Quantum Mechanics Midterm Exam

12/03/2003 (9:10-11:10)

- 1. A Hilber space has the following basis $|j\rangle$ (j=1,2,3). Two operators Ω_+ and Ω_- in the Hilbert space are defined by the following mappings: Ω_{\pm} : $|j\rangle \rightarrow |j\pm 1\rangle$.
 - That is, $\Omega_+|j\rangle = |j\pm 1\rangle$. (We will assume that $\Omega_+|3\rangle = 0$ and $\Omega_-|1\rangle = 0$.)
 - (a) Write the operators Ω_+ and Ω_- in matrix forms using the basis above.
 - (b) Define $\Omega = \Omega_+ + \Omega_-$. Is it a hermitian operator? Find out its eigenvalues and (normalized) eigenstates.
 - (c) Find out the expectation value of Ω in the state $|\psi\rangle=(|1\rangle+|2\rangle+|3\rangle)/\sqrt{3}$
- 2. The states $|\pm\rangle$ are the eigenstates of spin-1/2 operator S_z . Let the eigenstates of the operator $\vec{S} \cdot \hat{n}$ be denoted by $|\hat{n}, \pm\rangle$, where \hat{n} is a unit vector shown below.

- (a) Write down the matrix form of the operator $\vec{S} \cdot \hat{n} = S_x n_x + S_y n_y + S_z n_z$.
- (b) Find out its eigenvalues and show that the "+" eigenstate can be chosen as

$$|\hat{n},+\rangle = \begin{pmatrix} \cos q/2 \\ e^{if} \sin q/2 \end{pmatrix}$$

(c) If we measure the values of S_x for the eigenstate $|\hat{n},+\rangle$, what result will we get, with what probabilities?

$$\begin{bmatrix} S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\ S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$

- 3. A particle with mass *m* is moving <u>freely</u> in a one-dimensional system with length L with the *periodic boundary condition* y(0) = y(L).
 - (a) Find out the energy eigenvalues and (normalized) eigenstates of this system. Notice that the Hamiltonian is simply $H=p^2/2m$.
 - (b) Assume the initial wave function for the particle is $y_0(x) = A \cos^2(2px/L)$,

where *A* is a constant. What is the probability to find it in the lowest energy eigenstate (with nonzero momentum)?

- (c) When we measure its momentum *p*, what possible results will we get? With what probabilities?
- (d) Find out the uncertainty of momentum Δp for the state at time t.