He ² }		11 5 2s ² 2p 2s ² 2p ² 2s ² 2p ³ 2s ² 2p ⁴ 2s ² 2p ⁵ 2s ² 2p ⁶	IIIB A13 Si14 P15 S16 CI17 Ar18	IV 35 ^{23p2} 35 ^{23p3} 35 ^{23p4} 35 ² 3p ⁵ 35 ^{23p6}	Cu ²⁹ Zn ³⁰ Ga ³¹ Ge ³² As ³³ Se ³⁴ Br ³⁵ Kr ³⁶	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁶ Ag ⁴⁷ Cd ⁴⁸ In ⁴⁹ Sn ⁵⁰ Sb ⁵¹ Te ⁵² I ⁵³ Xe ⁵⁴	4d ¹⁰ 4d ¹⁰ 4d ¹⁰ 5s ² 5p ³ 5s ² 5p ³ 5s ² 5p ⁴ 5s ² 5p ⁵ 5s ² 5p ⁶	¹ Au ⁷⁹ M ⁸⁰ Ti ⁸¹ Ph ⁸² Bi ⁸³ Po ⁸⁴ At ⁸⁵ Rn ⁸⁶	
0 ⁸ F ⁹ 2s ² 2p ⁴ 2s ² 2 S ¹⁶ Cl ¹⁷ 3s ² 3p ⁴ 3s ² 3 Se ³⁴ Br ³	2s ² 2p ⁴ 2s ² 2 S ¹⁶ Cl ¹¹ 3s ² 3p ⁴ 3s ² 3 Se ³⁴ Br ³	S ¹⁶ Cl ¹⁷ 3 <i>s</i> ² 3 <i>p</i> ⁴ 3 <i>s</i> ² 3 Se ³⁴ Br ³	3s ² 3p ⁴ 3s ² 3 Se ³⁴ Br ³	Se ³⁴ Br ³		4s24p4 4s24		5s ² 5p ⁴ 5s ² !		6x ² 6p 6x ² 6p ² 6s ² 6p ³ 6s ² 6p ⁴ 6s ² 6p ⁵ 6s ² 6p ⁶
N ⁷ 2s ² 2p ³ P15 3s ² 3p ³ AS ³³	2s ² 2p ³ P15 3s ² 3p ³ AS ³³	р15 3s ² 3p ³ As ³³	3s ² 3p ³	As ³³		4s ² 4p ³	Sb ⁵¹	5s²5p³	Bi ⁸³	6s ² 6p ³
C ⁶ 2J ² 2p ² 3s ² 3p ²	24 ² 2p ² Si ¹⁴ 36 ² 3p ²	8	N .			4s24p2	Sn ⁵⁰	Su ^a Sp ^a		642603
85 24 ² 2p Al ¹³ 34 ⁸ 3p	24 ² 2p Al ¹³ 34 ⁸ 3p					48 ² 4p		5s ² 5p		6836p
			Second Second	Second second	******	3 <i>d</i> 10 4 s ²	Cd ⁴⁸	4410 582		ŝ.
	≡≣≥[≣ ≥ [≥ [Cu ²⁹	3d ¹⁰ 4s	Ag ⁴⁷	4d ¹⁰ 5s	Au ⁷⁹	5d ¹⁰ 6s
6				2	Ni ²⁸	3d ⁸ 4s ²	Pd ⁴⁶	4d ¹⁰	bf ⁷⁸	54%
	(0)	10								
etal	at ut	ants	strus		Co ²⁷	3ď ⁷ 4s ²	Rh ⁴⁵	4ď ⁸ 5s	Ir ⁷⁷	5ď ⁹ -
