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I. GENERAL FORMULATION

A material would polarize, or carry a current under an
external electric field,

P = χeE (1)
j = σE.

If the electric field is not too strong, then the electric sus-
ceptibility and the conductivity are independent of the
electric field. They only depend on the material proper-
ties in the absence of the electric field (in equilibrium).
This type of response is called the linear response.

The average of an observable (such as the electric po-
larization) in equilibrium is

〈A〉0 =
1
Z0

∑

{n}0
e−βE{n}0 〈{n}0|A|{n}0〉. (2)

Under an external field, the states {n}0 are perturbed to
become {n}, and the average becomes

〈A〉 =
1
Z

∑

{n}
e−βE{n}〈{n}|A|{n}〉 = 〈A〉0 + δ〈A〉. (3)

Our job is to find out δ〈A〉.
In the following, as long as there is no ambiguity, we

will write the labels of a manybody state {n} simply as
n. Before perturbation,

H0|n0〉 = E0
n|n0〉, (4)

where E0
n and |n0〉 are eigne-energies and eigenstates of

the manybody Hamiltonian H0. The external perturba-
tion is assumed to be

H = H0 + H ′(t)θ(t− t0). (5)

That is, the perturbation is turned on at time t0. After
the perturbation,

H(t)|n(t)〉 = i
∂

∂t
|n(t)〉. (6)

In the interaction picture, the perturbed states

|n(t)〉 = e−iH0t|nI(t)〉 (7)
= e−iH0tUI(t, t0)|nI(t0)〉,

where

UI(t, t0) = 1− i

∫ t

t0

dt′H ′
I(t

′) + · · · , (8)

and |nI(t0)〉 = |n0〉 is the states before perturbation.
Substitute Eqs. (7) and (8) into Eq. (3), and keep only

the terms to linear order in H ′, we have

〈A(t)〉 (9)

= 〈A〉0 − i

∫ t

t0

dt′
∑

n

〈n0|[AI(t),H ′
I(t

′)]|n0〉e
−βE0

n

Z0

= 〈A〉0 − i

∫ t

t0

dt′〈[AI(t),H ′
I(t

′)]〉0.

For example, if

H ′(t) =
∫

dv B(r)︸ ︷︷︸
operator

· f(r, t)︸ ︷︷ ︸
C−number

, (10)

then

δ〈A(r, t)〉 (11)

= −i

∫
dv′

∫ t

t0

dt′〈[AI(r, t),BI(r′, t′)]〉0 · f(r′, t′)

= −i

∫
dv′

∫ ∞

−∞
dt′θ(t− t′)〈[AI(r, t),BI(r′, t′)]〉0 · f(r′, t′),

This can be written as

δ〈A(x)〉 =
∫

dx′
∑
α

χABα(x, x′)fα(x′), (12)

where x = (r, t), dx′ ≡ dv′dt′, and

χABα(x, x′) = −iθ(t− t′)〈[AI(x), BIα(x′)]〉0. (13)

Eq (12) is called the Kubo formula, and χABα is called
the response function. Notice that the operators are
written in the interaction picture.

II. DENSITY RESPONSE AND DIELECTRIC FUNCTION

A. Density response

In this section, we consider the perturbation of electron
density caused by an external electric potential. Before
perturbation,

H0 = T + VL + Vee, (14)
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where VL is a one-body interaction, such as the electron-
ion interaction, and Vee is the electron-electron interac-
tion. The perturbation can be written in the following
form,

H ′ =
∫

dvρe(r)φext(r, t), (15)

where ρe = q
∑

s ψ†s(r)ψs(r) (q = −e) is the electron
density, and φext is an external potential.

Because of the external potential φext, electron density

〈ρe〉0 → 〈ρe〉 = 〈ρe〉0 + δ〈ρe〉. (16)

Comparing with the Kubo formula, we find the following
replacement necessary,

A → ρe, (17)
B → ρe,

f → φext.

The Kubo formula gives

δ〈ρe(x)〉 =
∫

dx′χρe(x, x′)φ(x′), (18)

and the response function is

χρe(x, x′) = −iθ(t− t′)〈[ρe(x), ρe(x′)]〉0. (19)

Remember that the operators are in the interaction pic-
ture, but the subscript I is neglected from now on.

