1. (30%) A 2 -state system has the following Hamiltonian, $H_{0}=B \sigma_{z}$, where $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(a) Find out the two energy eigenstates χ_{+}, χ_{-}and eigenvalues $\varepsilon_{+}, \varepsilon_{-}\left(\varepsilon_{+}>\varepsilon_{-}\right)$.
(b) At $t=0$, a particle is in state χ_{-}. At $t>0$, it is subject to a perturbation $H^{\prime}=b \sin (\Omega t) \sigma_{x}$, where $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Find out the probability $P_{+}(t)$, accurate to first order, of finding the particle in state χ_{+}at time $t . \quad\left(\operatorname{Hint}: c_{b}^{(1)}(t)=-\frac{i}{\hbar} \int_{0}^{t} H_{b a}^{\prime}\left(t^{\prime}\right) e^{i \omega_{b} t^{\prime}} d t^{\prime}\right.$, where $\left.\hbar \omega_{0}=\varepsilon_{+}-\varepsilon_{-}\right)$
(c) Plot $P_{+}(t)$ as a function of t. What's the period and the maximum value of $P_{+}(t)$?
2. (45\%) (a) Explain briefly, but clearly (use figures if necessary) the following two terms: "stimulated emission" and "spontaneous emission".
(b) Comparing the following two formulas (one derived by Einstein, the other is the Planck formula),
$\rho(\omega)=\frac{A}{e^{\hbar \omega / k_{B} T} B_{a b}-B_{b a}} \quad$ vs $\quad \rho(\omega)=\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{\hbar \omega / k_{k} T}-1}$,
what mathematical relations between the A, B coefficients can we obtain? Briefly explain the meaning of these relations.
(c) Explain briefly, but clearly (use figures if necessary), about the Aharonov-Bohm phase of an electron circling a long solenoid with a magnetic flux Φ. No derivation is required.
3. (25\%) A 2 -state system has the following Hamiltonian, $H=\vec{B} \cdot \vec{\sigma}$, where $\vec{B}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ and $\vec{\sigma}$ are the Pauli matrices. One of the eigenstate is $\chi_{-}=\binom{\sin \theta / 2}{-e^{i \phi} \cos \theta / 2}, \quad$ or $\quad \chi_{-}^{\prime}=\binom{-e^{-i \phi} \sin \theta / 2}{\cos \theta / 2} \quad$ [both choices are valid]
(a) Find out $\vec{A}_{-}=i\left\langle\chi_{-} \mid \nabla \chi_{-}\right\rangle$. Hint: $\nabla=\frac{\partial}{\partial r} \hat{r}+\frac{\partial}{r \partial \theta} \hat{\theta}+\frac{\partial}{r \sin \theta \partial \phi} \hat{\phi}$
(b) Another choice of eigenstate gives $\vec{A}_{-}^{\prime}=i\left\langle\chi_{-}^{\prime} \mid \nabla \chi_{-}^{\prime}\right\rangle$, which differs from \vec{A}_{-}by a
gradient term: $\vec{A}_{-}^{\prime}=\vec{A}_{-}+\nabla \Lambda$. Find out the function Λ.
