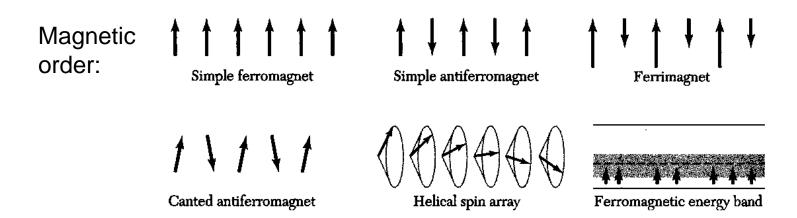
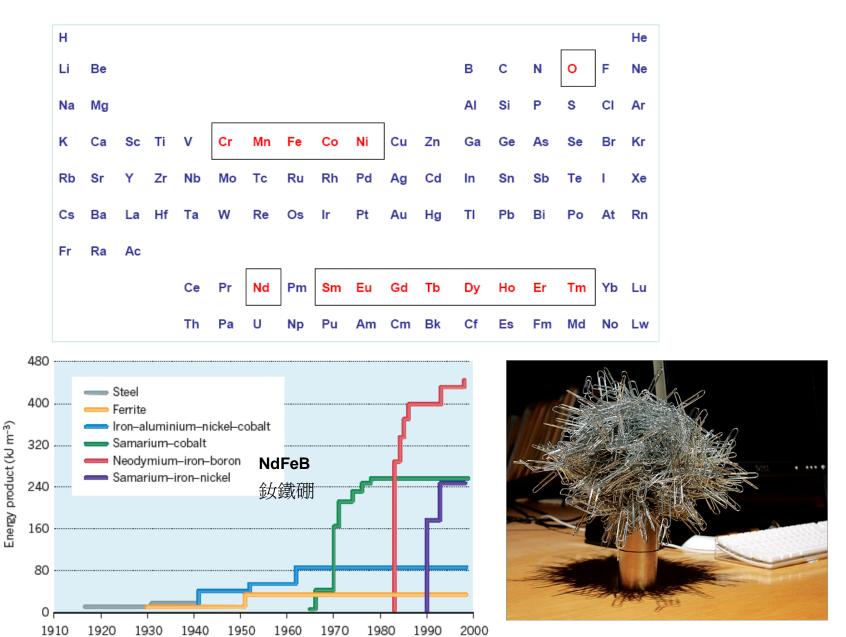
Ferromagnetism and antiferromagnetism

- ferromagnetism (FM)
 - exchange interaction, Heisenberg model
 - spin wave, magnon
- antiferromagnetism (AFM)
- ferromagnetic domains
- nanomagnetic particles



15 elements are magnetically ordered in the solid state

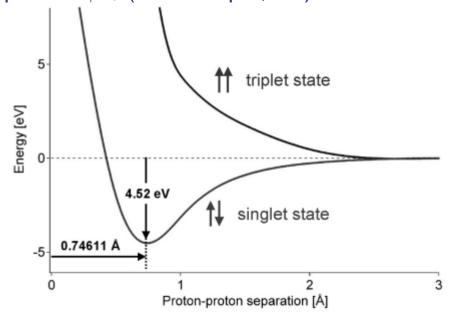


Ferromagnetic insulator (no itinerant electron)

- FM is not from magnetic dipole-dipole interaction, nor the SO interaction. It is a result of electrostatic interaction!
- Estimate of order:

$$U = \frac{1}{r^3} \left[\vec{m}_1 \cdot \vec{m}_2 - 3(\vec{m}_1 \cdot \hat{r}) \cdot (\vec{m}_2 \cdot \hat{r}) \right]$$
$$\approx \frac{(g\mu_B)^2}{r^3} \approx 10^{-4} \text{ eV } (\sim 1 \text{ K) for } r \approx 2\text{A}$$

Because of the electrostatic interaction, some prefers
 ↑ ↑, some prefers ↑ ↓ (for example, H2).



