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• basics 

• theories for the quantization

• disorder in QHS

• Berry phase in QHS

• topology in QHS

• effect of lattice

• effect of spin and electron interaction
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Hall effect (1879), a classical analysis
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• Hall conductivity

• Hall resistivity



Resistance and conductance
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Measurement of Hall resistance

2-dim electron gas 
(2DEG)



GaAs/AlGaAs heterojunction

(broadened) Landau 
levels in a magnetic 
field

En
er

gy

μ

subband

Dynamics along z-
direction is frozen in 
the ground state



Ando, Matsumoto, and Uemura JPSJ 1975

Effect of disorder on σxy (theoretical prediction before 1980)

Kawaji et al, Supp PTP 1975

Si(100) MOS inversion layer 

9.8 T, 1.6 K



1985

ρxy deviates from (h/e2)/n by less than 3 ppm on the very first report.
• This result is independent of the shape/size of sample. 
• Different materials lead to the same effect (Si MOSFET, GaAs
heterojunction…)

→ a very accurate way to measure α-1 = h/e2c = 137.036 (no unit)
→ a very convenient resistance standard.

Quantum Hall effect (von Klitzing, 1980)



An accurate and stable resistance standard (1990)

Kinoshita,              
Phys. Rev. Lett. 1995• theory

• experiment



Condensed matter physics is physics of dirt - Pauli

dirty clean

• Flux quantization

0 2
h
e

φ =

• Quantum Hall effect

• …

Often protected by topology, 
but not vice versa.



The triangle of 
quantum metrology

QCP

e

(to be realized)
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QHE
V h / e 2
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Quantum Hall effect requires 
• Two-dimensional electron gas
• strong magnetic field 
• low temperature 
Note: Room Temp QHE in graphene (Novoselov et al, Science 2007) 

Plateau and the importance of disorder

Broadened LL due to 
disorder

Why RH has to be exactly (h/e2)/n ? 

• see Laughlin’s argument below

( )B ck T ω<

Filling factor

Aoki, CMST 2011

The 
importance 
of localized 
states



Width of extended states?

256 states in the LLL. ε(Φ) periodic in Φ0

Aoki 1983



• Finite-Size 
Scaling

~ , 1/ 2xE N x ν−Δ =

ΔE ΔE

H
uo

and B
hatt P

R
L 1992

Exponent 
for 
correlation 
length

Li et al P
R

L 2005

• experiment Ensemble average over 
100-2000 disorder 
configurations

States that can 
carry Hall current 
(with non-zero 
Chern number)



Quantization of Hall conductance, Laughlin’s gauge argument (1981)
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• EF at localized states, no charge transfer whatever Φ is. 
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• Due to gauge symmetry, the system needs to be invariant under Φ→ Φ+ Φ0, 

• Simulate a longitudinal EMF by a fictitious time-dependent flux Φ

1



Edge state in quantum Hall system

• Bending of LLs
Gapless excitations at the edges 

• Robust against disorder 
(no back-scattering)

• Classical picture
Chiral edge state 
(skipping orbit)

• number of edge modes = n



Inclusion of lattice (more details later)

• Bulk states: En(kx,ky) (projected to ky); Edge states: En(ky)

• when the flux is changed by 1 Φ0, the states should come back. 

→ Only integer charges can be transported.

Figs from Hatsugai’s ppt



2Streda formula (1982)

Giuliani and Vignale, Sec 10.3.3

• If ν bands are filled, then the number of electrons 
per unit area is n=νeB/hc

∴ σH=νe2/h

L

R

Nonzero 
along edgeˆc M z= ∇ ×

Degeneracy of a 
LL: D=BA/Φ0



Current response: conductivity

• Vector potential of      
an uniform electric field
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Quantization of Hall conductance
Thouless et al’s argument (1982)
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• Berry curvature (for n-th band)

• Berry connection
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• Niu-Thouless-Wu generalization to system with 
disorder and electron interaction (PRB 1985).

BZ

Zeros and vortices

total vorticity in the BZ

Czerwinski and Brown, PRS  (London) 1991
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Connection with localization in disordered system (Anderson, 1958)

• one-parameter scaling hypothesis
(Abrahams et al, 1979 < Thouless, Landauer…): 
assumeβ(g) depends only on g

Localized

extended

Quasi-extended

2
0( ) , ( ) 2dg L L g dσ β−= = −

• For large g (good conductor)

• For small g (insulator)
/( ) , ( ) lnL

c
c

gg L g e g
g

ξ β−= =

Lagendijk et al, Phys Today 2009 

• All wave functions of disordered systems in 
1D and 2D are localized.

• QHE belongs to a new class of disordered systems.

This analysis does not apply to the QHS, since the extended states 
are crucial there.

Flow follows the increase of L

MIT

conductance





Fig from Altshuler’s ppt

Spectral distribution of random matrix (rank N>>1)

• eigenvalues Ei

• mean level spacing d1=<Ei+1-Ei> (taking ensemble average)

• spacing between NN s=(Ei+1-Ei)/d1

• P(s): distribution function of s

• spectral rigidity: P(0)=0

• level repulsion: P(s<<1) ～ sβ

β=1

From many nuclei



Fig from Altshuler’s ppt

Wigner-Dyson classes

GOE

GUE

GSE

AI

A

AII

Altland-
Zirnbauer
classes



Quantization of
magnetic monopole 
(see Sakurai Sec 2.6)

• Vector potential (use 2 “atlas” to avoid Dirac string)

• gauge transformation between 2 atlas

→ monopole charge is quantized
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Analogy in QH system

• Gauge transformation

Kohmoto, Ann. Phys, 1985

• Two atlases



, , ,( , ; ) ( ) ( )n n nH r p x E xλ λ λλ ψ ψ=

• Fast variable and slow variable

• “Slow variables Ri” are treated as parameters λ(t)

(Kinetic energies from Pi are neglected) 

• solve time-independent Schroedinger eq.

