1. [30 \%] A particle with mass m is inside an infinitely deep square well with width a.
(a) Find out the normalized wave function $\psi_{1}(x)$ for the ground state.
(b) Find out the normalized wave function $\psi_{2}(x)$ for the first-excited state.
(c) At $t=0$, the state of the particle is $\psi(x, 0)=\frac{1}{\sqrt{2}}\left(\psi_{1}(x)+\psi_{2}(x)\right)$. Find out the value of $|\psi(a / 2, t)|^{2}$ at position $x=a / 2$ and time t.

2. [40\%] The raising and lowering operators of a harmonic oscillator can be written as $a_{ \pm}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega x \mp i p)$, and $\left\{\begin{array}{l}a_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1} \\ a_{-} \psi_{n}=\sqrt{n} \psi_{n-1}\end{array}\right.$.
(a) Consider a particle in the ground state of the harmonic oscillator. Find out the expectation values $\langle x\rangle$ and $\langle p\rangle$ of its position and momentum.
(b) Follow (a), find out $\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$ for the particle in the ground state.
(c) Follow (b), what is the value of the product of standard deviations $\sigma_{x} \sigma_{p}$?
(d) The eigen-state of a_{-}is called a coherent state and satisfies $a_{-} \psi=\lambda \psi$.

One can expand ψ in terms of the energy eigen-states $\psi_{n}, \psi=\sum_{n=0}^{\infty} c_{n} \psi_{n}$.
Find out all of the coefficients c_{n} (assuming ψ is normalized).
3. [30\%] A system is described by the following Hamiltonian,

$$
H=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right), \quad a, b \in R
$$

(a) Find out its normalized eigen-states.
(b) If the initial state of the system is $\psi(0)=\binom{0}{1}$, then what is $\psi(t)$?
(c) Follow (b), a physical observable Q is described the following operator,

$$
Q=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

When an experimentalist measures Q at time $t=0$, what are the possible values one can observe, each with what probabilities?