Effective interaction between a pair of spinful ions

$$\vec{S}_1 \cdot \vec{S}_2 = \begin{cases} -3/4 & \text{for singlet} \\ 1/4 & \text{for triplet} \end{cases}$$

:. Heisenberg wrote

$$U = -(E_s - E_t)\vec{S}_1 \cdot \vec{S}_2 + \frac{1}{4}(E_s + 3E_t) \rightarrow \begin{cases} E_s \\ E_t \end{cases}$$
$$= -J\vec{S}_1 \cdot \vec{S}_2 + \text{constant (Heisenberg model)}$$

- J is called the exchange coupling const. (for 2-e system, the GND state must be a singlet)
- FM has J>0, AFM has J<0
- $U = -(E_s E_t)\vec{S_1} \cdot \vec{S_2} + \frac{1}{4}(E_s + 3E_t) \rightarrow \begin{cases} E_s \\ E_t \end{cases}$ The tendency for an ion to align the spins of nearby ions is called an exchange field H_F (or molecular field, usually much stronger than applied field.)

• Weiss mean field $H_F = \lambda M$ for FM

$$\vec{M} = \chi_p(\vec{H} + \vec{H}_E)$$
, where $\chi_p = C/T$ is PM susceptibility $\chi_p = n(g_J \mu_B)^2 \frac{J(J+1)}{3kT} \equiv \frac{C}{T}$

$$\Rightarrow \chi = \frac{M}{H} = \frac{C}{T - C\lambda} \equiv \frac{C}{T - T_C} \quad \text{(Curie-Weiss law, for } T > T_c \text{ only)}$$

$$\lambda = \frac{T_c}{C} = \frac{3k_B T_c}{ng^2 \mu_B^2 S(S+1)}$$
For iron, $T_c \sim 1000 \text{ K, g} \sim 2, S \sim 1$

$$\therefore \lambda \sim 5000 \text{ (no unit in cgs)}$$

$$M_s \sim 1700 \text{ G, H}_E \sim 10^3 \text{ T.}$$

Temperature dependence of magnetization

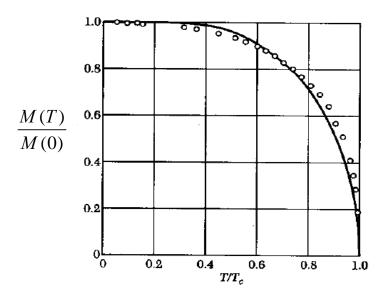
$$M = \frac{N}{V} g_J \mu_B J B_J \left(\frac{g_J \mu_B J H}{kT} \right)$$
where $B_J(x) \equiv \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J} x \right) - \frac{1}{2J} \coth\left(\frac{x}{2J} \right)$

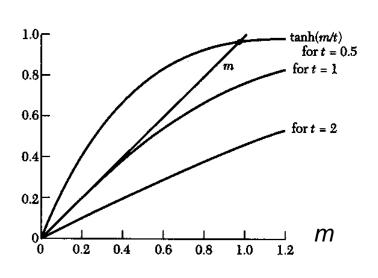
$$= \tanh x \text{ (for } J = 1/2 \text{)}$$

 $H \approx \lambda M$ (H_{ext} neglected)

$$\therefore M = n\mu \tanh \frac{\mu \lambda M}{kT} \quad (\mu = g_J \mu_B J)$$

or
$$m = \frac{M}{n\mu} = \tanh \frac{m}{t}$$
 $\left(t = \frac{kT}{n\mu^2 \lambda}\right)$





At low T,

$$\Delta M \equiv M(0) - M(T)$$

$$\approx 2n\mu e^{-2\lambda n\mu^2/kT}$$

Does not agree with experiment, which is $\sim T^{3/2}$. Explained later using spin wave excitation.

Spin wave in 1-dim FM

Heisenberg model
$$H = -2J\sum_{p=1}^{N} \vec{S}_{p} \cdot \vec{S}_{p+1}$$
 $(J > 0)$

- Ground state energy $E_0 = -2NJS^2$
- Excited state:

Flip 1 spin costs $8JS^2$. But there is a cheaper way to create excited state.

