# Integer Quantum Hall effect 

- basics
- theories for the quantization
- disorder in QHS
- Berry phase in QHS
- topology in QHS
- effect of lattice
- effect of spin and electron interaction

Hall effect (1879), a classical analysis

$$
\begin{aligned}
& m^{*} \frac{d \vec{v}}{d t}=-e \vec{E}-e \frac{\vec{v}}{c} \times \vec{B}-m^{*} \frac{\vec{v}}{\tau} \\
& \vec{B}=B \hat{z} ; d \vec{v} / d t=\overrightarrow{0} \text { at steady state }
\end{aligned}
$$

- Hall resistivity

$\Longrightarrow\left(\begin{array}{cc}m^{*} / \tau & e B / c \\ -e B / c & m^{*} / \tau\end{array}\right)\binom{v_{x}}{v_{y}}=-e\binom{E_{x}}{E_{y}}$

$$
\stackrel{\vec{j}=-e n \vec{v}}{ } \quad \Longrightarrow\binom{E_{x}}{E_{y}}=\left(\begin{array}{cc}
\frac{m^{*}}{n e^{2} \tau} & \frac{B}{n e c} \\
-\frac{B}{n e c} & \frac{m^{*}}{n e^{2} \tau}
\end{array}\right)\binom{j_{x}}{j_{y}}=\rho_{0}\left(\begin{array}{cc}
1 & \omega_{c} \tau \\
-\omega_{c} \tau & 1
\end{array}\right)\binom{j_{x}}{j_{y}} \quad \rho_{0}=\frac{m^{*}}{n e^{2} \tau}, \omega_{c}=\frac{e B}{m^{*} c}
$$

- Hall conductivity

$$
\begin{aligned}
& \boldsymbol{\sigma}=\boldsymbol{\rho}^{-1}=\frac{\sigma_{0}}{1+\left(\omega_{c} \tau\right)^{2}}\left(\begin{array}{cc}
1 & -\omega_{c} \tau \\
\omega_{c} \tau & 1
\end{array}\right) \quad \sigma_{0}=\frac{n e^{2} \tau}{m^{*}} \\
& \xrightarrow{\omega_{c} \tau \ll 1} \sigma_{0}\left(\begin{array}{cc}
1 & -\omega_{c} \tau \\
\omega_{c} \tau & 1
\end{array}\right) \\
& \xrightarrow{\omega_{c} \tau \gg 1}\left(\begin{array}{cc}
0 & - \text { nec } / B \\
\text { nec } / B & 0
\end{array}\right)
\end{aligned}
$$

Resistance and conductance


$$
\binom{V_{x}}{V_{y}}=\left(\begin{array}{ll}
R_{x x} & R_{x y} \\
R_{y x} & R_{y y}
\end{array}\right)\binom{I_{x}}{I_{y}}, \quad\binom{I_{x}}{I_{y}}=\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)\binom{V_{x}}{V_{y}}
$$

Note:

$$
\begin{aligned}
& R_{x x}=\frac{\Sigma_{y y}}{\operatorname{det} \Sigma} \quad \begin{array}{l}
\text { So it's possible to have } \mathrm{R}_{\mathrm{xx}} \text { and } \Sigma_{x x} \\
\text { simultaneously be zero (provided } \mathrm{R}_{x y} \text { and } \Sigma_{x y} \\
\text { are nonzero). }
\end{array} \\
& \begin{array}{ll}
3 D: \quad R_{x x}=\left.\rho_{x x} \frac{L}{A} \quad R_{y x} \equiv \frac{V_{y}}{I_{x}}\right|_{I_{y}=0}=\frac{E_{y} W}{J_{x} A}=\rho_{y x} \frac{W}{A} \\
2 D: \quad R_{x x}=\rho_{x x} \frac{L}{W} \quad R_{y x}=\frac{E_{y} W}{J_{x} W}=\rho_{y x}
\end{array}, l
\end{aligned}
$$

Quantum Hall effect $\quad \rho_{x x}=0, \rho_{y x}=$ const.

$$
\rightarrow \quad \Sigma_{y x}=\frac{R_{y x}}{\operatorname{det} R}=\frac{1}{R_{y x}}=\frac{1}{\rho_{y x}}=\frac{\rho_{y x}}{\operatorname{det} \rho}=\sigma_{y x}
$$

## Measurement of Hall resistance



2-dim electron gas (2DEG)

GaAs/AIGaAs heterojunction


Effect of disorder on $\sigma_{x y}$ (theoretical prediction before 1980)


## Quantum Hall effect (von Klitzing, 1980)


$\rho_{\mathrm{xy}}$ deviates from $\left(\mathrm{h} / \mathrm{e}^{2}\right) / \mathrm{n}$ by less than 3 ppm on the very first report.

- This result is independent of the shape/size of sample.
- Different materials lead to the same effect (Si MOSFET, GaAs heterojunction...)
$\rightarrow$ a very accurate way to measure $\alpha^{-1}=\mathrm{h} / \mathrm{e}^{2} \mathrm{c}=137.036$ (no unit) $\rightarrow$ a very convenient resistance standard.

An accurate and stable resistance standard (1990)


FIG. 26. Time dependence of the $1-\Omega$ standard resistors maintained at the different national laboratories.


FIG. 27. Ratio $R_{H} / R_{R}$ between the quantized Hall resistance $R_{H}$ and a wire resistor $R_{R}$ as a function of time. The result is time dependent but independent of the Hall device used in the experiment.

