1. [20 \%] (a) The ground state of the hydrogen atom is $\psi_{100}=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, a$ is the Bohr radius. $P(r) d r=\left|\psi_{100}\right|^{2} 4 \pi r^{2} d r$ is the probability distribution of the electron to be within a thin shell of thickness $d r . P(r)$ reaches a maximum at a radius r_{0}. Find out r_{0}. (b) Find out the expectation value $\left\langle\frac{1}{r^{2}}\right\rangle_{100}$ for the ground state.
2. [30\%] (a) Calculate the commutator [$L_{z}, L_{ \pm}$], where $L_{ \pm}=L_{x} \pm i L_{y}$.
(b) If the eigenvalue of L_{z} for a state ψ is $m \hbar$, then find out "the eigenvalue of L_{z} " for the state $L_{ \pm} \psi$.
(c) A particle (without spin) is moving along a one-dimensional circular ring with radius R, which lies on the $x-y$ plane. If the angular momentum $L_{z}=\frac{\hbar}{i} \frac{d}{d \phi}$ of the particle is $m \hbar$, then what is the normalized wave function $\psi_{m}(\phi)$ of the particle?
3. $[30 \%]$ (a) A spin- $1 / 2$ particle is in the state $\psi=\frac{1}{\sqrt{3}}\binom{1}{1+i}$.

Calculate the expectation values $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle$.
(b) What are the probabilities of getting $\hbar / 2$ and $-\hbar / 2$ when you measure S_{z} ?
(c) When you measure S_{x}, what possible values will you get?

Each with what probabilities?
4. [20\%] (a) A system has two spin- $1 / 2$ particles. Write down the singlet state and the triplet states in term of the spin states $|\uparrow\rangle,|\downarrow\rangle$ of a particle.
[Just write down the answer. No derivation is required]
(b) Two particles have spin quantum numbers $\left(s_{1}, m_{1}\right)=(1,1),\left(s_{2}, m_{2}\right)=(1,-1)$, what are the possible total spin quantum numbers S and m of the two particles?
[No derivation is required]