Classical approach,

$$\begin{split} H = -J \sum_{p=1}^{N} \vec{S}_{p} \cdot \left(\vec{S}_{p-1} + \vec{S}_{p+1} \right) &= -\sum_{p=1}^{N} \vec{\mu}_{p} \cdot \vec{B}_{p} \\ \text{where } \vec{\mu}_{p} = -g \mu_{B} \vec{S}_{p} \qquad \left(\mu_{B} = e \hbar / 2 m c \right) \qquad &\hbar \text{S is the classical angular momentum} \\ \vec{B}_{p} \equiv -\frac{J}{g \mu_{B}} \left(\vec{S}_{p-1} + \vec{S}_{p+1} \right) \qquad \text{effective B field (exchange field)} \end{split}$$

$$\hbar \frac{d\vec{S}_p}{dt} = \vec{\mu}_p \times \vec{B}_p = J\left(\vec{S}_p \times \vec{S}_{p-1} + \vec{S}_p \times \vec{S}_{p+1}\right)$$

Dispersion of spin wave

assume
$$S_p^z \approx S; S_p^x, S_p^y \ll S_p^z,$$

neglect nonlinear terms in S_p^x, S_p^y

$$\hbar \frac{dS_p^x}{dt} = JS \left(2S_p^y - S_{p-1}^y - S_{p+1}^y \right),$$

$$\Rightarrow \frac{dS_p^y}{dt} = -JS \left(2S_p^x - S_{p-1}^x - S_{p+1}^x \right).$$
let $S_p^x = ue^{i(pka-\omega t)}; S_p^y = ve^{i(pka-\omega t)},$
then
$$\begin{pmatrix} i\hbar\omega & 2JS(1-\cos ka) \\ -2JS(1-\cos ka) & i\hbar\omega \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

$$\Rightarrow \hbar\omega = 2JS(1-\cos ka) & \propto k^2 \text{ at long wave length}$$

- Quantized spin wave is called magnon (∈ boson)
- magnon energy $\varepsilon_k = (n_k + 1/2)\hbar\omega_k$
- magnons, like phonons, can interact with each other if nonlinear spin interaction is included

Thermal excitations of magnons

$$M = NS - \sum_{k} \langle n_k \rangle$$

Number of magnons being excited,

$$\sum_{k} \langle n_{k} \rangle = \int d\omega D(\omega) \langle n_{k} \rangle$$

$$\langle n_k \rangle = \frac{1}{e^{\hbar \omega_k / kT} - 1}$$

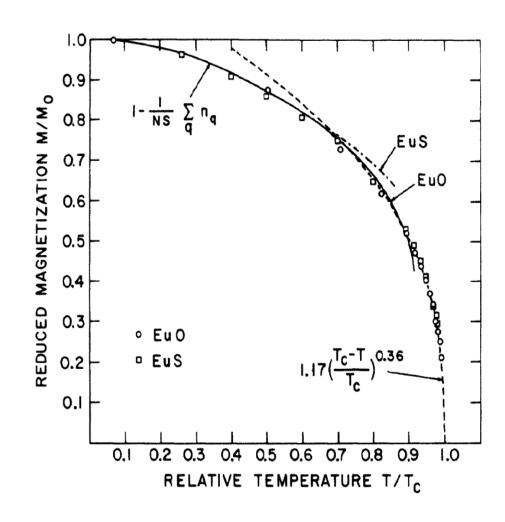
DOS in 3-dimension,

$$D(\omega) = \frac{1}{4\pi^2} \left(\frac{\hbar}{JSa^2}\right)^{3/2} \omega^{1/2}$$

$$\therefore \sum_{k} \langle n_k \rangle = \frac{1}{4\pi^2} \left(\frac{kT}{JSa^2} \right)^{3/2} \int_0^\infty dx \frac{x^{1/2}}{e^x - 1}$$

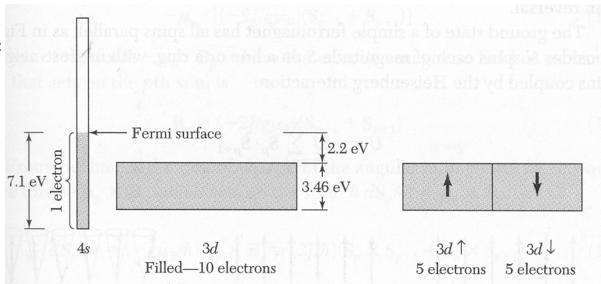
 $0.0587(4\pi^2)$

$$\frac{\Delta M}{M(0)} = \frac{\sum_{k} \langle n_k \rangle}{NS} \propto T^{3/2} \quad \text{(Bloch } T^{3/2} \text{ law)}$$