If the unperturbed system H0 is uniform in both space
and time, then

χρe(x, x′) = χρe(x− x′). (20)

In this case, the convolution theorem in Fourier analysis
tells us that

δ〈ρe(κ)〉 = χρe(κ)φext(κ) (21)

where κ ≡ (q, ω), κx ≡ q · r− ωt, and

δ〈ρe(x)〉 =
∑

κ

eiκxδ〈ρe(κ)〉, (22)

δ〈ρe(κ)〉 =
∫

dxe−iκxδ〈ρe(x)〉;

φext(x) =
∑

κ

eiκxφext(κ),

φext(κ) =
∫

dxe−iκxφext(x).

The summation over k should be understood as
∑

κ

=
1
V0

∑
q

∫
dω

2π
. (23)

The Fourier expansion of the response function is

χρe(x− x′) =
∑

κ

eiκ(x−x′)χρe(κ), (24)

and

χρe(κ) =
∫

d(x− x′)e−iκ(x−x′)χρe(x− x′) (25)

= −i

∫
d(t− t′)θ(t− t′)eiω(t−t′)

×
∫

d(r− r′)e−iq·(r−r′)〈[ρe(r, t), ρe(r′, t′)]〉0.

Since the system is uniform in space, one can perform an
extra space integral 1

V0

∫
dr′ to the space integral above,

and use

1
V0

∫
dr′

∫
d(r− r′) =

1
V0

∫
dr

∫
dr′. (26)

Then it is not difficult to see that

χρe
(κ) = − i

V0

∫ ∞

0

dteiωt〈[ρe(q, t), ρe(−q, 0)]〉0. (27)

Notice that ρe(−q, 0) can also be written as ρ†e(q, 0). In
the following, we may sometimes use the particle density
ρ and its response function χρ, which are related to the
electron density and its response function as

ρe = −eρ, χρe = e2χρ. (28)

Also, notice that these response functions are related to,
but not exactly the same as, the electric susceptibility χe

introduced at the beginning of this chapter.

B. Dielectric function

The response function connects δρe with φext. How-
ever, the dielectric function connects φext with the total
potential φ, which is the sum of φext and the potential
due to material response,

ε(κ) =
φext(κ)
φ(κ)

. (29)

The total particle density is

〈ρ〉 = 〈ρ〉ext + δ〈ρ〉, (30)

which are related to the potentials via the Poisson equa-
tions (CGS),

q2φext(κ) = −4πe〈ρ(κ)〉ext, (31)
q2φ(κ) = −4πe〈ρ(κ)〉.

Notice that quantities such as φext(κ) = φext(q, ω) is
allowed to be frequency-dependent. Also, if one prefers
the MKS system, then just replaces 4π with 1

ε0
.

Combine the equations above, we get

φ(κ) = φext + 4πe2χρ
φext

q2
. (32)
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This leads to

1
ε(κ)

= 1 +
4πe2

q2

︸ ︷︷ ︸
V (2)(q)

χρ, (33)

in which V (2)(q) is the Fourier transform of V (2)(r) =
e2/r.

Instead of using δ〈ρ〉 = χρφext, an alternative relation
is

δ〈ρ〉 = χ0
ρφ, φ = φext + δφ. (34)

It’s not difficult to see that

χρ =
χ0

ρ

1− 4πe2

q2 χ0
ρ

, (35)

and

ε(κ) = 1− 4πe2

q2
χ0

ρ. (36)

The calculation of χρ is based on Eq. (27), in which
one averages over unperturbed manybody states (includ-
ing electron interactions). A great advantage of using
the alternative response function χ0

ρ is that, since the lo-
cal field correction has been included in φ, one may use
non-interacting manybody states in the calculation of the
response function. This is justified as follows:

The interaction term is, apart from a one-body correc-
tion (see Sec. IV.B.1 of Chap 1),

Vee =
1
2

∫
dvdv′V (2)(r− r′)ρe(r)ρe(r′). (37)

Using the mean field approximation, and expand the
charge density with respect to a mean value 〈ρ(r)〉e,

ρe(r) = 〈ρe(r)〉+ ρe(r)− 〈ρe(r)〉︸ ︷︷ ︸
δρe(r)

. (38)

Neglecting the (δρe)2 term, we have

Vee '
∫

dvdv′V (2)(r− r′)ρe(r)〈ρe(r′)〉 (39)

− 1
2

∫
dvdv′V (2)(r− r′)〈ρe(r)〉〈ρe(r′)〉.

