Quantum Mechanics

- 1. [30 %] A particle with mass *m* is inside an *infinitely deep square well* with width *a*.
- (a) Find out the normalized wave function $\psi_1(x)$ for the ground state.
- (b) Find out the normalized wave function $\psi_2(x)$ for the first-excited state.
- (c) At t=0, the state of the particle is $\psi(x,0) = \frac{1}{\sqrt{2}} (\psi_1(x) + \psi_2(x))$. Find out

the value of $|\psi(a/2,t)|^2$ at position x=a/2 and time t.

2. [40%] The raising and lowering operators of a harmonic oscillator can be written as

$$a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega x \mp ip), \text{ and } \begin{cases} a_{\pm}\psi_n = \sqrt{n+1}\psi_{n+1} \\ a_{\pm}\psi_n = \sqrt{n}\psi_{n-1} \end{cases}$$

(a) Consider a particle in the *ground state* of the harmonic oscillator. Find out the expectation values $\langle x \rangle$ and $\langle p \rangle$ of its position and momentum.

- (b) Follow (a), find out $\langle x^2 \rangle$ and $\langle p^2 \rangle$ for the particle in the ground state.
- (c) Follow (b), what is the value of the product of standard deviations $\sigma_x \sigma_p$? (d) The eigen-state of a_{-} is called a *coherent state* and satisfies $a_{-}\psi = \lambda \psi$. One can expand ψ in terms of the energy eigen-states ψ_n , $\psi = \sum_{n=0}^{\infty} c_n \psi_n$. Find out all of the coefficients c_n (assuming ψ is normalized).

3. [30%] A system is described by the following Hamiltonian,

$$H = \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \quad a, b \in R .$$

(a) Find out its normalized eigen-states.

(b) If the initial state of the system is $\psi(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, then what is $\psi(t)$?

(c) Follow (b), a physical observable Q is described the following operator,

$$Q = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

When an experimentalist measures Q at time t=0, what are the possible values one can observe, each with what probabilities?

