1．［30\％］There is a particle of mass m_{0} in an infinitely deep square well potential（see Fig）．
The unperturbed eigen－states of the square well are $\psi_{n}^{0}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right),(n=1,2 \ldots)$ ．
The potential well is perturbed by $H^{\prime}=v \delta\left(x-\frac{a}{4}\right)$ ．
（a）Find out the first－order energy perturbation E_{n}^{1} due to H^{\prime}（for every n ）．
（b）Calculate the perturbation on the ground state（i．e．，$n=1$ ）：

$\psi_{n}^{1}=\sum_{m \neq n} \frac{\left\langle\psi_{m}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}} \psi_{m}^{0}$ ．You only need to calculate the first non－zero term in the expansion．
2．［20\％］A degenerate three－state Hamiltonian H^{0} is perturbed by H^{\prime} as follows：
$H^{0}=h\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad H^{\prime}=v\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0\end{array}\right), \quad(v \ll h)$.
（a）Find out the first－order energy corrections，E_{n}^{1} ，to the degenerate energy $E_{n}^{0}=h \quad(n=1,2,3)$ ．
（b）Find out the zero－th order good eigen－states $\psi_{n}^{0} \quad(n=1,2,3)$ ．

3．$[30 \%]$（a）The WKB wave function inside a potential well is of the form $\psi(x)=\frac{C}{\sqrt{p(x)}} e^{i \int_{0}^{x} d x^{\prime} p\left(x^{\prime}\right)}$ ． Briefly give a physics explanation on why the probability density $|\psi(x)|^{2} \propto \frac{1}{p(x)}$ ．
（b）The WKB quantization condition is given by $\int_{-x_{c}}^{x_{c}} p(x) d x=\left(n+\frac{1}{2}\right) \pi \hbar \quad(n=0,1,2 \ldots)$ ， where x_{c} is the classical turning point．Apply this formula to a simple harmonic potential $V(x)=\frac{m \omega^{2}}{2} x^{2}$ and find out the bound state energies E_{n} ．
4．［20\％］In the time－dependent perturbation theory，we need to solve equation of the form： $\frac{d \vec{v}(t)}{d t}=\underset{\sim}{M}(t) \vec{v}(t)$ ，in which $M(t)$ is a time－dependent matrix．In the method of iteration（疊代法）， the zero－th order solution is $\vec{v}^{0}(t)=\vec{v}_{0} \quad$（initial value of $\vec{v}(t)$ ）．
（a）Find out the first－order correction $\vec{v}^{1}(t)$（which is accurate to the first order of M ）．
（b）Find out the second－order correction $\vec{v}^{2}(t)$（which is accurate to the second order of M ）．