- experiment $\alpha^{-1}(\mathrm{q}$. Hall $)=137.0359979(32) \quad(0.024 \mathrm{ppm})$,

$$
\begin{aligned}
\alpha^{-1}(\mathrm{acJ}) & =137.0359770(77) \quad(0.056 \mathrm{ppm}) \\
\alpha^{-1}\left(h / m_{n}\right) & =137.03601082(524) \quad(0.039 \mathrm{ppm})
\end{aligned}
$$

- theory

$$
\alpha^{-1}\left(a_{e}\right)=137.03599944(57) \quad(0.0042 \mathrm{ppm})
$$

## Condensed matter physics is physics of dirt - Pauli


clean

- Flux quantization

- Quantum Hall effect
-...
Often protected by topology, but not vice versa.



## Quantum Hall effect requires

- Two-dimensional electron gas
- strong magnetic field
- low temperature $\left(k_{B} T<\hbar \omega_{c}\right)$

Note: Room Temp QHE in graphene (Novoselov et al, Science 2007)

Plateau and the importance of disorder


Why $\mathrm{R}_{\mathrm{H}}$ has to be exactly $\left(\mathrm{h} / \mathrm{e}^{2}\right) / \mathrm{n}$ ?

- see Laughlin's argument below


Width of extended states?


256 states in the LLL. $\varepsilon(\Phi)$ periodic in $\Phi_{0}$


Quantization of Hall conductance, Laughlin's gauge argument (1981)

$$
H=\sum_{i} \frac{1}{2 m}\left(\vec{p}_{i}+\frac{e}{c} \vec{A}\left(\vec{r}_{i}\right)\right)^{2}+V\left(\vec{r}_{i}\right)+V_{e e}
$$

- Simulate a longitudinal EMF by a fictitious time-dependent flux $\Phi$

$$
\begin{aligned}
j_{x} & =\frac{-e}{m} \frac{1}{L_{x} L_{y}} \sum_{i}\left[\frac{\hbar}{i} \frac{\partial}{\partial x}+\frac{e}{c} A_{x}\left(\vec{r}_{i}\right)\right] \\
& =-\frac{c}{L_{x} L_{y}} \frac{\partial H}{\partial A_{x}}=-\frac{c}{L_{y}} \frac{\partial H_{\Phi}}{\partial \Phi} \quad \Phi=A_{x} L_{x}
\end{aligned}
$$

solve

$$
H_{\Phi}\left|\psi_{\Phi}\right\rangle=E_{\Phi}\left|\psi_{\Phi}\right\rangle
$$

By the Hellman-Feynman theorem, one has

$$
\begin{aligned}
& \left.\left\langle\psi_{\Phi}\right| \frac{\partial H_{\Phi}}{\partial \Phi}\left|\psi_{\Phi}>=\frac{\partial}{\partial \Phi}<\psi_{\Phi}\right| H_{\Phi} \right\rvert\, \psi_{\Phi}>=\frac{\partial E_{\Phi}}{\partial \Phi} \\
& \therefore j_{x}=-\frac{c}{L_{y}} \frac{\partial E_{\Phi}}{\partial \Phi}
\end{aligned}
$$

- Due to gauge symmetry, the system needs to be invariant under $\Phi \rightarrow \Phi+\Phi_{0}$,
- $E_{F}$ at localized states, no charge transfer whatever $\Phi$ is.
- $E_{F}$ at extended states, only integer charges may transfer along y when $\Phi$ is changed by one $\Phi_{0}$.

$$
j_{x}=-c \frac{n(-e)}{\Phi_{0}} \frac{V_{y}}{L_{y}}=n \frac{e^{2}}{h} E_{y}
$$

Edge state in quantum Hall system

- Classical picture Chiral edge state (skipping orbit)

- Robust against disorder (no back-scattering)
- Bending of LLs

Gapless excitations at the edges


- number of edge modes $=\mathrm{n}$

Inclusion of lattice (more details later)

- Bulk states: $\mathrm{E}_{\mathrm{n}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)$ (projected to $\mathrm{k}_{\mathrm{y}}$ ); Edge states: $\mathrm{E}_{\mathrm{n}}\left(\mathrm{k}_{\mathrm{y}}\right)$

- when the flux is changed by $1 \Phi_{0}$, the states should come back.
$\rightarrow$ Only integer charges can be transported.

Streda formula (1982)
$\sigma_{H}=e c\left(\frac{\partial n}{\partial B}\right)_{\mu}$

$$
\begin{aligned}
\vec{j}(\vec{r}) & =c \vec{\nabla} \times \vec{M}(\vec{r}) \\
& =c \nabla M \times \hat{z}
\end{aligned}
$$

Nonzero along edge
$\rightarrow I=c M(\mu, B)$

$$
\begin{aligned}
& \delta I_{R}=c \frac{\partial M(\mu, B)}{\partial \mu}\left(-e V_{R}\right), \\
& \delta I_{L}=c \frac{\partial M(\mu, B)}{\partial \mu}\left(e V_{L}\right) .
\end{aligned}
$$

$\rightarrow I_{H}=\delta I_{R}-\delta I_{L}=e c\left(\frac{\partial n}{\partial B}\right)_{\mu} V_{H}$


$$
\frac{\partial M(\mu, B)}{\partial \mu}=-\frac{\partial^{2} \Omega(\mu, B)}{\partial \mu \partial B}=-\left(\frac{\partial n}{\partial B}\right)_{\mu}
$$

Degeneracy of a
$L L: D=B A / \Phi_{0}$

- If $\nu$ bands are filled, then the number of electrons per unit area is $n=\nu e B / h c$
$\therefore \sigma_{\mathrm{H}}=\nu \mathrm{e}^{2} / \mathrm{h}$


