- [20%] In general, the operator U of a continuous (unitary) transformation can be written in the form U=exp(-iGa), where G is the generator of the transformation and a is some parameter. (For simplicity, let's assume there is only one parameter.) Show that, if the Hamiltonian H is invariant under the transformation U, then G is a conserved quantity.
- 2. [30%]
 - (a) Consider a system with angular momentum j=1. Explicitly write $\langle j=1,m' | J_x | j=1,m \rangle$ as a 3×3 matrix.
 - (b) Expand $\exp(-i?J_x/h)$ as a polynomial of J_x with finite number of terms.
 - (c) Use (a) and (b) to express $\exp(-i?J_x/h)$ as a 3×3 matrix. $(J_{\pm}|j,m\rangle = \sqrt{(j \pm m)(j \pm m+1)}\hbar|j,m\pm1\rangle)$
- 3. [30%] For a spin-1/2 particle, the spin-up state (along *z*-axis) is $|+>=(1,0)^{T}$.
 - (a) With the help of the rotation operators U_y and U_z , find out the state $|\hat{n}, +>$ that is spin-up along the direction $\hat{n} = (\sin q \cos f, \sin q \sin f, \cos q)$.
 - (b) Following (a), find out the expectation values $\langle S_x \rangle$ and $\langle S_y \rangle$ of such a state.
 - (c) Assume the initial state of a particle is $|\hat{n}, +>$ at *t*=0. We then apply an uniform magnetic field B along the *z* direction. Calculate the expectation value $\langle S_x \rangle$ at time *t*.

4. [20%] Consider a system made up of two spin 1/2 particles. Observer A specializes in measuring the spin components of particle-1, while observer B measures the spin component of particle-2. Suppose the system is in a spin-singlet state with $S_{tot}=0$. (a) What is the probability for A to obtain $S_{1z} = \hbar/2$ when B makes no measurement?

Repeat the same problem for $S_{1x} = \hbar/2$.

(b) B determines the spin of particle-2 to be $S_{2z} = \hbar/2$. What can we conclude about the outcome of A's measurement if A measures S_{1z} ? Repeat the same problem, what if A measures S_{1x} ?