1. $[30 \%]$ In the WKB approximation, we write the wave function in the form $\psi(x)=\rho(x) \exp (i \tilde{\phi}(x))=\exp (i \phi(x))$, where $\phi(x)=\tilde{\phi}(x)-i \ln \rho(x)$.
(a) Substitute this into the Schroedinger equation and find out the zeroth order solution $\phi_{0}(x)$.
(b) When solving for $\phi_{0}(x)$ in (a), we assumed that $\phi(x)$ is a very smooth function. Under what condition can we say that the first order term is negligible? (express your answer using $\phi^{\prime}(x), \phi^{\prime}(x) \ldots$ etc.)
2. [30\%] If the finite size of the proton is taken into consideration, the potential for an electron in a hydrogen atom is (R is the radius of the proton)

$$
V(\vec{r})=\left\{\begin{array}{cl}
-\frac{e^{2}}{R}\left(\frac{3}{2}-\frac{1}{2} \frac{r^{2}}{R^{2}}\right) & \text { for } 0 \leq \mathrm{r} \leq \mathrm{R}, \\
-\frac{e^{2}}{r} & \text { for } \mathrm{r} \geq \mathrm{R} .
\end{array}\right.
$$

(a) Write down explicitly the perturbation potential V^{\prime} to the Coulomb potential of a point charge source.
(b) Find out the first order energy shift for the ground state of the hydrogen with

$$
\Psi_{100}(\vec{r})=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}, \text { where } a_{0}=\frac{\hbar^{2}}{m e^{2}}
$$

3. [40\%] A particle of mass m is initially in the ground state of the (1-dim) infinite square-well potential. At $t=0$, a "brick" is dropped into the well so the potential becomes $V(x)=\left\{\begin{array}{l}V_{0} \text { if } 0 \leq x \leq a / 2 \\ 0 \\ \text { if } a / 2<x \leq a \\ \infty \\ \text { otherwise }\end{array}\right.$, where $V_{0} \ll$ ground state energy E_{1}.
After a time T, the brick is removed, and the energy of the particle is measured.
(a) First find out the lowest two eigenenergies (E_{1} and E_{2}) and normalized eigenstates of the unperturbed system (in which $V_{0}=0$).
(b) Find out the probability that the energy of the particle (when being measured) is E_{2} after the time $t=T$.
Hint: $d_{f}^{1}(t)=\frac{1}{i \hbar} \int_{t_{0}}^{t} d t^{\prime}\left\langle f^{0}\right| H^{\prime}\left(t^{\prime}\right)\left|i^{0}\right\rangle e^{i \omega_{f i^{\prime}}} ; R_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|V_{f i}\right|^{2} \delta\left(\varepsilon_{f i}-\hbar \omega\right)$