The mean-field Hamiltonian under perturbation is
(dropping the second term in Eq. (39))

HMF (40)

= H̃0 +
∫

dvdv′V (2)(r− r′)ρe(r)〈ρe(r′)〉+
∫

dvρe(r)φext

= H̃0 +
∫

dvρe(r)φ(r),

where H̃0 = T + VL, and

φ(r) = φext(r) +
∫

dv′V (2)(r− r′)〈ρe(r′)〉. (41)

The second term in φ(r) is the induced potential, or the
local field correction. That is, if one calculates the re-
sponse to the total perturbing potential φ(r), then the
unperturbed system is H̃0, which is non-interacting.

C. Calculation of χ0
ρ

We now drop the superscript and subscript 0 that refer
to equilibrium states. Recall that

χ0
ρ(κ) = − i

V0

∫ ∞

0

dteiωt〈[ρ(q, t), ρ(−q, 0)]〉. (42)

In the interaction picture, ρ(q, t) = eiH0tρ(q)e−iH0t. The
summation

I(q; t, 0) (43)

≡
∑

n

e−βEn

Z
〈n|ρ(q, t)ρ(−q, 0)|n〉

=
∑
n,m

e−βEn

Z
ei(En−Em)t〈n|ρ(q, 0)|m〉〈m|ρ(−q, 0)|n〉,

where we have inserted a complete set
∑

m |m〉〈m|, and
used e−iH0t|m〉 = e−iEmt|m〉.

Since both |n〉 and |m〉 are manybody states of non-
interacting particles, 〈m|a†ksak−q,s|n〉 can be non-zero
only if, when comparing to |n〉, the |m〉 state has one
more electron at state (k, s), but one less electron at
(k − q, s). Therefore, En − Em = −εk + εk−q, a differ-
ence of two single-particle energies. This energy factor
can now be moved outside of the m-summation, and

I(q; t, 0) (44)

=
∑

n

e−βEn

Z

∑

k,s

ei(εk−q−εk)t〈n|a†k−q,saksa
†
ksak−q,s|n〉

=
∑

k,s

ei(εk−q−εk)t
∑

n

e−βEn

Z
〈n|a†k−q,sak−q,s(1− a†ksaks)|n〉

= 2
∑

k

ei(εk−q−εk)tf(εk−q)[1− f(εk)],

where

f(εk) =
∑

n

e−βEn

Z
〈n|a†ksaks|n〉 (45)

is the Fermi distribution function (spin-independent
here). It is left as an exercise to show that

f(εk) =
1

1 + eβεk
. (46)

Similarly, one can show that

I(−q; 0, t) = 2
∑

k

ei(εk−q−εk)tf(εk)[1− f(εk−q)]. (47)
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From Eq. (42), we have

χ0
ρ(κ) = − i

V0

∫ ∞

0

dteiωt[I(q; t, 0)− I(−q; 0, t)] (48)

= − 2i

V0

∑

k

∫ ∞

0

dteiωtei(εk−q−εk)t[f(εk−q)− f(εk)].

The integral over time is
∫ ∞

0

dtei(ω+iδ)tei(εk−q−εk)t =
i

ω + iδ + (εk−q − εk)
.

(49)
The positive infinitesimal δ is added to ensure the con-
vergence of the exponential at t = ∞.

Finally,

χ0
ρ(q, ω) =

2
V0

∑

k

f(εk−q)− f(εk)
ω + iδ + (εk−q − εk)

, (50)

and

ε(q, ω) = 1− 4πe2

q2

2
V0

∑

k

f(εk−q)− f(εk)
ω + iδ + (εk−q − εk)

. (51)

This is called the Lindhard dielectric function.