## Current response: conductivity

- Vector potential of an uniform electric field

$$
\begin{aligned}
& \vec{E}(t)=-\frac{1}{c} \frac{\partial \vec{A}(t)}{\partial t} \\
& \vec{E}(t)=\vec{E}_{\omega} e^{-i \omega t}, \text { then } \vec{A}(t)=\vec{A}_{\omega} e^{-i \omega t} ; \vec{E}_{\omega}=\frac{i \omega}{c} \vec{A}_{\omega} \\
& H=\frac{1}{2 m_{0}}\left(\vec{p}+\frac{e}{c} \vec{A}\right)^{2}+V_{l a t t}=H_{0}+\frac{e}{m_{0} c} \vec{A} \cdot \vec{p}+O\left(A^{2}\right) \\
& H^{\prime}=\frac{e}{m_{0} c} \vec{p} \cdot \vec{A}_{\omega} e^{-i \omega t}
\end{aligned}
$$

- 1st order perturbation in $\mathrm{E} \rightarrow j_{\alpha}=\sigma_{\alpha \beta} E_{\beta}$

$$
\begin{aligned}
& \sigma_{\alpha \beta}(\omega)=\frac{e^{2}}{i V} \sum_{\ell m} \frac{f_{\ell}-f_{m}}{\hbar \omega_{\ell m}} \frac{v_{\ell m}^{\alpha} v_{m \ell}^{\beta}}{\omega_{\ell m}+\omega} \quad \begin{array}{l}
\text { Kubo-Greenwood } \\
\text { formula }
\end{array} \\
& \omega_{\ell m} \equiv \omega_{\ell}-\omega_{m}, \quad v_{\ell m}^{\alpha} \equiv\left\langle\psi_{\ell}\right| v^{\alpha}\left|\psi_{m}\right\rangle
\end{aligned}
$$

## Quantization of Hall conductance

Thouless et al's argument (1982)

$$
\sigma_{\alpha \neq \beta}^{D C}=\frac{e^{2}}{i m_{0}^{2}} \frac{1}{\hbar V} \sum_{\ell m} f_{\ell} \frac{p_{\ell m}^{\alpha} p_{m \ell}^{\beta}-p_{\ell m}^{\beta} p_{m \ell}^{\alpha}}{\omega_{\ell m}^{2}} \quad \ell, \mathrm{~m}=(\mathrm{n}, k)
$$

$$
=\frac{2 e^{2}}{i \hbar V} \sum_{n k} f_{n k}\left(\left\langle\left.\frac{\partial u_{n k}}{\partial k_{\alpha}} \right\rvert\, \frac{\partial u_{n k}}{\partial k_{\beta}}\right\rangle-\left\langle\frac{\partial u_{n k}}{\partial k_{\beta}} \left\lvert\, \frac{\partial u_{n k}}{\partial k_{\alpha}}\right.\right\rangle\right) \quad \frac{p_{\ell m}^{\alpha}}{m_{0}}=\frac{1}{m_{0}}\left\langle u_{\ell}\right| \frac{\hbar}{i} \partial_{\alpha}+\hbar k_{\alpha}\left|u_{m}\right\rangle
$$

- Berry curvature

$$
\Omega_{n \gamma}(\vec{k}) \equiv i\left(\left\langle\left.\frac{\partial u_{n k}}{\partial k_{\alpha}} \right\rvert\, \frac{\partial u_{n k}}{\partial k_{\beta}}\right\rangle-\left\langle\frac{\partial u_{n k}}{\partial k_{\beta}} \left\lvert\, \frac{\partial u_{n k}}{\partial k_{\alpha}}\right.\right\rangle\right)
$$

$$
(\alpha, \beta, \gamma \text { are cyclic })
$$

- Hall conductivity for the n-th band

$$
\left(\sigma_{H}\right)_{n}=\frac{e^{2}}{h}\left[\frac{1}{2 \pi} \int_{B Z} d^{2} k\left(\Omega_{n}\right)_{Z}(\vec{k})\right]
$$

an integer for a filled band

- Berry curvature (for n-th band)

$$
\begin{aligned}
\vec{\Omega}_{n}(\vec{k}) & =i\left\langle\nabla_{\vec{k}} u_{n}\right| \times\left|\nabla_{\vec{k}} u_{n}\right\rangle \\
& =\nabla_{\vec{k}} \times \vec{A}_{n}(\vec{k})
\end{aligned}
$$

- Berry connection

$$
\vec{A}_{n}(\vec{k}) \equiv i\left\langle u_{n}\right| \nabla_{\vec{k}}\left|u_{n}\right\rangle
$$

$$
\frac{1}{2 \pi} \int_{B Z} d^{2} k \Omega_{z}(\vec{k})=\text { integer } n
$$

Pf: $\int_{B Z} d^{2} k \nabla \times \vec{A}$

$$
\begin{aligned}
& =\int_{a}^{b} d \vec{k} \cdot \vec{A}+\int_{b}^{c} d \vec{k} \cdot \vec{A}+\int_{c}^{d} d \vec{k} \cdot \vec{A}+\int_{d}^{a} d \vec{k} \cdot \vec{A} \\
& =\int_{\rightarrow} d k_{x}\left[A_{x}\left(k_{x}, 0\right)-A_{x}\left(k_{x}, g_{y}\right)\right]+\int_{\uparrow} d k_{y}\left[A_{y}\left(g_{x}, k_{y}\right)-A_{y}\left(0, k_{y}\right)\right]
\end{aligned}
$$



