1. (30%) A 2-state system has the following Hamiltonian, $H_0 = B\sigma_z$, where $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- (a) Find out the two energy eigenstates χ_+ , χ_- and eigenvalues ε_+ , $\varepsilon_-(\varepsilon_+ > \varepsilon_-)$.
- (b) At t=0, a particle is in state χ_{-} . At t>0, it is subject to a perturbation $H' = b \sin(\Omega t) \sigma_x$,

where $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Find out the probability $P_+(t)$, accurate to first order, of finding the

particle in state χ_+ at time *t*. (Hint: $c_b^{(1)}(t) = -\frac{i}{\hbar} \int_0^t H_{ba}(t') e^{i\omega_0 t'} dt'$, where $\hbar \omega_0 = \varepsilon_+ - \varepsilon_-$)

- (c) Plot $P_+(t)$ as a function of t. What's the *period* and the *maximum value* of $P_+(t)$?
- 2. (45%) (a) Explain briefly, but clearly (use figures if necessary) the following two terms: "stimulated emission" and "spontaneous emission".

(b) Comparing the following two formulas (one derived by Einstein, the other is the Planck formula),

$$\rho(\omega) = \frac{A}{e^{\hbar\omega/k_BT}B_{ab} - B_{ba}} \quad vs \quad \rho(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar\omega/k_BT} - 1},$$

what mathematical relations between the *A*, *B* coefficients can we obtain? Briefly explain the meaning of these relations.

(c) Explain briefly, but clearly (use figures if necessary), about the Aharonov-Bohm phase of an electron circling a long solenoid with a magnetic flux Φ . *No derivation is required.*

3. (25%) A 2-state system has the following Hamiltonian, $H = \vec{B} \cdot \vec{\sigma}$, where

 $\vec{B} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ and $\vec{\sigma}$ are the Pauli matrices. One of the eigenstate is

$$\chi_{-} = \begin{pmatrix} \sin \theta / 2 \\ -e^{i\phi} \cos \theta / 2 \end{pmatrix}$$
, or $\chi'_{-} = \begin{pmatrix} -e^{-i\phi} \sin \theta / 2 \\ \cos \theta / 2 \end{pmatrix}$ [both choices are valid]

- (a) Find out $\vec{A}_{-} = i \langle \chi_{-} | \nabla \chi_{-} \rangle$. Hint: $\nabla = \frac{\partial}{\partial r} \hat{r} + \frac{\partial}{r \partial \theta} \hat{\theta} + \frac{\partial}{r \sin \theta \partial \phi} \hat{\phi}$
- (b) Another choice of eigenstate gives $\vec{A}'_{-} = i \langle \chi'_{-} | \nabla \chi'_{-} \rangle$, which differs from \vec{A}_{-} by a

gradient term: $\vec{A}'_{-} = \vec{A}_{-} + \nabla \Lambda$. Find out the function Λ .