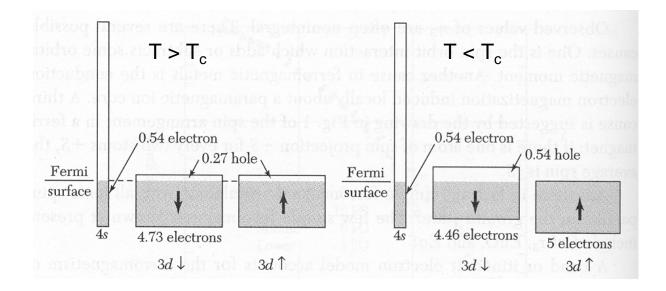


FM in Fe, Co, Ni (Itinerant electrons)

Cu, nonmagnetic



Ni, magnetic

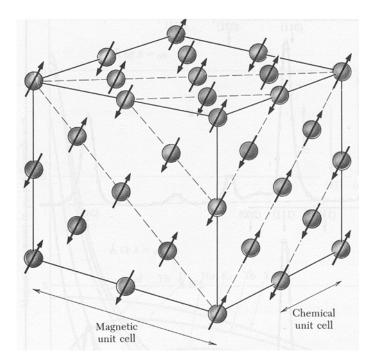


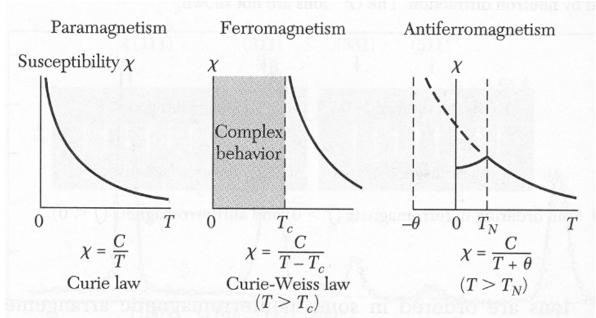
- ferromagnetism (FM)
- antiferromagnetism (AFM)
 - susceptibilities
 - ferrimagnetism
- ferromagnetic domains
- nanomagnetic particles

Antiferromagnetism (predicted by Neel, 1936)

- many AFM are transition metal oxides
- net magnetization is zero, not easy to show that it's a AFM. First confirmed by Shull at 1949 using neutron scattering.

MnO, transition temperature=610 K





T-dependence of susceptibility for $T > T_N$

Consider a AFM consists of 2 FM sublattices A, B.

$$\vec{H}_A = -\lambda \vec{M}_B; \quad \vec{H}_B = -\lambda \vec{M}_A$$

Use separate Curie consts C_A , C_B for sublattices A, B

$$M_A T = C_A (H - \lambda M_B);$$

$$M_BT = C_B(H - \lambda M_A).$$

$$\rightarrow \begin{pmatrix} T & \lambda C_A \\ \lambda C_B & T \end{pmatrix} \begin{pmatrix} M_A \\ M_B \end{pmatrix} = \begin{pmatrix} C_A \\ C_B \end{pmatrix} H$$

There is non-zero solution when H = 0

only if det = 0

$$\Rightarrow T_N = \lambda (C_A C_B)^{1/2}$$

At
$$T > T_N$$
,

$$\chi = \frac{M_A + M_B}{H} = \frac{(C_A + C_B)T - 2\lambda(C_A C_B)}{T^2 - T_N^2}$$

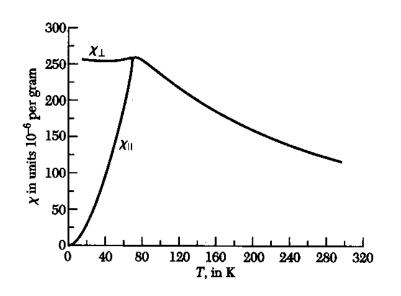
For identical sublattices,

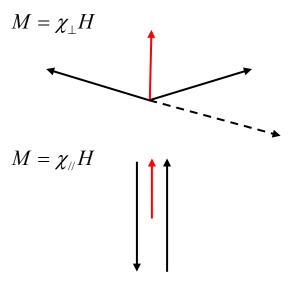
$$\chi = \frac{2CT - 2\lambda C^2}{T^2 - (\lambda C)^2} = \frac{2C}{T + T_N}, \quad T_N = \lambda C$$