$$
u_{\vec{k}}=e^{i \theta_{1}\left(k_{y}\right)} u_{\vec{k}+g_{x} \hat{x}}, \quad u_{\vec{k}}=e^{i \theta_{2}\left(k_{x}\right)} u_{\vec{k}+g_{y} \hat{y}}
$$

$$
\int_{\rightarrow} d k_{x}\left[A_{x}\left(k_{x}, 0\right)-A_{x}\left(k_{x}, g_{y}\right)\right]=\theta_{2}(a)-\theta_{2}(b)
$$

$$
\cdots \quad \text { etc }
$$

$$
\int_{B Z} d^{2} k \nabla \times \vec{A}
$$

total vorticity in the BZ

$$
\begin{aligned}
& u_{a}=e^{i \theta_{1}(a)} u_{b} \\
& u_{b}=e^{i \theta_{2}(b)} u_{c} \\
& u_{c}=e^{-i \theta_{1}(d)} u_{d} \\
& u_{d}=e^{-i \theta_{2}(a)} u_{a}
\end{aligned}
$$

$$
\therefore u_{a}=e^{i\left[\theta_{1}(a)+\theta_{2}(b)-\theta_{1}(d)-\theta_{2}(a)\right]} u_{a}
$$

Zeros and vortices
$=\theta_{2}(a)-\theta_{2}(b)+\theta_{1}(d)-\theta_{1}(a)$
$=2 \pi n \quad$ total vorticity in the $B Z$


- Niu-Thouless-Wu generalization to system with disorder and electron interaction (PRB 1985).

Connection with localization in disordered system (Anderson, 1958)

- For large g (good conductor) conductance $g(L)=\sigma_{0} L^{d-2}, \quad \beta(g)=d-2$
- For small g (insulator)
$g(L)=g_{c} e^{-L / \xi}, \quad \beta(g)=\ln \frac{g}{g_{c}}$
- one-parameter scaling hypothesis (Abrahams et al, 1979 < Thouless, Landauer...): assume $\beta$ ( g ) depends only on g

$\longrightarrow \quad$ •All wave functions of disordered systems in
1D and 2D are localized.
This analysis does not apply to the QHS, since the extended states are crucial there.
$\longrightarrow \bullet$ QHE belongs to a new class of disordered systems.

"Random" Gaps. The statistics of nearest-neighbor spacings range from random to uniform (<'s indicate spacings too close for the figure to resolve). The second column shows the primes from 7,791,097 to 7,791,877. The third column shows energy levels for an excited heavy (Erbium) nucleus. The fourth column is a "length spectrum" of periodic trajectories for Sinai billiards. The fifth column is a spectrum of zeroes of the Riemann zeta function. (Figure courtesy of Springer-Verlag New York, Inc., "Chaotic motion and random matrix theories" by O. Bohigas and M. J. Giannoni in Mathematical and Computational Methods in Nuclear Physics, J. M. Gomez et al., eds., Lecture Notes in Physics, volume 209 (1984), pp. 1-99.)

Spectral distribution of random matrix (rank $N \gg 1$ )

- eigenvalues $\mathrm{E}_{\mathrm{i}}$
- mean level spacing $d_{1}=<\mathrm{E}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}}>$ (taking ensemble average)
- spacing between $\mathrm{NN} \mathrm{s}=\left(\mathrm{E}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{d}_{1}$
- $P(s)$ : distribution function of $s$
- spectral rigidity: $P(0)=0$
- level repulsion: $P(s \ll 1) \sim s^{\beta}$



Fig from Altshuler's ppt

## Wigner-Dyson classes

TABLE I. Summary of Dyson's threefold way. The Hermitian matrix $\mathcal{H}$ (and its matrix of eigenvectors $U$ ) are classified by an index $\beta \in\{1,2,4\}$, depending on the presence or absence of time-reversal (TRS) and spin-rotation (SRS) symmetry.

AltlandZirnbauer classes

|  | $\beta$ | TRS | SRS | $\mathcal{H}_{n m}$ | $U$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GOE | 1 | yes | yes | real | orthogonal |
| GUE | 2 | no | irrelevant | complex | unitary |
| GSE | 4 | yes | no | real quaternion | symplectic |



Fig from Altshuler's ppt

Quantization of magnetic monopole (see Sakurai Sec 2.6)
səןodouou כ!̣əuß̂ew ‘!̣uчS W入

- Vector potential (use 2 "atlas" to avoid Dirac string)

$$
\left\{\begin{array}{l}
\mathbf{A}^{N}=g \frac{1-\cos \theta}{r \sin \theta} \hat{\mathbf{e}}_{\varphi} \quad \Longrightarrow 0 \leq \theta<\frac{\pi}{2}+\frac{\varepsilon}{2} \\
\mathbf{A}^{S}=-g \frac{1+\cos \theta}{r \sin \theta} \hat{\mathbf{e}}_{\varphi} \quad \Longrightarrow \frac{\pi}{2}-\frac{\varepsilon}{2}<\theta \leq \pi
\end{array}\right.
$$

- gauge transformation between 2 atlas

$$
\begin{aligned}
& \vec{A}^{N}-\vec{A}^{S}=-i e^{-2 i g \varphi} \nabla e^{2 i g \varphi} \\
& \psi^{N}=\psi^{S} e^{2 i e g / \hbar c \cdot \varphi}
\end{aligned}
$$

