Phonons II: Thermal properties

- Heat capacity of a crystal
 - Density of state
 - Einstein mode
 - Debye model
- Anharmonic effect
 - Thermal conduction

A technician holding a silica fiber thermal insulation tile at 1300 Celsius

See www.youtube.com/watch?time_continue=3&v=Pp9Yax8UNoM

After rescaling the temperature by θ (Debye temperature), which differs from material to material, a universal behavior emerges:

Debye temperature

Li	Be		Ta	ble 1	De	bye te	mpe	ratur	e and	I ther	mal	conduc	etivity	Y-*	12-20-2	В		с	1	N	0		F	Ne
344 0.85	1440 2.00															().27	2230 1.29)					75
Na	Mg	965 B														A	l.	Si	F	P	s		СІ	Ar
158 1.41	400 1.56		Low temperature limit of θ , in Kelvin428645Thermal conductivity at 300 K, in W cm ⁻¹ K ⁻¹ 2.371.48								92													
К	Ca	Sc	Ti	1	V	Cr	M	In	Fe	Co	ġ,	Ni	Cu		Zn	G	ia	Ge	1	As	Se		Br	Kr
91 1.02	230	360. 0.16	420 0.2	2 0	380 0.31	630 0.94	41	10 .08	470 0.8(44	5	450 0.91	343 4.(3)1	327 1.10	3 5 0	20).41	374 0.60)	282 0.50	90 0.0	12		72.
Rb	Sr	Y	Zr	1	Nb	Мо	Т	C	Ru	Rh		Pd	Ag		Cd	l	n	Sn	N .	Sb	Te		I :	Xe
56 0.58	147	280 0.17	291 0.2	3 0	275 0.54	450 1.38	0.	.51	600 1.17	48	o 50	274 0.72	225	5 29	209 0.9	7 1 7 C	08).82	200 0.67	7	211 0.24	153 0.0	3)2		64
Cs	Ва	La β	Hf	1	Та	W	R	е	Os	Ir	11.01	Pt	Au	-	Hg	Т	1	Pb	1	Bi	Po		At	Rn
38 0.36	110	142 0.14	252 0.2	3	240 0.58	400 1.74	4:	30 .48	500 0.88	42	0 47	240 0.72	16 3.	5 17	71.9) 7	8.5).46	105 0.3	5	119 0.08				
Fr	Ra	Ac		0.	T _p	Τ.		I.e.		C.m.	Eu		d	Ть		Dv	Но		Fr	Тт	m	Yb	1	
	11-1- 14-1-15	an an An Ing		Ce	Pr		۹ũ			3111	Lu	2	00	10		210						120	2	10
		2 = 1	\checkmark	0.11	0.	12 (0.16			0.13		0	.11	0.	11	0.11	0	.16	0.14	4 0	.17	0.3	5 0).16
				Th	Pa	a l	J	Np		Pu	Ar	n C	m	Bk		Cf	E	S	Fm	М	d	No	L	.r
				163 0.54	4	2	207	0.0	06	0.07	3			-										

In general, a harder material has a higher Debye temperature

Heat capacity: Quantum theory

• Internal energy U of a crystal is the summation of vibrational energies (consider an insulator so there's no electronic energies)

$$U(T) = \sum_{k,s} (n_{k,s} + 1/2)\hbar\omega_{k,s}$$

where s sums over different phonon branches (L/T, A/O).

• Heat capacity C is nothing but the change of U(T) w.r.t. to T:

$$C_V = \left(\partial U / \partial T\right)_V$$

• For a crystal in thermal equilibrium, the average phonon number for k-mode is (see Kittel, p.107)

$$\langle n_{k,s} \rangle = \frac{1}{e^{\hbar \omega_{k,s}/kT} - 1}$$
, Bose-Einstein distribution

• Therefore, we have

$$U(T) = \sum_{k,s} \left(\frac{\hbar \omega_{k,s}}{e^{\hbar \omega_{k,s}/kT} - 1} + \frac{\hbar \omega_{k,s}}{2} \right)$$

Connection between summation and integral

$$\int_{a}^{b} dx f(x) = \lim_{\Delta x \to 0} \sum_{i} \Delta x \cdot f(x_{i}), \text{ or}$$
$$\sum_{i} f(x_{i}) \cong \int_{a}^{b} \frac{dx}{\Delta x} f(x).$$

Generalization to 3-dim:

$$\sum_{\vec{x}} f(\vec{x}) \cong \int \frac{d^3 x}{\Delta^3 x} f(\vec{x})$$

or $\sum_{\vec{k}} f(\vec{k}) \cong \int \frac{d^3k}{\Delta^3 k} f(\vec{k})$ in solid state

$$\Delta^3 k = \left(\frac{2\pi}{L}\right)^3$$

Einstein model, Debye model

Anharmonic effect

Density of states *D*(ω) (DOS, 態密度)

• $D(\omega)d\omega$ is the number of states within the surfaces of constant ω and $\omega + d\omega$

$$D(\omega)d\omega = \frac{\int_{shell} d^3k}{\Delta^3 k}, \ \Delta^3 k = \left(\frac{2\pi}{L}\right)^3$$

$$\sum_{\vec{k}} f(\omega_{\vec{k}}) \cong \int \frac{d^3k}{\Delta^3 k} f(\omega_{\vec{k}}) \quad \text{not for } f(k)$$
$$= \int d\omega D(\omega) f(\omega)$$

• Once we know the DOS, we can reduce the 3-dim \boldsymbol{k} -integral to a 1-dim $\boldsymbol{\omega}$ integral.

