F=-k T \ln Z\left(\frac{H}{k T}\right) \\
& S=-\frac{\partial F}{\partial T}=S\left(\frac{H}{k T}\right) \\
& \text { - If } S=\text { constant, then } k T \sim H \quad T_{f}=T_{i} \frac{H_{f}}{H_{i}}
\end{aligned}
$$

\therefore We can reduce H to reduce T

- Without residual field

Freezing is effective only if spin specific heat is dominant (usually need $T \ll T_{D}$)

Can reach $10^{-6} \mathrm{~K}$ (dilution refrig only $10^{-3} \mathrm{~K}$)

Pauli paramagnetism for free electron gas (1925)

- Orbital response to H neglected, consider only spin response
- One of the earliest application of the exclusion principle

$$
\begin{aligned}
N & =N_{\uparrow}+N_{\downarrow} \\
M & =\frac{1}{V}\left(N_{\uparrow}-N_{\downarrow}\right) \mu_{B}
\end{aligned}
$$

For $T \ll T_{F}$,
$n_{\uparrow}-n_{\downarrow} \cong g\left(\varepsilon_{F}\right) \mu_{B} H, \quad g=g_{\uparrow}+g_{\downarrow}$
$\therefore M=g\left(\varepsilon_{F}\right) \mu_{B}^{2} H$

$\Rightarrow \quad \chi_{\text {Pauli }}=g\left(\varepsilon_{F}\right) \mu_{B}^{2}=\left(\frac{\alpha}{2 \pi}\right)^{2}\left(k_{F} a_{0}\right)^{1} \sim 10^{-6}$

$$
\begin{array}{ll}
g(\varepsilon)=\frac{m}{\pi^{2} \hbar^{3}} \sqrt{2 m \varepsilon} & a_{0}=\frac{\hbar^{2}}{m e^{2}} \\
\mu_{B}=\frac{e \hbar}{2 m c} & \alpha=\frac{e^{2}}{\hbar c}
\end{array}
$$

- unlike the PM of magnetic ions, here the magnitude \sim DM's
(supressed by Pauli exclusion principle)

Landau diamagnetism for free electron gas (1930)

Landau began his paper with the remark, "It has until now been more or less quietly assumed that the magnetic properties of electrons, other than spin, originate exclusively from the binding of electrons in atoms."

- The orbital response neglected earlier gives slight DM
- The calculation is not trivial. For free electron gas,

$$
\begin{aligned}
\chi_{\text {Landau }} & =-\frac{e^{2} k_{F}}{12 \pi^{2} m c^{2}} \\
& =-\frac{1}{3} \chi_{\text {Pauli }}
\end{aligned}
$$

- So far we have learned PM and DM for a free electron gas.

How do we separate these contributions in experiment?
X-ray magnetic circular dichroism (XMCD)