$\rightarrow$ monopole charge is quantized

$$
\frac{2 e g}{\hbar c}=n
$$

Note:

$$
\begin{aligned}
& \nabla f=\widehat{\boldsymbol{r}} \frac{\partial f}{\partial r}+\widehat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial f}{\partial \theta}+\widehat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \\
& \nabla \times \boldsymbol{u}=\widehat{\boldsymbol{r}} \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(u_{\phi} \sin \theta\right)-\frac{\partial u_{\theta}}{\partial \phi}\right]+\widehat{\boldsymbol{\theta}} \frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial u_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r u_{\phi}\right)\right]+\widehat{\boldsymbol{\phi}} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{\partial u_{r}}{\partial \theta}\right]
\end{aligned}
$$

## Analogy in QH system

- Gauge transformation

$$
\begin{aligned}
& u_{k_{1} k_{2}}^{\prime}(x, y)=u_{k_{1} k_{2}}(x, y) \exp \left[i f\left(k_{1}, k_{2}\right)\right] \\
& \hat{\mathbf{A}}^{\prime}\left(k_{1}, k_{2}\right)=\hat{\mathbf{A}}\left(k_{1}, k_{2}\right)+i \nabla_{k} f\left(k_{1}, k_{2}\right)
\end{aligned}
$$

- Two atlases

$$
\begin{aligned}
& \left|u_{k_{1} k_{2}}^{\mathrm{II}}\right\rangle=\exp \left[i \chi\left(k_{1}, k_{2}\right)\right]\left|u_{k_{1} k_{2}}^{\mathrm{I}}\right\rangle \\
& \hat{\mathbf{A}}_{\mathrm{II}}\left(k_{1}, k_{2}\right)=\hat{\mathbf{A}}_{\mathrm{I}}\left(k_{1}, k_{2}\right)+i \nabla_{k} \chi\left(k_{1}, k_{2}\right)
\end{aligned}
$$



$$
\begin{aligned}
\sigma_{x y}^{(\alpha)} & =\frac{e^{2}}{h} \frac{1}{2 \pi i}\left\{\int_{H /} d^{2} k\left[\mathbf{\nabla}_{k} \times \hat{\mathbf{A}}_{\mathbf{I}}\left(k_{1}, k_{2}\right)\right]_{3}+\int_{H_{\mathrm{II}}} d^{2} k\left[\nabla_{k} \times \hat{\mathbf{A}}_{\mathbf{I I}}\left(k_{1} k_{2}\right)\right]_{3}\right\} \\
& =\frac{e^{2}}{h} \frac{1}{2 \pi i} \int_{\partial H} d \mathbf{k} \cdot\left[\hat{\mathbf{A}}_{1}\left(k_{1}, k_{2}\right)-\hat{\mathbf{A}}_{\mathrm{II}}\left(k_{1}, k_{2}\right)\right]=\frac{e^{2}}{h} n
\end{aligned}
$$

Connection with Berry phase
First, a brief review of Berry phase:

- Fast variable and slow variable $\mathrm{H}^{+}$2 molecule


Instead of solving time-dependent Schroedinger eq., one uses

## Born-Oppenheimer approximation

- "Slow variables $R_{i}$ " are treated as parameters $\lambda(t)$
(Kinetic energies from $P_{i}$ are neglected)
- solve time-independent Schroedinger eq.

$$
H(\vec{r}, \vec{p} ; \vec{\lambda}) \psi_{n, \vec{\lambda}}(\vec{x})=E_{n, \vec{\lambda}} \psi_{n, \vec{\lambda}}(\vec{x})
$$

"snapshot" solution

Adiabatic evolution of a quantum system $\quad H(\vec{r}, \vec{p} ; \vec{\lambda})$

- Energy spectrum:

- After a cyclic evolution

$$
\begin{aligned}
& \vec{\lambda}(T)=\vec{\lambda}(0) \\
& \psi_{n, \vec{\lambda}(T)}=e^{-\frac{i}{\hbar} \int_{0}^{T} d t^{\prime} E_{n}\left(t^{\prime}\right)} \psi_{n, \vec{\lambda}(0)}
\end{aligned}
$$

Dynamical phase

- Phases of the snapshot states at different $\lambda$ 's are independent and can be arbitrarily assigned

$$
\psi_{n, \vec{\lambda}(t)} \rightarrow e^{i \gamma_{n}(\vec{\lambda})} \psi_{n, \vec{\lambda}(t)}
$$

- Do we need to worry about this phase?

No!

- Fock, Z. Phys 1928
- Schiff, Quantum Mechanics (3rd ed.) p. 290

Pf : Consider the $n$-th level,

$$
\begin{aligned}
& \Psi_{\vec{\lambda}}(t)=e^{i \gamma_{n}(\vec{\lambda})} e^{-i \int_{0}^{t} d t^{\prime} E_{n}\left(t^{\prime}\right)} \psi_{n, \vec{\lambda}} \\
& H \Psi_{\bar{\lambda}}(t)=i \hbar \frac{\partial}{\partial t} \Psi_{\bar{\lambda}}(t) \\
& \Rightarrow \quad \dot{\gamma}_{n}=i\left\langle\psi_{n, \bar{\lambda}}\right| \frac{\partial}{\partial \vec{\lambda}}\left|\psi_{n, \vec{\lambda}}\right\rangle \cdot \dot{\vec{\lambda}} \neq 0
\end{aligned}
$$

Redefine the phase,

$$
\psi_{n, \vec{\lambda}}^{\prime}=e^{i \phi_{n}(\vec{\lambda})} \psi_{n, \vec{\lambda}}
$$

$$
A_{n}{ }^{\prime}(\lambda)=A_{n}(\lambda)-\frac{\partial \phi_{n}}{\partial \vec{\lambda}}
$$

Choose a $\phi(\lambda)$ such that,

$$
\begin{array}{ll}
\mathbf{A}_{\mathrm{n}}{ }^{\prime}(\lambda)=0 & \begin{array}{l}
\text { Thus removing } \\
\text { the extra phase }
\end{array}
\end{array}
$$

- One problem: $\nabla_{\vec{\lambda}} \phi=\vec{A}(\vec{\lambda})$
does not always have a well-defined (global) solution.