e metal s ements	s ements	s ements	ements		Fe ²⁶ Co ²⁷	3d ⁶ 3d ⁷ 4s ² 4s ²	Ru ⁴⁴ Rh ⁴⁵	4d ⁷ 4d ⁸ 5s 5s	05 ⁷⁶ Ir ⁷⁷	5d ⁶ 5d ⁹ 6s ² -
aline metal tals etals tals	tals etals Malamante	stals Malamante	at a lamante		Mn ²⁵ Fe ²⁶ Co ²⁷	CF 53	Tc43 Ru44			- 201 - 201
alkaline metals	maiala		t metals	alent elements	Cr ²⁴ Mn ²⁵ Fe ²⁶ Co ²⁷	3d ⁶ 4s ²	Mo ⁴² Tc ⁴³ Ru ⁴⁴	4d ⁷ 5s	0s ⁷⁶	5ď ⁶ 6s²
	lent alkaline meta	lent metals	alent metals	drivalent elements	Cr ²⁴ Mn ²⁵ Fe ²⁶	3d ⁵ 3d ⁶ 4s ² 4s ²	2 Tc ⁴³ Ru ⁴⁴	4d ⁶ 4d ⁷ 5s 5s	Ta ⁷³ W ⁷⁴ Re ⁷⁵ Os ⁷⁶	5d ⁵ 5d ⁶ 6x ² 6x ²
<u>vlonovalent alkaline m</u>	Divalent alkaline meta	Divalent metals	Trivalent metals	Duadrivalent elements	V23 Cr24 Mn ²⁵ Fe ²⁶	3d ⁵ 3d ⁵ 3d ⁶ 4s 4s ² 4s ²	Mo ⁴² Tc ⁴³ Ru ⁴⁴	4d ⁵ 4d ⁶ 4d ⁷ 5s 5s 5s	Ta ⁷³ W ⁷⁴ Re ⁷⁵ Os ⁷⁶	5d ³ 5d ⁴ 5d ⁵ 5d ⁶ 6s ² 6s ² 6s ² 6s ²
Monovalent alkaline metals	Divalent alkaline meta		Trivalent metals	Ouadrivalent elements	V23 Cr24 Mn ²⁵ Fe ²⁶	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nb ⁴¹ Mo ⁴² Tc ⁴³ Ru ⁴⁴	4d ⁴ 4d ⁵ 4d ⁶ 4d ⁷ 5s 5s 5s 5s	Ta ⁷³ W ⁷⁴ Re ⁷⁵ Os ⁷⁶	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Bet Divalent alkaline meta	Divalent metals	Net Trivalent metals	Quadrivalent elements	Cr ²⁴ Mn ²⁵ Fe ²⁶	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr ⁴⁰ Nb ⁴¹ Mo ⁴² Tc ⁴³ Ru ⁴⁴	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf ⁷² Ta ⁷³ W ⁷⁴ Re ⁷⁵ Os ⁷⁶	5d ³ 5d ⁴ 5d ⁵ 5d ⁶ 6s ² 6s ² 6s ² 6s ²