1. Low frequency limit

For frequency as low as ω ¿ vF q, the ω in the denom-
inator can be neglected, and

χ0
ρ(q, 0) ' 2

V0

∑

k

f(εk−q)− f(εk)
εk−q − εk

. (52)

For general wave length (in 3-dim), it can be shown
that

χ0
ρ(q, 0) ' −D(εF )F

(
q

2kF

)
, (53)

where D(εF ) is the density of states at the Fermi energy,
and

F (x) =
1
2

+
1− x2

4x
ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ (54)

is the Lindhard function (see Sec. II.A).
At long wavelength,

χ0
ρ(q, 0) ' − 2

V0

∑

k

(
−∂fk

∂ε

)
= −D(εF ). (55)

In this limit, the dielectric function is

ε(q, 0) = 1 +
k2

TF

q2
, (56)

where k2
TF = 4πe2D(εF ) is the Thomas-Fermi wave

vector.

2. High frequency limit

The response function in Eq. (50) can be re-written as

χ0
ρ(q, ω) = − 2

V0

∑

k

f(εk)
2(εk−q − εk)

ω2 − (εk−q − εk)2
. (57)

For high frequency and long wave length (ω À vF q),

χ0
ρ(0, ω) ' q2

mω2

2
V0

∑

k

f(εk) =
q2n

mω2
, (58)

where n is the particle density. Therefore,

ε(0, ω) = 1− ω2
p

ω2
, (59)

where ω2
p = 4πne2/m is the plasma frequency.

Notice that

lim
q→0

lim
ω→0

ε(q, ω) 6= lim
ω→0

lim
q→0

ε(q, ω). (60)

That is, the dielectric function is not analytic at (q, ω) =
(0, 0).

III. CURRENT RESPONSE AND CONDUCTIVITY

In this section, we consider the generation of electron
current caused by an external electric field. Before per-
turbation,

H0 =
∫

dvψ†(r)
p2

2m
ψ(r) + VL + Vee, (61)

where VL is the one-body interaction, and Vee is the elec-
tron interaction. In general, the external electric field
depends on both scalar and vector potentials,

E(r, t) = −∇φ− 1
c

∂A
∂t

. (62)

For a static field, it is common to use E = −∇φ, as in
Eq. (15). A static and uniform field then has φ(r) =
−E · r. A disadvantage of this scalar potential is that it
is not bounded at infinity. To avoid such a problem, one
can choose a gauge such that

E(r, t) = −1
c

∂A
∂t

. (63)

In this case, a static and uniform field has A(t) = −cEt.
After applying the electric field, the Hamiltonian be-

comes

H =
∫

dvψ†(r)

(
p + e

cA
)2

2m
ψ(r) + VL + Vee (64)

= H0 +
e

2mc

∫
dv

(
ψ†p ·Aψ + ψ†A · pψ

)

+
e2

2mc2

∫
dvA2ψ†ψ,
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where H0 refers to the parts that do not depend on A.
The particle current density operator J is related to the
variation of the Hamiltonian as follows,

δH =
e

c

∫
dvJ · δA, (65)

where

J ≡ 1
2mi

[
ψ†∇ψ − (∇ψ†

)
ψ

]
︸ ︷︷ ︸

paramagnetic current Jp

+
e

mc
Aψ†ψ.

︸ ︷︷ ︸
diamagnetic current JA

(66)
We would like to find out the connection between 〈J〉

and A (to first order). After perturbation, a manybody
state

|n0〉 → |n〉 ' |n0〉+ |n1〉, (67)

where |n1〉 is of order A. Therefore,

〈n|J|n〉 = 〈n0|JA|n0〉+ 〈n0|Jp|n1〉+ 〈n1|Jp|n0〉+ O(A2).
(68)

We have assumed, of course, that the equilibrium state
carries no current, 〈n0|Jp|n0〉 = 0.

After taking the thermal average, the first term be-
comes

〈JA〉 =
e

mc
A(r, t)〈ρ(r)〉. (69)

The other two terms are evaluated using the Kubo for-
mula in Eq. (12), with the following replacement,

A → Jp
α, (70)

B → Jp,

f → e

c
A.