M. Berry, 1984 :
- Parameter-dependent phase $\psi_{\vec{\lambda}(T)}=e^{i \gamma_{C}} e^{-\frac{i}{\hbar} \int_{0}^{d t} d\left(t^{\prime}\right)} \psi_{\vec{\lambda}(0)} \quad \begin{aligned} & \text { Index } n \\ & \text { neglected }\end{aligned}$ NOT always removable!
- Berry phase (path dependent)

$$
\gamma_{C}=\oint_{C}\left\langle\psi_{\vec{\lambda}}\right| i \frac{\partial}{\partial \vec{\lambda}}\left|\psi_{\vec{\lambda}}\right\rangle \cdot d \vec{\lambda} \neq 0
$$

Some terminology

- Berry connection (or Berry potential)

$$
\vec{A}(\vec{\lambda}) \equiv i\left\langle\psi_{\vec{\lambda}}\right| \nabla_{\lambda}\left|\psi_{\vec{\lambda}}\right\rangle \quad \lambda \rightarrow \mathrm{k} \text { in } \mathrm{QHS}
$$

- Stokes theorem (3-dim here, can be higher)

$$
\gamma_{C}=\oint_{C} \vec{A} \cdot d \vec{\lambda}=\int_{S} \nabla_{\vec{\lambda}} \times \vec{A} \cdot d \vec{a}
$$

- Berry curvature (or Berry field)

$$
\vec{F}(\vec{\lambda}) \equiv \nabla_{\lambda} \times \vec{A}(\vec{\lambda})=i\left\langle\nabla_{\lambda} \psi_{\vec{\lambda}}\right| \times\left|\nabla_{\lambda} \psi_{\vec{\lambda}}\right\rangle
$$



- Gauge transformation
- $\left|\psi_{\bar{\lambda}}\right\rangle \rightarrow e^{i \phi(\bar{\lambda}}\left|\psi_{\bar{\lambda}}\right\rangle$

Redefine the phases of the snapshot states

- $\vec{A}(\vec{\lambda}) \rightarrow \vec{A}(\vec{\lambda})-\nabla_{\lambda} \phi$
- $\vec{F}(\vec{\lambda}) \rightarrow \vec{F}(\vec{\lambda})$
- $\quad \gamma_{C} \rightarrow \gamma_{C}$

Berry curvature and Berry phase are gauge invariant

Example: spin-1/2 particle in slowly changing $B$ field

- Real space


$$
H_{\vec{\lambda}=\vec{B}}=\mu_{B} \vec{B} \cdot \vec{\sigma}
$$

Level crossing at $B=0$


- Parameter space


Berry curvature

$$
\vec{F}_{ \pm}(\vec{B})=i\left\langle\nabla_{B} \psi_{ \pm, \vec{B}}\right| \times\left|\nabla_{B} \psi_{ \pm, \vec{B}}\right\rangle=\mp \frac{1}{2} \frac{\hat{B}}{B^{2}}
$$

Berry phase
$\gamma_{ \pm}=\int_{S} \vec{F}_{ \pm} \cdot d \vec{a}=\mp \frac{1}{2} \Omega(C)$ spin $\times$ solid angle

## Examples of the Berry phase:



## Magnetic monopole / Berry phase / fiber bundle

| in real space | in parameter space | U(1) fiber bundle |
| :---: | :---: | :---: |
| Vector potential | Berry connection | connection |
| $\vec{A}(\vec{r})$ | $\vec{A}(\vec{k}) \equiv i\left\langle\psi_{\lambda}\right\| \nabla_{\lambda}\left\|\psi_{\lambda}\right\rangle$ | A |
| Magnetic field | Berry curvature (in 3D) | curvature |
| $\vec{B}(\vec{r}) \equiv \nabla \times \vec{A}(\vec{r})$ | $\vec{F}(\vec{\lambda}) \equiv \nabla_{\lambda} \times \vec{A}(\vec{\lambda})$ | F |
| Magnetic flux | Berry phase | horizontal lift (along a U(1) fiber) |
| $\begin{gathered} \Phi=\int_{C} \vec{A}(\vec{r}) \cdot d \vec{r} \\ =\int_{S} \vec{B} \cdot d \vec{a} \end{gathered}$ | $\begin{aligned} \gamma_{C} & =\int_{C} \vec{A}(\vec{\lambda}) \cdot d \vec{\lambda} \\ & =\int_{S} \vec{F} \cdot d \vec{a} \end{aligned}$ | $\gamma$ |
| Monopole charge | Total curvature | 1st Chern number |
| $\frac{1}{4 \pi} \int \vec{B}(\vec{r}) \cdot d \vec{a}=\text { integer }$ | $\begin{aligned} & \frac{1}{2 \pi} \int \vec{F}(\vec{\lambda}) \cdot d \vec{a}=\text { integer } \\ & (\mathrm{QHE}: \lambda \rightarrow \mathbf{k} \text { in } \mathrm{BZ}) \end{aligned}$ | $\mathrm{C}_{1}$ |

Connection with geometry
First，a brief review of topology：
外在
內在
－extrinsic curvature K vs
－intrinsic（Gaussian）curvature G


