Quantum Mechanics

1. [20 %] (a) The ground state of the hydrogen atom is $\psi_{100} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$, *a* is the Bohr

radius. $P(r)dr = |\psi_{100}|^2 4\pi r^2 dr$ is the probability distribution of the electron to be within a thin shell of thickness *dr*. P(r) reaches a maximum at a radius r_0 . Find out r_0 . (b) Find out the expectation value $\left\langle \frac{1}{r^2} \right\rangle_{100}$ for the ground state.

2. [30%] (a) Calculate the commutator $[L_z, L_{\pm}]$, where $L_{\pm} = L_x \pm iL_y$.

(b) If the eigenvalue of L_z for a state ψ is $m\hbar$, then find out "the eigenvalue of L_z " for the state $L_{\pm}\psi$.

(c) A particle (without spin) is moving along a *one-dimensional* circular ring with radius *R*, which lies on the *x*-*y* plane. If the angular momentum $L_z = \frac{\hbar}{i} \frac{d}{d\phi}$ of the particle is $m\hbar$, then what is the *normalized* wave function $\psi_m(\phi)$ of the particle?

3. [30%] (a) A spin-1/2 particle is in the state $\Psi = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$.

Calculate the expectation values $\langle S_x \rangle, \langle S_y \rangle, \langle S_z \rangle$.

(b) What are the probabilities of getting $\hbar/2$ and $-\hbar/2$ when you measure S_z ? (c) When you measure S_x , what possible values will you get? Each with what probabilities?

4. [20%] (a) A system has two spin-1/2 particles. Write down the *singlet* state and the *triplet* states in term of the spin states |↑⟩, |↓⟩ of a particle.
[Just write down the answer. No derivation is required]

(b) Two particles have spin quantum numbers $(s_1, m_1) = (1, 1)$, $(s_2, m_2) = (1, -1)$, what are the possible total spin quantum numbers *S* and *m* of the two particles? [No derivation is required]