1. Consider a one-dimensional simple harmonic oscillator.

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}=\left(a^{+} a+\frac{1}{2}\right) \hbar \omega, \text { where } a=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{m \omega}{\hbar}} x+\frac{i}{\sqrt{m \omega \hbar}} p\right) .
$$

The eigenstate with energy $(\mathrm{n}+1 / 2) \hbar \omega$ is written as $\mid \mathrm{n}>$.
(a) Construct a state $|\Psi\rangle$, which is a linear combination of $|0\rangle$ and $|1\rangle$, such that < $\mathrm{x}>$ is as large as possible.
(b) Suppose at $\mathrm{t}=0$ the oscillator is in the state constructed in (a). What is the state vector $|\Psi(\mathrm{t})\rangle$ at $\mathrm{t}>0$?
(c) Evaluate the $\langle x\rangle$ as a function of time using the $|\Psi(t)\rangle$ in (b).
2. (a) What is the physical significance of a propagator $K\left(x, t ; x^{\prime}, 0\right)$? Briefly explain how do you calculate it using Feynman's formula?
(b) Consider the propagator for an electron to move around an infinitely long solenoid once (the path is a loop). Use path integral method to show that, after we turn on the magnetic field, the propagator gains an extra phase (e/ $/ \mathrm{c}) \phi$, where ϕ is the magnetic flux in the solenoid. That is, $\mathrm{K}_{\mathrm{B} \neq 0}(\mathrm{x}, \mathrm{t} ; \mathrm{x}, 0)=\exp [\mathrm{i}(\mathrm{e} / \hbar \mathrm{c}) \phi] \mathrm{K}_{\mathrm{B}=0}(\mathrm{x}, \mathrm{t} ; \mathrm{x}, 0)$. Hint: $L(\vec{r}, \vec{v})=\frac{m v^{2}}{2}-\frac{e}{c} \vec{v} \cdot \vec{A}(\vec{r})$
3. Imagine a box with only 5 (single-particle) states inside. They are labeled $n=1$ to 5 from low energy to high energy (assuming there is no degeneracy). The energy and normalized wave function for the n-th state are written as ε_{n} and ϕ_{n}.
(a) If there are 3 noninteracting bosons in the box, write down the energy E and normalized wave function $\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ for the ground state of this system.
(b) Repeat the question in (a) if the 3 particles are fermions.
(c) In general, how many different ways we can put 3 fermions in this box?
4. (a) Prove that if a Hamiltonian is invariant under space reflection, then the energy eigenstates (assuming nondegenerate) have either even parity or odd parity.
(b) For every continuous unitary transformation U, we can define a generator G by considering an infinitesimal transformation (for simplicity, we consider the transformation with only one parameter ε),

$$
U(\varepsilon)=1-i \frac{\varepsilon}{\hbar} G+O\left(\varepsilon^{2}\right) .
$$

Prove that if the Hamiltonian H is invariant under the unitary transformation U, then the corresponding generator G is conserved.