This gives us (recall that x = (r, t))

〈Jp
α(x)〉 =

e

c

∫
dx′χp

αβ(x, x′)Aβ(x′), (71)

where

χp
αβ(x, x′) = −iθ(t− t′)

〈
[Jp

α(x), Jp
β(x′)]

〉
. (72)

After combining with the diamagnetic term in Eq. (69),
the response function for the total current is

χαβ(x, x′) = δαβδ(x− x′)
ρ(x)
m

+ χp
αβ(x, x′). (73)

Since H0 is time independent, the response function
χαβ(x, x′) = χαβ(r, r′; t − t′). Applying the convolution
theorem to the time variable (see Eq. (21)), one has

〈Jα(r, ω)〉 =
e

c

∫
dv′χαβ(r, r′; ω)Aβ(r′, ω). (74)

The vector potential is related to the electric field as fol-
lows,

E(ω) = i
ω

c
A(ω). (75)

Therefore, for the electric current density Je = −eJ, one
has

〈Je
α(r, ω)〉 =

∫
dv′σp

αβ(r, r′; ω)Eβ(r′, ω). (76)

The conductivity tensor is

σαβ(r, r′;ω) = i
e2

ω
χαβ(r, r′; ω). (77)

Since the conductivity in general is a non-local quantity,
the current density at point r would not only depend on
the electric field at r, but also on neighboring electric
field.

For a homogeneous material,

σαβ(r, r′; ω) = σαβ(r− r′; ω). (78)

We can then apply the convolution theorem to the space
variable and get

〈Je
α(q, ω)〉 = σαβ(q, ω)Eβ(q, ω), (79)

where

σαβ(q, ω) = i
e2

ω

[
δαβ

ρ(q, ω)
m

+ χp
αβ(q, ω)

]
, (80)

in which (Cf. eq. (27))

χp
αβ(q, ω) = − i

V0

∫
dtθ(t−t′)eiω(t−t′)〈[Jα(q, t), Jβ(−q, t′)]〉.

(81)
Notice that the diamagnetic part diverges as ω → 0. For
usual conductors and insulators, this divergence would
be cancelled by part of the paramagnetic term, so that
the DC conductivity remains finite. In a superconductor
(which is a perfect diamagnet), the paramagnetic term
vanishes in the DC limit, and the conductivity is purely
imaginary,

σSC
αβ (q, ω) = i

e2

ω
δαβ

ρ(q, ω)
m

. (82)

A purely imaginary conductivity leads to inductive be-
havior, and would not cause energy dissipation.

A. Conductivity for non-interacting electrons

We would like to start from a formulation that does
not presume spacial homogeneity:

χp
αβ(r, r′;ω) = − i

V0

∫ ∞

0

dteiωt〈
[
Jp

α(r, t), Jp
β(r′, 0)

]
〉,
(83)

where Jp
α(r, t) = eiH0tJp

α(r)e−iH0t. Therefore,

Iαβ(r, t, r′, 0) (84)

≡
∑

n

e−βEn

Z
〈n|Jp

α(r, t)Jp
β(r′, 0)|n〉

=
∑
n,m

e−βEn

Z
ei(En−Em)t〈n|Jp

α(r, 0)|m〉〈m|Jp
β(r′, 0)|n〉,
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in which we have inserted a complete set
∑

m |m〉〈m|,
and used e−iH0t|m〉 = e−iEmt|m〉 (see Sec. II.C).

The current density operator can be written as (see
Chap 1)

Jp
α(r) =

∑
µν

〈µ|J (1)
α (r)|ν〉a†µaν , (85)

where J
(1)
α is a one-body operator to be specified later.

From now on, assume the electrons are non-interacting.
Substitute Jp

α(r) into Eq. (84), we get terms with the
form

〈n|a†1a2|m〉〈m|a†3a4|n〉, (86)

where 1, 2 · · · are simplified notations for single-particle
state labels µ, ν. For this type of term to be non-zero,
the single-particle states have to satisfy (1 = 4, 2 = 3),
or (1 = 2, 3 = 4). They both lead to En − Em = ε1 − ε2

(the second case has ε1 = ε2).
The summation over m can now be removed, and

Iαβ(r, t, r′, 0) =
∑

1,2,3,4

ei(ε1−ε2)t〈1|J (1)
α |2〉〈3|J (1)

β |4〉(87)

× 〈a†1a2a
†
3a4〉(δ14δ23 + δ12δ34).