Figure 3．6 Bending a sheet of paper changes its extrinsic－ but not its intrinsic－geometry．

－anholonomy angle $\alpha=$ 內角和－180
－Gaussian curvature $G \equiv \lim _{A \rightarrow 0} \frac{\alpha}{A}=\frac{1}{R^{2}}$
－Positive and negative Gaussian curvature


$$
G<0
$$

－Berry phase $\fallingdotseq$ anholonomy angle in differential geometry
－Berry curvature $\fallingdotseq$ Gaussian curvature

The most beautiful theorem in differential topology
－Gauss－Bonnet theorem（for a 2－dim closed surface）

$$
\int_{M} d a G=2 \pi \chi(M), \quad \chi=2(1-g) \quad \begin{aligned}
& \text { Euler characteristic } \\
& \text { 歐拉特徵數 }
\end{aligned}
$$


$g=0$

$g=1$


$$
g=2
$$

－Gauss－Bonnet theorem（for a surface with boundary）

$$
\int_{M} d a G+\int_{\partial M} d s k_{g}=2 \pi \chi(M, \partial M)
$$

－Can be generalized to higher dimension．


Fiber bundle: a generalization of product space

- Fiber bundle
~ base space $\times$ fiber space


Simplest examples:

- Trivial fiber bundle (a product space $R^{1} \times R^{1}$ )

- Nontrivial fiber bundle

Möbius band


- In physics, a fiber bundle ~ Physical space $\times$ Inner space
- In QHS, we have $\mathrm{T}^{2} \times \mathrm{U}(1)$ (spin, gauge field...)
- The topology of a fiber bundle is classified by Chern numbers
$\sim$ the topology of a closed surface is classified by Euler characteristics

Lattice electron in a magnetic field: magnetic translation symmetry consider a uniform B field

$$
\begin{aligned}
& \left\{\frac{1}{2 m}[\boldsymbol{p}+e \boldsymbol{A}(\boldsymbol{r})]^{2}+V_{L}(\boldsymbol{r})\right\} \psi(\boldsymbol{r})=E \psi(\boldsymbol{r}) \\
\longrightarrow & \left\{\frac{1}{2 m}[\boldsymbol{p}+e \boldsymbol{A}(\boldsymbol{r}+\boldsymbol{a})]^{2}+V_{L}(\boldsymbol{r})\right\} \psi(\boldsymbol{r}+\boldsymbol{a})=E \psi(\boldsymbol{r}+\boldsymbol{a})
\end{aligned}
$$


where $V_{L}(\boldsymbol{r}+\boldsymbol{a})=V_{L}(\boldsymbol{r})$ has been used. One can write

$$
\boldsymbol{A}(\boldsymbol{r}+\boldsymbol{a})=\boldsymbol{A}(\boldsymbol{r})+\nabla f(\boldsymbol{r})
$$

where $\nabla f(r)=\boldsymbol{A}(\boldsymbol{r}+\boldsymbol{a})-\boldsymbol{A}(\boldsymbol{r}) \equiv \Delta \mathbf{A}(\boldsymbol{a})$.

$$
f=\Delta \boldsymbol{A} \cdot \boldsymbol{r}
$$

Indep of $r$

The extra vector potential $\nabla f$ can be removed by a gauge transformation,

$$
\begin{gathered}
\left\{\frac{1}{2 m}[\boldsymbol{p}+e \boldsymbol{A}(\boldsymbol{r})]^{2}+V_{L}(\boldsymbol{r})\right\} e^{i(e / \hbar) f} \psi(\boldsymbol{r}+\boldsymbol{a}) \\
=E e^{i(e / f) f} \psi(\boldsymbol{r}+\boldsymbol{a})
\end{gathered}
$$

- Magnetic translation operator

$$
T_{a} \psi(\boldsymbol{r})=e^{i(e / \hbar) \Delta \boldsymbol{A} \cdot \boldsymbol{r}} \psi(\boldsymbol{r}+\boldsymbol{a})
$$

$$
\left[H, T_{a}\right]=0
$$

$$
T_{\boldsymbol{a}_{2}} T_{\boldsymbol{a}_{1}}=T_{\boldsymbol{a}_{1}} T_{\boldsymbol{a}_{2}} \exp \left(i \frac{e}{\hbar} \oint \boldsymbol{A} \cdot d \boldsymbol{r}\right)
$$

Simultaneous eigenstates:
magnetic Bloch states

$$
\left\{\begin{array}{l}
H \psi_{n k}=E_{n \boldsymbol{k}} \psi_{n k}, \\
T_{q a_{1}} \psi_{n k}=e^{i k \cdot q a_{1}} \psi_{n k}, \\
T_{a_{2}} \psi_{n k}=e^{i k \cdot a_{2}} \psi_{n k} .
\end{array}\right.
$$

- If $\Phi=(\mathrm{p} / \mathrm{q}) \Phi_{0}$ per plaquette, then Magnetic Brillouin zone = BZ/q.
e.g., p/q=1/3


Magnetic unit cell


## Hofstadter spectrum

Band structure of a 2DEG subjects to both a periodic potential $\mathrm{V}(\mathrm{x}, \mathrm{y})$ and a magnetic field $B$.
$\left\{\frac{1}{2 m}[\boldsymbol{p}+e \boldsymbol{A}(\boldsymbol{r})]^{2}+V_{L}(\boldsymbol{r})\right\} \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})$
$\square$ Can be studied using the tight-binding model (TBM).
$\square$ Surprisingly complex spectrum!
Split of energy band depends on flux/plaquette.
If $\Phi_{\text {plaq }} / \Phi_{0}=p / q$, where $p, q$ are co-prime integers, then a Bloch band splits to $q$ subbands (for TBM).
$\square$ The tricky part:

$$
\left.\frac{1}{3-\frac{1}{10}}=\frac{10}{10} \quad 1 .+\frac{1}{29} \right\rvert\, \begin{aligned}
& 3 \\
& 87
\end{aligned}
$$

$\mathrm{q}=3 \rightarrow \mathrm{q}=29$ upon a small change of B ! Also, when $B \rightarrow 0, q$ can be very large.