Experiment:
$$\chi = \frac{2C}{T + \theta}$$

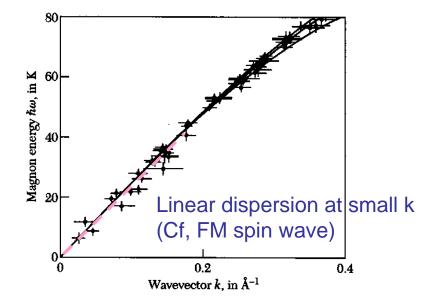
Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	Curie-Weiss $ heta$, in K	$rac{ heta}{T_N}$	$\frac{\chi(0)}{\chi(T_N)}$
MnO	fcc	116	610	5.3	<u>2</u> 3
\mathbf{MnS}	fee	160	528	3.3	0.82
MnTe	hex. layer	307	690	2.25	
\mathbf{MnF}_2	bc tetr.	67	82	1.24	0.76
FeF_2	be tetr.	79	117	1.48	0.72
$FeCl_2$	hex. layer	24	48	2.0	< 0.2
FeO	fcc	198	570	2.9	0.8
$CoCl_2$	hex. layer	25	38.1	1.53	
CoO	fee	291	330	1.14	
$NiCl_2$	hex. layer	50	68.2	1.37	
NiO	fee	525	~2000	~4	
Cr	bec	308			

• Susceptibility for $T < T_N$ (Kittel, p343)





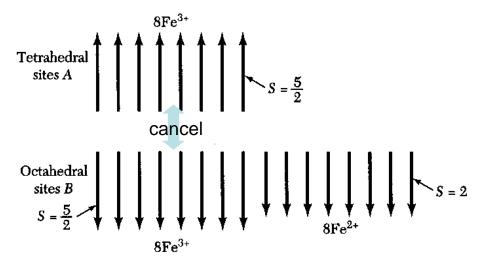
 Dispersion relation for AFM spin wave (Kittel, p344)



Ferrimagnetic materials

磁鐵礦 Magnetite (Fe₃O₄ or FeO · Fe₂O₃) Hematite 赤鐵礦

- Curie temperature 585 C
- belong to a more general class of ferrite MO · Fe₂O₃
 (M=Fe, Co, Ni, Cu, Mg…)
 磁性氧化物



Iron garnet 鐵石榴石

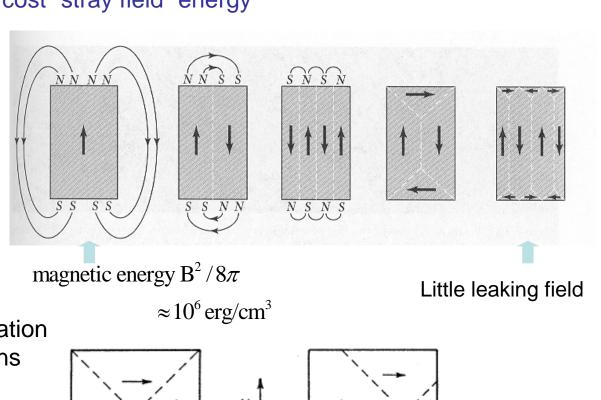
- - YIG has high degree of Faraday effect, high Q factor in microwave frequencies, low absorption of infrared wavelengths up to 600 nm ... etc (wiki)

- ferromagnetism (FM)
- antiferromagnetism (AFM)
- ferromagnetic domains
- nanomagnetic particles

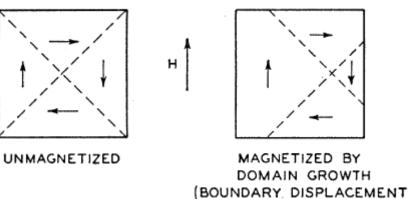
Magnetic domains (proposed by Weiss 1906)

Why not all spins be parallel to reduce the exchange energy?

→ it would cost "stray field" energy



Magnetization and domains

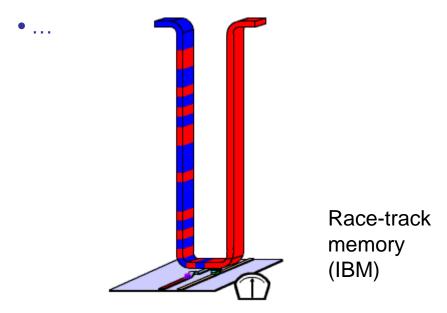


Transition between domain walls

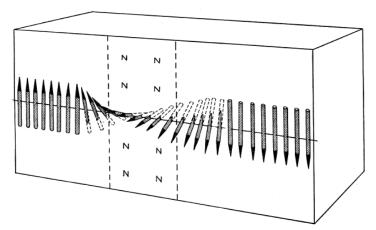
→ Would cost too much exchange energy (not so in ferroelectric materials)

