1. [30\%] A particle with mass m is moving in a 1-dim potential $V(x)=(k / 2) x^{2}$.
(a) Assume the energy of the particle is E, find out the positions of the classical turning points.
(b) Use the Bohr-Sommerfeld quantization condition to find out the energy E_{n} of the n-th bound state (do not just write down the answer directly)
(c) If the potential for $x<0$ is replaced by a hard wall with infinite height, how would the answer for (b) be changed?
2. [30\%] A particle with mass m is moving freely in a 1 -dim region [-L/2,L/2]. Let us use the periodic boundary condition (that is, the two points $-\mathrm{L} / 2$ and $\mathrm{L} / 2$ are glued together).
(a) Find out the normalized eigen-states ψ_{n} and eigen-energies E_{n} of this system.
(b) Let us put a little "dimple" in the potential at $x=0$ by introducing a perturbation $H^{\prime}=-V_{0} \exp \left(-x^{2} / a^{2}\right)$, where $a \ll L$. Find the first order correction to E_{n}.
(c) What are the "good" linear combinations of ψ_{n} and $\psi_{-\mathrm{n}}$.
(Hint: Since $a \ll L$, you can extend the interval of some integrals from [-L/2,L/2]
to $[-\infty, \infty]$ to simplify the calculation, and use $\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}=\sqrt{\pi / \alpha}$.)
3. [40\%] A particle with mass m and charge q is moving in a square-well potential.

$$
V(x)=\left\{\begin{array}{cc}
0 & x \in[-a / 2, a / 2] \\
\infty & x \notin[-a / 2, a / 2]
\end{array}\right.
$$

Beginning from $t=0$, a weak oscillating electric field $\vec{E}(t)=E_{0} \sin (\omega t) \hat{x}$ is applied.
(a) Write down the normalized wave functions and energies of the lowest two unperturbed eigenstates.
(b) After a long time of perturbation, find out (by using the Fermi Golden rule) the transition rate $\mathrm{R}_{1->2}$ for the particle to jump to the first excited state.
(c) If the perturbation lasts for only a finite time t, find out the probability $P_{2}(t)$ to find the particle at the first excited state after the perturbation is turned off.

Hint: $d_{f}^{1}(t)=\frac{1}{i \hbar} \int_{t_{0}}^{t} d t^{\prime}\left\langle f^{0}\right| H^{\prime}\left(t^{\prime}\right)\left|i^{0}\right\rangle e^{i \omega_{f t^{\prime}}} ; R_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|V_{f i}\right|^{2} \delta\left(\varepsilon_{f i}-\hbar \omega\right)$