The thermal averages are (see Eq. (45))

〈a†1a2a
†
2a1〉 = f1(1− f2), (88)

〈a†1a1a
†
2a2〉 = f1f2.

where f is the Fermi distribution function. As a result,
one can show that

Iαβ(r, t, r′, 0)− Iβα(r′, 0, r, t) (89)

=
∑
12

ei(ε1−ε2)t〈1|J (1)
α |2〉〈2|J (1)

β |1〉(f1 − f2).

Therefore,

χP
αβ(r, r′, ω) (90)

= − i

V0

∫ ∞

0

dteiωt[Iαβ(r, t, r′, 0)− Iβα(r′, 0, r, t)]

=
1
V0

∑
12

(f1 − f2)
〈1|J (1)

α (r)|2〉〈2|J (1)
β (r′)|1〉

Ω + ε1 − ε2
,

where Ω ≡ ω + iδ
If the material is homogeneous, then

χP
αβ(q, ω) =

1
V0

∑
12

(f1 − f2)
〈1|J (1)

α (q)|2〉〈2|J (1)
β (−q)|1〉

Ω + ε1 − ε2
,

(91)
The one-body operator is (see Chap 1)

J (1)
α (q) =

1
2m

(
pαe−iq·r + e−iq·rpα

)
(92)

1. Uniform limit

For the uniform case (q = 0), the conductivity is

σαβ(0, ω) (93)

=
ie2

ω

[
δαβ

ρ(ω)
m

+
1

m2V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

Ω + εµ − εν

]
.

(We have re-written 1, 2 as µ, ν.)
The denominator can be decomposed as

1
εµν ± Ω

=
1

εµν

(
1∓ Ω

εµν ± Ω

)
, (94)

where εµν ≡ εµ − εν . Substitute this to Eq. (93), then
the first term of the decomposition would cancel with the
diamagnetic term, because of the following f-sum rule:

1
V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

εµν
= −mρδαβ . (95)

As a result,

σαβ(0, ω) =
e2

iV0

∑
µν

(fµ − fν)
〈µ|vα|ν〉〈ν|vβ |µ〉

εµν(Ω + εµν)
, (96)

where vα = pα/m. This is sometimes called the Kubo-
Greenwood formula.

2. Uniform and static, Hall conductivity

Finally, we would like to consider the DC Hall conduc-
tivity as an example. According to Eq. (96), it can be
re-written as

σDC
α 6=β =

e2

iV0

∑
µν

fµ
〈µ|vα|ν〉〈ν|vβ |µ〉 − 〈µ|vβ |ν〉〈ν|vα|µ〉

ε2
µν

.

(97)
If the single-particle states are Bloch states (µ → nk),
〈r|nk〉 = eik·runk(r), where unk(r) is the cell-periodic
function, then one can show that

σDC
α6=β =

e2

V0

∑

nk

fnk
1
i

(〈
∂unk

∂kα
|∂unk

∂kβ

〉
−

〈
∂unk

∂kβ
|∂unk

∂kα

〉)

︸ ︷︷ ︸
Berry curvature Ωγ

nk

,

(98)
where α, β, and γ are cyclic. We will call this as the
TKNdN formula (see Ref. 4).

In 2-dim, for a filled band,

C
(n)
1 ≡ 1

2π

∫

filled BZ

d2kΩz
nk (99)

must be an integer (see Sec. II.B of Ref. 5). Therefore,
the Hall conductivity from filled bands is quantized,

σDC
xy =

e2

h

∑

filled n

C
(n)
1 , (100)
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where we have put back the ~ explicitly. The quantized
(topological) nature of such an integral is first pointed
out by D.J. Thouless to explain the quantum Hall
effect.

Prob. 1 Derive the f -sum rule,

1
V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

εµν
= −mρδαβ . (101)

Prob. 2 Start from Eq. (97), derive the TKNdN formula
in Eq. (98).
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