Domain wall dynamics

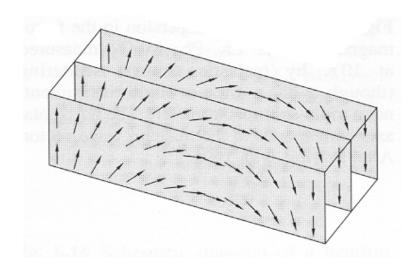
• domain wall motion induced by spin current

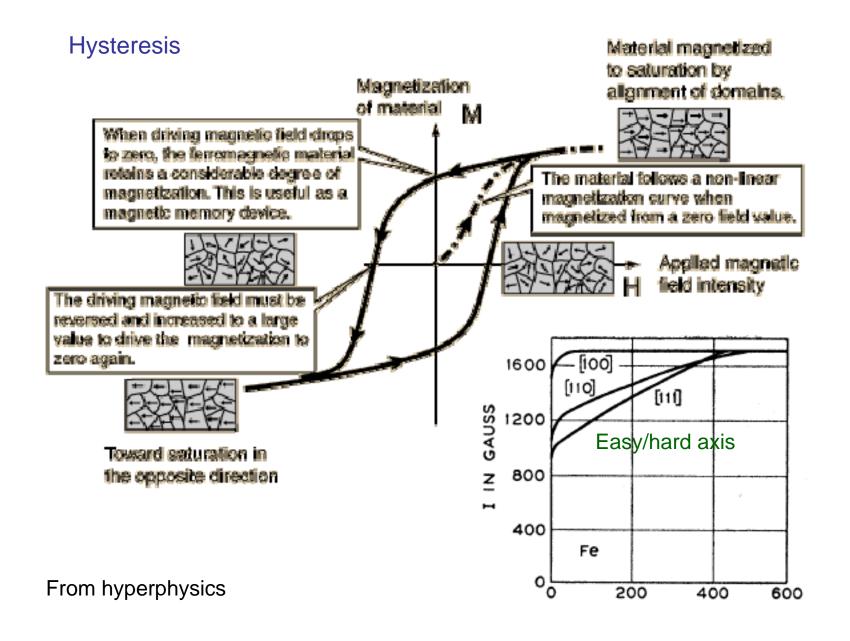


Bloch wall



Neel wall





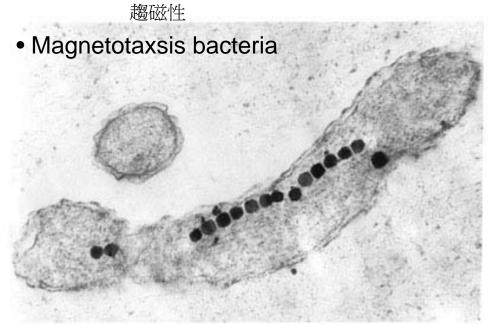
Single domain particle: ferrofluid, magnetic data storage ...

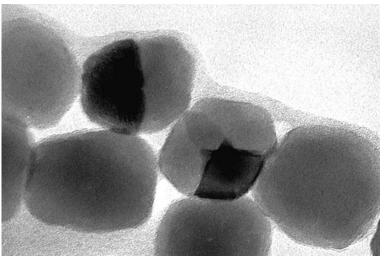
• superparamagnetism

M_R

M_S

H



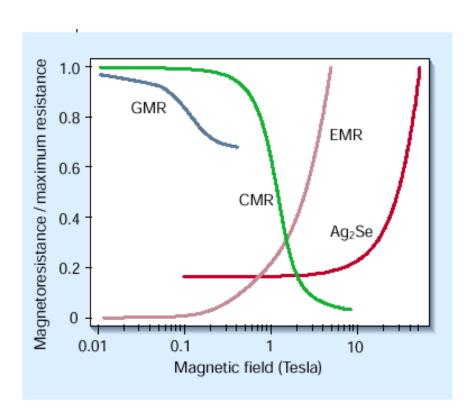


http://www.calpoly.edu/~rfrankel/mtbphoto.html

The zoo of magnetoresistance (first discovered by Lord Kelvin, 1857)

- GMR (giant MR)
- CMR (colossal MR)
- TMR (tunneling MR, Julliere, Phys. Lett. 1975)
- EMR (extraordinary MR, Solin, 2000)

• ...