Band structure of various metals

From the lecture notes of Prof. R. Cywinski (Univ. of Leeds)

(1) Monovalent metals (NFE model good)

ALKAI	LI METALS	NOBLE METALS (FACE-CENTERED CUBIC)			
(BODY-CEN	TERED CUBIC) ^a				
Li:	$1s^22s^1$	alasia (Semin		
Na:	[Ne]3s ¹				
K:	$[Ar]4s^1$	Cu:	$[Ar]3d^{10}4s^{1}$		
Rb:	[Kr]5s ¹	Ag:	$[Kr]4d^{10}5s^{1}$		
Cs:	[Xe]6s ¹	Au:	$[Xe]4f^{14}5d^{10}6s^1$		

Alkali metals (Li, Na, K, Rb, Cs)

 $\begin{cases} k_F = (3\pi^2 n)^{1/3}, \\ n = 2/a^3 \end{cases}$ $\Rightarrow k_F = (3/4\pi)^{1/3} (2\pi/a) \\ \Gamma N = (2\pi/a) [(1/2)^2 + (1/2)^2]^{1/2} \\ \therefore k_F = 0.877 \ \Gamma N \end{cases}$

First BZ (of a bcc lattice) and the Fermi sphere

 $4\pi/a$

Nobel metals (Cu, Ag, Au)

Optical properties of Alkali metals

5000A $\approx 10^5$ /cm << 10⁸ /cm \rightarrow vertical transition

Re $\sigma(\omega)$ for Na, K, and Rb

Fermi energy Na: 3.24 eV K: 2.12 eV Rb:1.85 eV

EM wave in a metal: exp[i($c\omega/n$)x], n=($\epsilon_0+4\pi\sigma i/\omega$)^{1/2} Absorption \propto Im(n) \propto Re(σ)

Optical properties of noble metals

Figure 15.11

Burdick's calculated bands for copper, illustrating that the absorption threshold for transitions up from the conduction band is about 4 eV, while the threshold for transitions from the d-band to the conduction band is only about 2 eV. (The energy scale is in tenths of a rydberg (0.1 Ry = 1.36 eV).)Note the resemblance of the bands other than the d-bands to the free electron bands plotted 8, below.

10

hω(eV)

15

0

Rea The imaginary part of the dielectric constant, $\epsilon_2(\omega) = \operatorname{Im} \epsilon(\omega)$ vs. $\hbar\omega$, as deduced from reflectivity measurements. (H. Ehrenreich and H. R. Phillip, Phys. Rev. 128, 1622 (1962).) Note the characteristic free electron behavior $(1/\omega^3)$ below about 2 eV in copper and below about 4 eV in silver. The onset of interband absorption is quite apparent.

0

15

ħω(eV)

20

(2) Divalent metals

DIVALENT METALS							
IIA METALS			IIB METALS				
Be:	$1s^2 2s^2$	hcp		ne qui selectros			
Mg:	$[Ne]3s^2$	hcp					
Ca:	$[Ar]4s^2$	fcc	Zn: $[Ar]3d^{10}4s^2$	hcp			
Sr:	[Kr]5s ²	fcc	Cd: $[Kr]4d^{10}5s^2$	hcp			
Ba:	[Xe]6s ²	bcc	Hg: $[Xe]4f^{14}5d^{10}6s^2$	*			

* Rhombohedral monatomic Bravais lattice.

Eg.,Fermi surfaces of Beryllium

http://www.phys.ufl.edu/fermisurface/

(3) Trivalent metals

Eg., Aluminum

The FS from the empty lattice model:

 $2^{nd} BZ$ $3^{rd} BZ$

(4) Semimetal

†	2012				PROEDEM
Energy	0.00				
	1	1.000.000.00		labo n estros labo	
				and a start of the	
	Insulator	Metal	Semimetal	Semiconductor	Semiconductor

Number of carrier $<< 10^{22}/cm^3$

Examples: As(4s²4p³), Sb(5s²5p³), Bi(6s²6p³); graphite Band structure of graphite (by Bross and Alsheimer)

(nonzero DOS at K and H)

Pentavalent metals As, Sb, Bi have rhombohedral crystal structure (stretch a cube along its body diagonal) with 2 atoms in a unit cell (10 valence electron fill 5 energy bands) (5) The transition metals (d metals, 3d, 4d, 5d)

 \diamond Fermi energy at d-bands

→ higher DOS, larger specific heat $C \propto k_B^2 Tg(E_F)$

 \diamond Tight-binding approx. more appropriate.

 \diamond Correction from e-e int maybe as large as 100%.

♦ Partially filled d-bands may give rise to magnetism.
Electron spin no longer simply "a factor of 2"
(chap 32)

- (6) The rare earth metals (f metals, 4f, 5f)
- Mostly hcp, similar chemical properties, difficult to get large and pure samples. Therefore, few Fermi surface data.
- Theoretical band calculation may not be reliable anyway.

Expect to see f-band characters near FE, but not so!

s-p-d hybridized bands in the middle

split f-bands above and below

Simple one-electron band picture may fail altogether!

E.g. Mott transition (metal-insulator transition)