Hofstadter's butterfly (Hofstadter, PRB 1976)

- A fractal spectrum with self-similarity structure


B $\rightarrow 0$ near band button, evenly-spaced LLs

- The total band width for an irrational $q$ is of measure zero (as in a Cantor set).


集異璧
著作：Douglas R．Hofstadter
翻譯：郭維德
$p / q=1 / 3 \quad$ Bloch energy $E(k)$




## Berry curvature $\Omega$ (k)


(a)
( $2 \pi / 3,0$ )

(b)


Distribution of Hall conductance among subbands (Thouless et al PRL 1982)

- Diophantine equation

$$
\begin{aligned}
& r=p t_{r}+q s_{r} \\
& \text { e.g., } \quad p / q=2 / 5 \\
& r=2 t_{r}+5 s_{r} \\
& 5=2(0)+5(1) \\
& 4=2(2)+5(0) \\
& 3=2(-1)+5(1) \\
& 2=2(1)+5(0) \\
& 1=2(-2)+5(1) \\
& 0=2(0)+5(0)
\end{aligned}
$$

| $p / q$ | $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right)$ <br> in units of $e^{2} / h$ |
| :---: | :---: |
| $1 / 3$ | $(1,-2,1)$ |
| $2 / 3$ | $(-1,2,-1)$ |
| $1 / 4$ | $(1,1,-3,1)$ |
| $1 / 5$ | $(1,1,-4,1,1)$ |
| $2 / 5$ | $(-2,3,-2,3,-2)$ |

- for rectangular lattice:
$\mathrm{s}_{\mathrm{r}}$ should be as small as possible
- for triangular lattice:
$\mathrm{S}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{r}}$ cannot both be odd (Thouless, Surf Sci 1984)
- Streda formula

$$
\begin{aligned}
& \sigma_{H}=e c \frac{\partial n}{\partial B} \\
& n=\frac{N_{\text {tot }}}{A_{\text {tot }}} \frac{r}{q}=\frac{1}{A_{\text {plaq }}} \frac{r}{q} \\
& \frac{p}{q}=\frac{B A_{\text {plaq }}}{h c / e} \\
& \therefore \sigma_{H}=t_{r}
\end{aligned}
$$

- for weak magnetic field:
$\left(\sigma_{H}\right)_{r}=\mathrm{t}_{\mathrm{r}}-\mathrm{t}_{\mathrm{r}-1}$
- for strong magnetic field:
$\left(\sigma_{H}\right)_{r}=\mathrm{s}_{\mathrm{r}}-\mathrm{s}_{\mathrm{r}-1}$

See Xiao et al RMP 2010 for another derivation

Jump of Hall conductance induced by band-crossing

| $p / q$ | $\begin{aligned} & \left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right), \\ & \text { in units of } e^{2} / h \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| 1/3 | $(1,-2,1)$ | $\begin{gathered} 0.267949 \\ \rightarrow \\ .0 \\ \rightarrow \end{gathered}$ | $\begin{aligned} & (1,1,-2) \\ & (1,1,-2) \end{aligned}$ |
| 2/3 | (-1,2,-1) | $\begin{gathered} 0.267949 \\ \rightarrow \\ \xrightarrow{1.0} \end{gathered}$ | $\begin{aligned} & (2,-1,-1) \\ & (2,-1,-1) \end{aligned}$ |
| 1/4 | (1,1,-3,1) | $\begin{aligned} & \begin{array}{l} 0.382683 \\ \rightarrow \\ 0.707107 \\ \rightarrow \\ 0.92388 \\ \rightarrow \end{array} \end{aligned}$ | $\begin{gathered} (1,1,1,-3) \\ (1,1,1,-3) \\ (1,-3,5,-3) \end{gathered}$ |
| 1/5 | (1,1,-4,1,1) | $\begin{gathered} 0.21296 \\ \rightarrow \\ 0.432325 \\ \rightarrow \\ 0.618034 \\ \rightarrow \\ 0.685096 \\ \rightarrow \end{gathered}$ | $\begin{aligned} & (1,1,1,-4,1) \\ & (1,1,1,1,-4) \\ & (1,1,1,1,-4) \\ & (1,1,-4,6,-4) \end{aligned}$ |
| $2 / 5$ | (-2,3,-2,3,-2) | $\begin{aligned} & 0.413418 \\ & \rightarrow \\ & 0.618034 \\ & \rightarrow \\ & 0.743729 \end{aligned}$ | $\begin{gathered} (-2,3,3,-2,-2) \\ (-2,3,3,-2,-2) \\ (-2,3,3,-7,3) \end{gathered}$ |



FIG. 3. The local energy dispersion $\mathcal{E}_{n}(\mathbf{k})$ near the degenerate point at (a) $t_{x y}^{*} \approx 0.267949$ and (b) $t_{x y}^{*}=1.0$ (for a magnetic flux $\phi=1 / 3$ ). Because of the threefold degeneracy in a MBZ, only onethird of the MBZ is shown.

## Lattice with edges

- Energy dispersion of edge states


Hatusgai, J Phys 1997