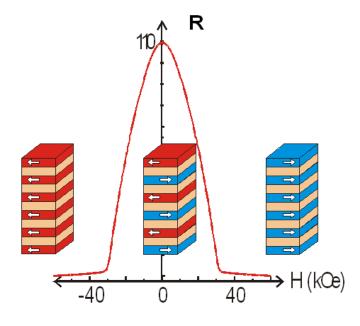
Soh and Aeppli, Nature (2002)

Figure 1 Performance of magnetic-field sensors. The dependence of magnetoresistance on applied magnetic field is shown for typical devices based on giant magnetoresistance (GMR) at a temperature of 295 K, colossal magnetoresistance (CMR) at 220 K and extraordinary magnetoresistance (EMR) at 300 K. Husmann et al.8 have devised a new sensor based on the silver chalcogenide Ag₂Se, which can be used to measure magnetic-field strengths as high as 50 Tesla. The data shown here were measured at a temperature of 290 K, but the device performs just as well over a wide temperature range, even down to just a few degrees above absolute zero. (Data derived from refs 3, 6, 8 and A. Biswas, personal communication.)

Giant MR (Gruenberg JAP; Fert PRL, 1988)

- In 1988, GMR was discovered
- In 1996, GMR reading heads were commercialized
- Since 2000: Virtually all writing heads are GMR heads

A. Fert and P. Grünberg



TYPE OF MR EFFECT USED	MR AT 300 KELVINS (percent)	DATA DENSITY (Gb/in ²)	SIGNAL-TO- NOISE RATIO (decibels) (larger is better)	TIME CONSTANT (nanoseconds) (smaller is faster)	MAGNETIC FIELD NEEDED (teslas) (smaller is better)
Target	4-10	100-1,000	30–40	0.01-0.1	0.005-0.05
EMR	> 35	> 300	43	< 0.001	0.05
GMR	10	125	29	0.1	0.005
TMR	15	200 estimated	34	0.1	0.001
CMR	0.4	100 estimated	-17	1.0	0.05
BMR	3,000	> 1,000	10	0.1	0.03

supplementary

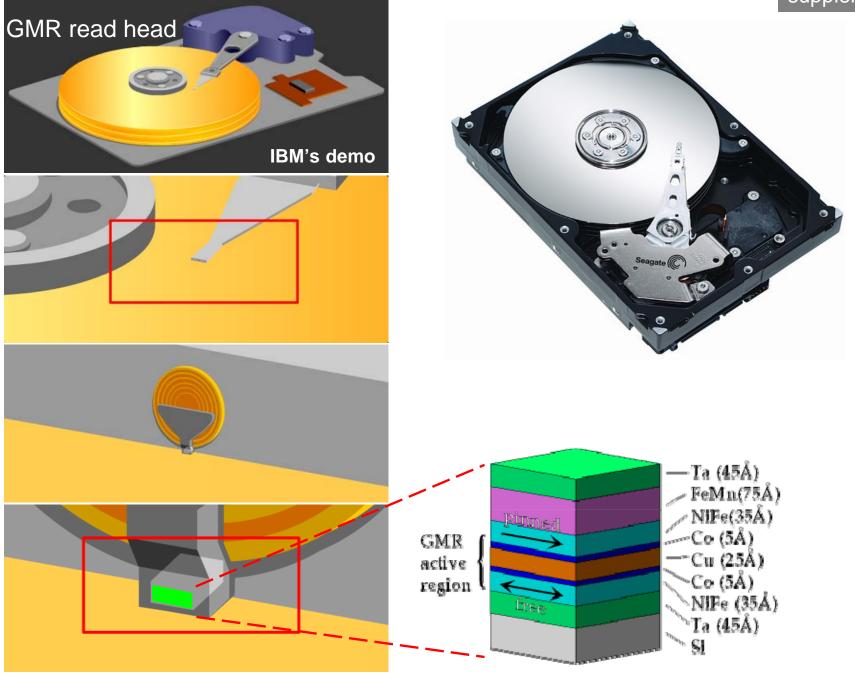


Fig from http://www.stoner.leeds.ac.uk/research/