1. [20\%] In general, the operator U of a continuous (unitary) transformation can be written in the form $U=\exp (-i G a)$, where G is the generator of the transformation and a is some parameter. (For simplicity, let's assume there is only one parameter.) Show that, if the Hamiltonian H is invariant under the transformation U, then G is a conserved quantity.
2. [30\%]
(a) Consider a system with angular momentum $j=1$. Explicitly write $<j=1, m^{\prime}\left|J_{x}\right| j=1, m>$ as a 3×3 matrix.
(b) Expand $\exp \left(-i ? J_{x} / \mathrm{h}\right)$ as a polynomial of J_{x} with finite number of terms.
(c) Use (a) and (b) to express $\exp \left(-i ? J_{x} / \mathrm{h}\right)$ as a 3×3 matrix.
$\left(J_{ \pm}|j, m>=\sqrt{(j \mp m)(j \pm m+1)} \hbar| j, m \pm 1>\right)$
3. [30\%] For a spin-1/2 particle, the spin-up state (along z-axis) is $\mid+>=(1,0)^{\mathrm{T}}$.
(a) With the help of the rotation operators U_{y} and U_{z}, find out the state $\mid \hat{n},+>$ that is spin-up along the direction $\hat{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.
(b) Following (a), find out the expectation values $\left\langle S_{x}\right\rangle$ and $\left\langle S_{y}\right\rangle$ of such a state.
(c) Assume the initial state of a particle is $\mid \hat{n},+>$ at $t=0$. We then apply an uniform magnetic field B along the z direction. Calculate the expectation value $\left\langle S_{x}>\right.$ at time t.
4. [20\%] Consider a system made up of two spin $1 / 2$ particles. Observer A specializes in measuring the spin components of particle-1, while observer B measures the spin component of particle-2. Suppose the system is in a spin-singlet state with $S_{\text {tot }}=0$.
(a) What is the probability for A to obtain $S_{1 z}=\hbar / 2$ when B makes no measurement?

Repeat the same problem for $S_{1 x}=\hbar / 2$.
(b) B determines the spin of particle-2 to be $S_{2 z}=\hbar / 2$. What can we conclude about the outcome of A's measurement if A measures $S_{1 z}$? Repeat the same problem, what if A measures $\mathrm{S}_{1 \mathrm{x}}$?