“snapshot” solution

{ }( , ; , )i iH r p R P

electron; {nuclei}

Born-Oppenheimer approximation

e－

H+
2 molecule

nuclei move thousands of times 
slower than the electron

Instead of solving time-dependent Schroedinger eq., one uses

Connection with Berry phase              
First, a brief review of Berry phase:



• After a cyclic evolution
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• Do we need to worry about this phase?

• Energy spectrum:
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• Fock, Z. Phys 1928
• Schiff, Quantum Mechanics (3rd ed.) p.290
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Consider the n-th level,

Stationary, 
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• One problem: ( )Aλφ λ∇ = does not always have a       
well-defined (global) solution.

0
C

A d λ⋅ =∫ 0
C
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Vector flow A

Contour of φ

C

Vector flow

Contour of φ

A φ is not    
defined here
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M. Berry, 1984 : 
• Parameter-dependent phase 
NOT always removable!

Index n
neglected



• Berry connection (or Berry potential)

• Berry curvature (or Berry field)
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• Stokes theorem (3-dim here, can be higher)

• Gauge transformation
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spin × solid angle

Example: spin-1/2 particle in slowly changing B field 
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Examples of the Berry phase:



Magnetic monopole / Berry phase / fiber bundle

( )A k i λ λ λψ ψ≡ ∇

in parameter space

Berry connection

Berry curvature (in 3D)
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Total curvature
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U(1) fiber bundle
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(QHE: λ→ k in BZ)



Connection with geometry         
First, a brief review of topology:

K≠0

G≠0
K≠0

G=0

• extrinsic curvature K vs
• intrinsic (Gaussian) curvature G

G>0

G=0

G<0

• Positive and negative 
Gaussian curvature

外在

內在

• Berry phase ≒ anholonomy angle in differential geometry

• Berry curvature ≒Gaussian curvature

20

1lim
A A R

α
→

=• Gaussian curvature G ≣

• anholonomy angle α= 內角和-180



Euler characteristic 
歐拉特徵數

2 ( ), 2(1 )
M

da G M gπχ χ= = −∫

• Gauss-Bonnet theorem (for a 2-dim closed surface)

0g = 1g = 2g =

The most beautiful theorem in differential topology

• Gauss-Bonnet theorem (for a surface with boundary) 

( ),2gM M
M Mda G ds k π χ

∂
∂+ =∫ ∫

Marder, Phys Today, Feb 2007

• Can be generalized to higher dimension.



• Nontrivial fiber bundle
Möbius band

• Trivial fiber bundle
(a product space R1 x R1)

Simplest examples:

R1

R1base

fiber

• Fiber bundle                                    
~ base space × fiber space

Fiber bundle: a generalization of product space

• In physics, a fiber bundle ~ Physical space × Inner space

• In QHS, we have T2 x U(1)

• The topology of a fiber bundle is classified by Chern numbers          
～the topology of a closed surface is classified by Euler characteristics

(spin, gauge field…)

base space

fiber space



Lattice electron in a magnetic field: magnetic translation symmetry

consider a uniform B field

Indep of r
• Magnetic translation operator

Commute if this is 1

Xiao et al, RMP 2010

B

a1

a2



Simultaneous eigenstates: 
magnetic Bloch states

• If Φ=(p/q)Φ0 per plaquette, then 
Magnetic Brillouin zone = BZ/q.

e.g., p/q=1/3



Hofstadter spectrum

Band structure of a 2DEG subjects to 
both a periodic potential V(x,y) and a 
magnetic field B.

Can be studied using the tight-binding 
model (TBM).

B The tricky part:

q=3 → q=29 upon a small change of B!
Also, when B → 0, q can be very large.

1

3 1
10

10
29

1
3

1
87−

= = +

Surprisingly complex spectrum!
Split of energy band depends on flux/plaquette.
If Φplaq/Φ0= p/q, where p, q are co-prime 
integers, then a Bloch band splits to q 
subbands (for TBM).



Hofstadter’s butterfly (Hofstadter, PRB 1976)

• A fractal spectrum with self-similarity structure

Self-similarity 
(heirarchy)

B → 0 near band button, evenly-spaced LLs

• The total band width for an irrational q is of measure zero 
(as in a Cantor set).
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C1 = 1

C2 = −2

C3 = 1

Bloch energy E(k) Berry curvature Ω(k) p/q=1/3



Distribution of Hall conductance among subbands
(Thouless et al PRL 1982)

r rr pt qs= +
• Diophantine equation

• for rectangular lattice:                 
sr should be as small as possible

• for triangular lattice:                    
sr and tr cannot both be odd
(Thouless, Surf Sci 1984)

e.g., / 2 / 5
2 5

5 2(0) 5(1)
4 2(2) 5(0)
3 2( 1) 5(1)
2 2(1) 5(0)
1 2( 2) 5(1)
0 2(0) 5(0)

r r

p q
r t s

=
= +
= +
= +
= − +
= +
= − +
= +

See Xiao et al RMP 2010 for another derivation
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• Streda formula

• for weak magnetic field: 
(σH)r = tr - tr-1
• for strong magnetic field: 
(σH)r = sr - sr-1



Jump of Hall conductance induced by band-crossing
Lee, Chang, and Hong, PRB 1998



Φ=2/5

Lattice with edges

• Energy dispersion of edge states

Hatusgai, J Phys 1997 