Alternative definition: $D(\boldsymbol{\omega}) = \int \frac{d^3k}{\Lambda^3 k} \delta(\boldsymbol{\omega}_{\vec{k}} - \boldsymbol{\omega})$

• Flatter $\omega(k)$ curve, higher DOS.

Einstein model, Debye model

Anharmonic effect

DOS: 1-dim

$$D(\omega)d\omega = 2\frac{dk}{\Delta k} = 2\frac{dk/d\omega}{\Delta k}d\omega$$

$$\therefore D(\omega) = \begin{cases} \frac{L}{\pi}\frac{1}{d\omega/dk} & \text{for } \omega \le \omega_{\rm M} \\ 0 & \text{otherwise} \end{cases}$$

Ex: If $\omega(k) = vk$, then $D(\omega) = L / \pi v$.

Q: Calculate $D(\omega)$ for the 1-dim string with $\omega(k) = \omega_M |\sin(ka/2)|$ Prob.1(a)

DOS: 3-dim (assume $\omega(\mathbf{k}) = \omega(\mathbf{k})$ is isotropic)

$$D(\omega)d\omega = \int_{Shell} \frac{d^3k}{\Delta^3 k} = \frac{4\pi}{\Delta^3 k} k^2 dk = \frac{L^3}{2\pi^2} \frac{k^2}{d\omega / dk} d\omega$$

for example, if $\omega = vk$, then $D(\omega) = V\omega^2 / 2\pi^2 v^3$

It's not necessary to memorize the result, just remember the way of deriving it.

Einstein model (1907)

Assume that

- 1. each atom vibrates independently of each other, and
- 2. every atom has the same vibration frequency ω_0

• The DOS can be written as

$$D(\omega) = 3N\delta(\omega - \omega_0)$$

3 dim ×
number of atoms

Einstein model

$$U = 3N\left(\langle n \rangle + \frac{1}{2}\right)\hbar\omega_0 = 3N\frac{\hbar\omega_0}{\exp(\hbar\omega_0/kT) - 1} + 3N\frac{\hbar\omega_0}{2}$$

$$C_V = (\partial U / \partial T)_V = 3Nk \left(\frac{\hbar \omega_0}{kT}\right)^2 \frac{e^{\hbar \omega_0 / kT}}{\left(e^{\hbar \omega_0 / kT} - 1\right)^2}$$
$$\approx e^{-\hbar \omega_0 / kT} \text{ as } T \to 0 K$$

Debye model (1912)

Based on classical elasticity theory (continuous, before the classical theory of lattice dynamics).

Vibration produces waves

$$U(T) = \sum_{k,s} \langle n_{k,s} \rangle \hbar \omega_{k,s} \quad (\hbar \omega_{k,s}/2 \text{ neglected})$$
$$= \sum_{s=1}^{3} \int d\omega D_s(\omega) \frac{\hbar \omega}{e^{\hbar \omega/kT} - 1}$$

Debye assumed that

1. the wave is non-dispersive: $\omega = v_s k$ (s=L,T₁,T₂). Therefore, $D_s(\omega) = V\omega^2 / 2\pi^2 v_s^3$ (quadratic) (Iso-frequency surface is a sphere) Frequency dispersion

Einstein model, Debye model

Anharmonic effect

2. The 1st BZ is approximated by a sphere with the same volumne (# of states).

High-frequency cut-off $\omega_{\rm D}$ (Debye frequency)

• A simple estimate

 $\frac{\frac{4}{3}\pi k_D^3}{\Delta^3 k} = N$ For every branch $\rightarrow \quad \omega_D = vk_D = v(6\pi^2 n)^{1/3}$

• or
$$\sum_{s=1}^{3} \int_{0}^{\omega_{D}} d\omega D_{s}(\omega) = 3N$$
$$\rightarrow \sum_{s=1}^{3} \frac{V \omega_{D}^{3}}{6\pi^{2} v_{s}^{3}} = 3N$$
$$\frac{3}{v^{3}} \equiv \sum_{s=1}^{3} \frac{1}{v_{s}^{3}}$$
$$\rightarrow \omega_{D} = v (6\pi^{2}n)^{1/3}, n = N/V$$

Internal energy and heat capacity

$$U(T) = \sum_{s=1}^{3} \frac{V}{2\pi^{2} v_{s}^{3}} \int_{0}^{\omega_{D}} d\omega \, \omega^{2} \frac{\hbar \omega}{e^{\hbar \omega/k_{B}T} - 1}$$

$$= \frac{3V}{2\pi^{2} v^{3}} \hbar \left(\frac{k_{B}T}{\hbar}\right)^{4} \int_{0}^{x_{D}} dx \frac{x^{3}}{e^{x} - 1}, \quad x_{D} = \frac{\hbar \omega_{D}}{k_{B}T} = \frac{\theta}{T} \qquad \text{Debye temperature}$$

$$= 9Nk_{B}T \left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} dx \frac{x^{3}}{e^{x} - 1} = \pi^{4}/15 \text{ as } T \rightarrow 0 \quad (x_{D} \rightarrow \infty)$$

$$\therefore C_{V} = \frac{12\pi^{4}}{5} Nk_{B} \left(\frac{T}{\theta}\right)^{3} \propto T^{3} \text{ as } T \rightarrow 0 \qquad \text{(Debye } T^{3} \text{ law)}$$

At low *T*, Debye's curve drops slowly because long wavelength vibration can still be excited.

Einstein model, Debye model

A simple explanation of the T^3 -dependence (at low T):

First, define $\hbar \omega_T = k_B T$, $\omega_T = v k_T$

$$\hbar\omega_D = k_B\theta, \qquad \omega_D = vk_D$$

Suppose that

1. All the phonons with wave vector $k < k_T$ are excited, while the modes between k_T and k_D are not excited.

2. Each excited mode roughly has thermal energy $k_B T$

$$\hbar\omega_D = \hbar v k_D = k_B \theta$$

- Then the fraction of excited modes
- $= (k_T/k_D)^3 = (T/\theta)^3.$ # of normal modes
- Thermal energy $U \sim k_B T \cdot 3N(T/\theta)^3$
- . Heat capacity $C \sim 12Nk_B(T/\theta)^3$

Einstein model, Debye model

Anharmonic effect

Dispersion relation and DOS

Einstein model, Debye model

Anharmonic effect

• Heat capacity of a crystal

- density of states
- Einstein model
- Debye model
- anharmonic effect
 - thermal conduction

Einstein model, Debye model

Anharmonic effect

Aharmonic effect in crystals

If there is no aharmonic effect, then there is

• No thermal expansion

•...

- Heat capacity becomes constant at high T
- No phonon-phonon interaction
- Thermal conductivity would be infinite (for a pure crystal)

physics.stackexchange.com/questions/332524/what-is-thermal-expansion

Einstein model, Debye model

Anharmonic effect

Phonon-phonon scattering

A result of the anharmonic vibration

Modulation of elastic const.

(\sim acoustic grating)

$$F = -kx + k'x^{2}$$
$$= -(k - k'x)x$$
$$\therefore k_{eff}(x) = k - k'x$$

• Total momentum of the 2 phonons remains the same during the scattering. No resistance to thermal current?

1st BZ

k,

Phonon-phonon scattering

• Normal process:

• Umklapp process (轉向過程, Peierls 1929):

N-Process

k,

Figs from wiki

Thermal conductivity

• Thermal current density (Fourier's law, 1807)

 $\vec{J}_U = -K\nabla T \qquad \sim \qquad \vec{J} = -\sigma \nabla \phi$

• In metals, thermal current is carried by both electrons and phonons. In insulators, only phonons can be carriers.

• The collection of phonons is similar to an ideal gas

· · · · ·	CLASSICAL GAS OF MOLECULES	PHONON GAS						
Container	A vessel with impenetrable walls	A crystal, which is the medium that sustains the phonon						
Collisions	Molecules collide with each other and with walls of vessel	Phonons collide with each other, with surface of crystal, and with impurities						
Energy conserved in collisions	Yes	Yes						
(Crystal) momentum conserved in collisions	Yes (except at walls)	Yes (except at surfaces and in collisions with impurities), provided that $T \ll \Theta_D$, so that umklapp processes are frozen out						
Number conserved in collisions	Yes	No						

THE CLASSICAL GAS vs. THE PHONON GAS

Ashcroft and Mermin, Chaps 23, 24

Thermal conductivity

K=1/3 *c v l*

c: C/volume

v: phonon velocity

 ℓ : mean free path

(Kittel p.122)

Dimensional analysis:

Assume [K] = $[c]^{\alpha} [v]^{\beta} [\ell]^{\gamma}$

 \rightarrow $\alpha = \beta = \gamma = 1$

• The mean free path of a phonon can be affected by boundary, defects, electrons, and other phonons.

• T-dependence of the phonon mean free path ℓ

• Low *T*: For a crystal with few defects, the mean free path is limited mainly by the boundary of the sample.

• High *T*: The number of phonons are proportional to *T*. The mean free path ~ $1/T^x$ (x=1~2).

• T-dependence of the lattice thermal conductivity $K(T) \sim c(T) v \ell(T)$

Boer and Pohl, Semiconductor Physics 2018